Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Arnd Bergmann | 1203 | 33.63% | 19 | 21.84% |
Jeremy Kerr | 606 | 16.94% | 13 | 14.94% |
Benjamin Herrenschmidt | 351 | 9.81% | 5 | 5.75% |
Christoph Hellwig | 328 | 9.17% | 6 | 6.90% |
Anton Blanchard | 293 | 8.19% | 1 | 1.15% |
Luke Browning | 132 | 3.69% | 3 | 3.45% |
Geoff Levand | 96 | 2.68% | 4 | 4.60% |
Masato Noguchi | 89 | 2.49% | 3 | 3.45% |
Christian Krafft | 86 | 2.40% | 1 | 1.15% |
Andre Detsch | 80 | 2.24% | 3 | 3.45% |
Mark Nutter | 67 | 1.87% | 2 | 2.30% |
Rafael J. Wysocki | 66 | 1.85% | 1 | 1.15% |
Kay Sievers | 53 | 1.48% | 2 | 2.30% |
Joel H Schopp | 46 | 1.29% | 1 | 1.15% |
Ian Munsie | 13 | 0.36% | 1 | 1.15% |
Michael Ellerman | 11 | 0.31% | 2 | 2.30% |
Aneesh Kumar K.V | 11 | 0.31% | 4 | 4.60% |
Thomas Gleixner | 10 | 0.28% | 3 | 3.45% |
Rusty Russell | 7 | 0.20% | 1 | 1.15% |
Ishizaki Kou | 5 | 0.14% | 1 | 1.15% |
Andi Kleen | 4 | 0.11% | 1 | 1.15% |
Ingo Molnar | 4 | 0.11% | 2 | 2.30% |
Geert Uytterhoeven | 3 | 0.08% | 1 | 1.15% |
Yong Zhang | 3 | 0.08% | 1 | 1.15% |
Harvey Harrison | 3 | 0.08% | 1 | 1.15% |
Paul Gortmaker | 2 | 0.06% | 1 | 1.15% |
Eric W. Biedermann | 2 | 0.06% | 1 | 1.15% |
Sebastian Andrzej Siewior | 1 | 0.03% | 1 | 1.15% |
Thiago Jung Bauermann | 1 | 0.03% | 1 | 1.15% |
Paul Mackerras | 1 | 0.03% | 1 | 1.15% |
Total | 3577 | 87 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Low-level SPU handling * * (C) Copyright IBM Deutschland Entwicklung GmbH 2005 * * Author: Arnd Bergmann <arndb@de.ibm.com> */ #undef DEBUG #include <linux/interrupt.h> #include <linux/list.h> #include <linux/init.h> #include <linux/ptrace.h> #include <linux/slab.h> #include <linux/wait.h> #include <linux/mm.h> #include <linux/io.h> #include <linux/mutex.h> #include <linux/linux_logo.h> #include <linux/syscore_ops.h> #include <asm/spu.h> #include <asm/spu_priv1.h> #include <asm/spu_csa.h> #include <asm/xmon.h> #include <asm/prom.h> #include <asm/kexec.h> const struct spu_management_ops *spu_management_ops; EXPORT_SYMBOL_GPL(spu_management_ops); const struct spu_priv1_ops *spu_priv1_ops; EXPORT_SYMBOL_GPL(spu_priv1_ops); struct cbe_spu_info cbe_spu_info[MAX_NUMNODES]; EXPORT_SYMBOL_GPL(cbe_spu_info); /* * The spufs fault-handling code needs to call force_sig_fault to raise signals * on DMA errors. Export it here to avoid general kernel-wide access to this * function */ EXPORT_SYMBOL_GPL(force_sig_fault); /* * Protects cbe_spu_info and spu->number. */ static DEFINE_SPINLOCK(spu_lock); /* * List of all spus in the system. * * This list is iterated by callers from irq context and callers that * want to sleep. Thus modifications need to be done with both * spu_full_list_lock and spu_full_list_mutex held, while iterating * through it requires either of these locks. * * In addition spu_full_list_lock protects all assignments to * spu->mm. */ static LIST_HEAD(spu_full_list); static DEFINE_SPINLOCK(spu_full_list_lock); static DEFINE_MUTEX(spu_full_list_mutex); void spu_invalidate_slbs(struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; unsigned long flags; spin_lock_irqsave(&spu->register_lock, flags); if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK) out_be64(&priv2->slb_invalidate_all_W, 0UL); spin_unlock_irqrestore(&spu->register_lock, flags); } EXPORT_SYMBOL_GPL(spu_invalidate_slbs); /* This is called by the MM core when a segment size is changed, to * request a flush of all the SPEs using a given mm */ void spu_flush_all_slbs(struct mm_struct *mm) { struct spu *spu; unsigned long flags; spin_lock_irqsave(&spu_full_list_lock, flags); list_for_each_entry(spu, &spu_full_list, full_list) { if (spu->mm == mm) spu_invalidate_slbs(spu); } spin_unlock_irqrestore(&spu_full_list_lock, flags); } /* The hack below stinks... try to do something better one of * these days... Does it even work properly with NR_CPUS == 1 ? */ static inline void mm_needs_global_tlbie(struct mm_struct *mm) { int nr = (NR_CPUS > 1) ? NR_CPUS : NR_CPUS + 1; /* Global TLBIE broadcast required with SPEs. */ bitmap_fill(cpumask_bits(mm_cpumask(mm)), nr); } void spu_associate_mm(struct spu *spu, struct mm_struct *mm) { unsigned long flags; spin_lock_irqsave(&spu_full_list_lock, flags); spu->mm = mm; spin_unlock_irqrestore(&spu_full_list_lock, flags); if (mm) mm_needs_global_tlbie(mm); } EXPORT_SYMBOL_GPL(spu_associate_mm); int spu_64k_pages_available(void) { return mmu_psize_defs[MMU_PAGE_64K].shift != 0; } EXPORT_SYMBOL_GPL(spu_64k_pages_available); static void spu_restart_dma(struct spu *spu) { struct spu_priv2 __iomem *priv2 = spu->priv2; if (!test_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags)) out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND); else { set_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags); mb(); } } static inline void spu_load_slb(struct spu *spu, int slbe, struct copro_slb *slb) { struct spu_priv2 __iomem *priv2 = spu->priv2; pr_debug("%s: adding SLB[%d] 0x%016llx 0x%016llx\n", __func__, slbe, slb->vsid, slb->esid); out_be64(&priv2->slb_index_W, slbe); /* set invalid before writing vsid */ out_be64(&priv2->slb_esid_RW, 0); /* now it's safe to write the vsid */ out_be64(&priv2->slb_vsid_RW, slb->vsid); /* setting the new esid makes the entry valid again */ out_be64(&priv2->slb_esid_RW, slb->esid); } static int __spu_trap_data_seg(struct spu *spu, unsigned long ea) { struct copro_slb slb; int ret; ret = copro_calculate_slb(spu->mm, ea, &slb); if (ret) return ret; spu_load_slb(spu, spu->slb_replace, &slb); spu->slb_replace++; if (spu->slb_replace >= 8) spu->slb_replace = 0; spu_restart_dma(spu); spu->stats.slb_flt++; return 0; } extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap, unsigned long dsisr); //XXX static int __spu_trap_data_map(struct spu *spu, unsigned long ea, u64 dsisr) { int ret; pr_debug("%s, %llx, %lx\n", __func__, dsisr, ea); /* * Handle kernel space hash faults immediately. User hash * faults need to be deferred to process context. */ if ((dsisr & MFC_DSISR_PTE_NOT_FOUND) && (get_region_id(ea) != USER_REGION_ID)) { spin_unlock(&spu->register_lock); ret = hash_page(ea, _PAGE_PRESENT | _PAGE_READ | _PAGE_PRIVILEGED, 0x300, dsisr); spin_lock(&spu->register_lock); if (!ret) { spu_restart_dma(spu); return 0; } } spu->class_1_dar = ea; spu->class_1_dsisr = dsisr; spu->stop_callback(spu, 1); spu->class_1_dar = 0; spu->class_1_dsisr = 0; return 0; } static void __spu_kernel_slb(void *addr, struct copro_slb *slb) { unsigned long ea = (unsigned long)addr; u64 llp; if (get_region_id(ea) == LINEAR_MAP_REGION_ID) llp = mmu_psize_defs[mmu_linear_psize].sllp; else llp = mmu_psize_defs[mmu_virtual_psize].sllp; slb->vsid = (get_kernel_vsid(ea, MMU_SEGSIZE_256M) << SLB_VSID_SHIFT) | SLB_VSID_KERNEL | llp; slb->esid = (ea & ESID_MASK) | SLB_ESID_V; } /** * Given an array of @nr_slbs SLB entries, @slbs, return non-zero if the * address @new_addr is present. */ static inline int __slb_present(struct copro_slb *slbs, int nr_slbs, void *new_addr) { unsigned long ea = (unsigned long)new_addr; int i; for (i = 0; i < nr_slbs; i++) if (!((slbs[i].esid ^ ea) & ESID_MASK)) return 1; return 0; } /** * Setup the SPU kernel SLBs, in preparation for a context save/restore. We * need to map both the context save area, and the save/restore code. * * Because the lscsa and code may cross segment boundaries, we check to see * if mappings are required for the start and end of each range. We currently * assume that the mappings are smaller that one segment - if not, something * is seriously wrong. */ void spu_setup_kernel_slbs(struct spu *spu, struct spu_lscsa *lscsa, void *code, int code_size) { struct copro_slb slbs[4]; int i, nr_slbs = 0; /* start and end addresses of both mappings */ void *addrs[] = { lscsa, (void *)lscsa + sizeof(*lscsa) - 1, code, code + code_size - 1 }; /* check the set of addresses, and create a new entry in the slbs array * if there isn't already a SLB for that address */ for (i = 0; i < ARRAY_SIZE(addrs); i++) { if (__slb_present(slbs, nr_slbs, addrs[i])) continue; __spu_kernel_slb(addrs[i], &slbs[nr_slbs]); nr_slbs++; } spin_lock_irq(&spu->register_lock); /* Add the set of SLBs */ for (i = 0; i < nr_slbs; i++) spu_load_slb(spu, i, &slbs[i]); spin_unlock_irq(&spu->register_lock); } EXPORT_SYMBOL_GPL(spu_setup_kernel_slbs); static irqreturn_t spu_irq_class_0(int irq, void *data) { struct spu *spu; unsigned long stat, mask; spu = data; spin_lock(&spu->register_lock); mask = spu_int_mask_get(spu, 0); stat = spu_int_stat_get(spu, 0) & mask; spu->class_0_pending |= stat; spu->class_0_dar = spu_mfc_dar_get(spu); spu->stop_callback(spu, 0); spu->class_0_pending = 0; spu->class_0_dar = 0; spu_int_stat_clear(spu, 0, stat); spin_unlock(&spu->register_lock); return IRQ_HANDLED; } static irqreturn_t spu_irq_class_1(int irq, void *data) { struct spu *spu; unsigned long stat, mask, dar, dsisr; spu = data; /* atomically read & clear class1 status. */ spin_lock(&spu->register_lock); mask = spu_int_mask_get(spu, 1); stat = spu_int_stat_get(spu, 1) & mask; dar = spu_mfc_dar_get(spu); dsisr = spu_mfc_dsisr_get(spu); if (stat & CLASS1_STORAGE_FAULT_INTR) spu_mfc_dsisr_set(spu, 0ul); spu_int_stat_clear(spu, 1, stat); pr_debug("%s: %lx %lx %lx %lx\n", __func__, mask, stat, dar, dsisr); if (stat & CLASS1_SEGMENT_FAULT_INTR) __spu_trap_data_seg(spu, dar); if (stat & CLASS1_STORAGE_FAULT_INTR) __spu_trap_data_map(spu, dar, dsisr); if (stat & CLASS1_LS_COMPARE_SUSPEND_ON_GET_INTR) ; if (stat & CLASS1_LS_COMPARE_SUSPEND_ON_PUT_INTR) ; spu->class_1_dsisr = 0; spu->class_1_dar = 0; spin_unlock(&spu->register_lock); return stat ? IRQ_HANDLED : IRQ_NONE; } static irqreturn_t spu_irq_class_2(int irq, void *data) { struct spu *spu; unsigned long stat; unsigned long mask; const int mailbox_intrs = CLASS2_MAILBOX_THRESHOLD_INTR | CLASS2_MAILBOX_INTR; spu = data; spin_lock(&spu->register_lock); stat = spu_int_stat_get(spu, 2); mask = spu_int_mask_get(spu, 2); /* ignore interrupts we're not waiting for */ stat &= mask; /* mailbox interrupts are level triggered. mask them now before * acknowledging */ if (stat & mailbox_intrs) spu_int_mask_and(spu, 2, ~(stat & mailbox_intrs)); /* acknowledge all interrupts before the callbacks */ spu_int_stat_clear(spu, 2, stat); pr_debug("class 2 interrupt %d, %lx, %lx\n", irq, stat, mask); if (stat & CLASS2_MAILBOX_INTR) spu->ibox_callback(spu); if (stat & CLASS2_SPU_STOP_INTR) spu->stop_callback(spu, 2); if (stat & CLASS2_SPU_HALT_INTR) spu->stop_callback(spu, 2); if (stat & CLASS2_SPU_DMA_TAG_GROUP_COMPLETE_INTR) spu->mfc_callback(spu); if (stat & CLASS2_MAILBOX_THRESHOLD_INTR) spu->wbox_callback(spu); spu->stats.class2_intr++; spin_unlock(&spu->register_lock); return stat ? IRQ_HANDLED : IRQ_NONE; } static int spu_request_irqs(struct spu *spu) { int ret = 0; if (spu->irqs[0]) { snprintf(spu->irq_c0, sizeof (spu->irq_c0), "spe%02d.0", spu->number); ret = request_irq(spu->irqs[0], spu_irq_class_0, 0, spu->irq_c0, spu); if (ret) goto bail0; } if (spu->irqs[1]) { snprintf(spu->irq_c1, sizeof (spu->irq_c1), "spe%02d.1", spu->number); ret = request_irq(spu->irqs[1], spu_irq_class_1, 0, spu->irq_c1, spu); if (ret) goto bail1; } if (spu->irqs[2]) { snprintf(spu->irq_c2, sizeof (spu->irq_c2), "spe%02d.2", spu->number); ret = request_irq(spu->irqs[2], spu_irq_class_2, 0, spu->irq_c2, spu); if (ret) goto bail2; } return 0; bail2: if (spu->irqs[1]) free_irq(spu->irqs[1], spu); bail1: if (spu->irqs[0]) free_irq(spu->irqs[0], spu); bail0: return ret; } static void spu_free_irqs(struct spu *spu) { if (spu->irqs[0]) free_irq(spu->irqs[0], spu); if (spu->irqs[1]) free_irq(spu->irqs[1], spu); if (spu->irqs[2]) free_irq(spu->irqs[2], spu); } void spu_init_channels(struct spu *spu) { static const struct { unsigned channel; unsigned count; } zero_list[] = { { 0x00, 1, }, { 0x01, 1, }, { 0x03, 1, }, { 0x04, 1, }, { 0x18, 1, }, { 0x19, 1, }, { 0x1b, 1, }, { 0x1d, 1, }, }, count_list[] = { { 0x00, 0, }, { 0x03, 0, }, { 0x04, 0, }, { 0x15, 16, }, { 0x17, 1, }, { 0x18, 0, }, { 0x19, 0, }, { 0x1b, 0, }, { 0x1c, 1, }, { 0x1d, 0, }, { 0x1e, 1, }, }; struct spu_priv2 __iomem *priv2; int i; priv2 = spu->priv2; /* initialize all channel data to zero */ for (i = 0; i < ARRAY_SIZE(zero_list); i++) { int count; out_be64(&priv2->spu_chnlcntptr_RW, zero_list[i].channel); for (count = 0; count < zero_list[i].count; count++) out_be64(&priv2->spu_chnldata_RW, 0); } /* initialize channel counts to meaningful values */ for (i = 0; i < ARRAY_SIZE(count_list); i++) { out_be64(&priv2->spu_chnlcntptr_RW, count_list[i].channel); out_be64(&priv2->spu_chnlcnt_RW, count_list[i].count); } } EXPORT_SYMBOL_GPL(spu_init_channels); static struct bus_type spu_subsys = { .name = "spu", .dev_name = "spu", }; int spu_add_dev_attr(struct device_attribute *attr) { struct spu *spu; mutex_lock(&spu_full_list_mutex); list_for_each_entry(spu, &spu_full_list, full_list) device_create_file(&spu->dev, attr); mutex_unlock(&spu_full_list_mutex); return 0; } EXPORT_SYMBOL_GPL(spu_add_dev_attr); int spu_add_dev_attr_group(struct attribute_group *attrs) { struct spu *spu; int rc = 0; mutex_lock(&spu_full_list_mutex); list_for_each_entry(spu, &spu_full_list, full_list) { rc = sysfs_create_group(&spu->dev.kobj, attrs); /* we're in trouble here, but try unwinding anyway */ if (rc) { printk(KERN_ERR "%s: can't create sysfs group '%s'\n", __func__, attrs->name); list_for_each_entry_continue_reverse(spu, &spu_full_list, full_list) sysfs_remove_group(&spu->dev.kobj, attrs); break; } } mutex_unlock(&spu_full_list_mutex); return rc; } EXPORT_SYMBOL_GPL(spu_add_dev_attr_group); void spu_remove_dev_attr(struct device_attribute *attr) { struct spu *spu; mutex_lock(&spu_full_list_mutex); list_for_each_entry(spu, &spu_full_list, full_list) device_remove_file(&spu->dev, attr); mutex_unlock(&spu_full_list_mutex); } EXPORT_SYMBOL_GPL(spu_remove_dev_attr); void spu_remove_dev_attr_group(struct attribute_group *attrs) { struct spu *spu; mutex_lock(&spu_full_list_mutex); list_for_each_entry(spu, &spu_full_list, full_list) sysfs_remove_group(&spu->dev.kobj, attrs); mutex_unlock(&spu_full_list_mutex); } EXPORT_SYMBOL_GPL(spu_remove_dev_attr_group); static int spu_create_dev(struct spu *spu) { int ret; spu->dev.id = spu->number; spu->dev.bus = &spu_subsys; ret = device_register(&spu->dev); if (ret) { printk(KERN_ERR "Can't register SPU %d with sysfs\n", spu->number); return ret; } sysfs_add_device_to_node(&spu->dev, spu->node); return 0; } static int __init create_spu(void *data) { struct spu *spu; int ret; static int number; unsigned long flags; ret = -ENOMEM; spu = kzalloc(sizeof (*spu), GFP_KERNEL); if (!spu) goto out; spu->alloc_state = SPU_FREE; spin_lock_init(&spu->register_lock); spin_lock(&spu_lock); spu->number = number++; spin_unlock(&spu_lock); ret = spu_create_spu(spu, data); if (ret) goto out_free; spu_mfc_sdr_setup(spu); spu_mfc_sr1_set(spu, 0x33); ret = spu_request_irqs(spu); if (ret) goto out_destroy; ret = spu_create_dev(spu); if (ret) goto out_free_irqs; mutex_lock(&cbe_spu_info[spu->node].list_mutex); list_add(&spu->cbe_list, &cbe_spu_info[spu->node].spus); cbe_spu_info[spu->node].n_spus++; mutex_unlock(&cbe_spu_info[spu->node].list_mutex); mutex_lock(&spu_full_list_mutex); spin_lock_irqsave(&spu_full_list_lock, flags); list_add(&spu->full_list, &spu_full_list); spin_unlock_irqrestore(&spu_full_list_lock, flags); mutex_unlock(&spu_full_list_mutex); spu->stats.util_state = SPU_UTIL_IDLE_LOADED; spu->stats.tstamp = ktime_get_ns(); INIT_LIST_HEAD(&spu->aff_list); goto out; out_free_irqs: spu_free_irqs(spu); out_destroy: spu_destroy_spu(spu); out_free: kfree(spu); out: return ret; } static const char *spu_state_names[] = { "user", "system", "iowait", "idle" }; static unsigned long long spu_acct_time(struct spu *spu, enum spu_utilization_state state) { unsigned long long time = spu->stats.times[state]; /* * If the spu is idle or the context is stopped, utilization * statistics are not updated. Apply the time delta from the * last recorded state of the spu. */ if (spu->stats.util_state == state) time += ktime_get_ns() - spu->stats.tstamp; return time / NSEC_PER_MSEC; } static ssize_t spu_stat_show(struct device *dev, struct device_attribute *attr, char *buf) { struct spu *spu = container_of(dev, struct spu, dev); return sprintf(buf, "%s %llu %llu %llu %llu " "%llu %llu %llu %llu %llu %llu %llu %llu\n", spu_state_names[spu->stats.util_state], spu_acct_time(spu, SPU_UTIL_USER), spu_acct_time(spu, SPU_UTIL_SYSTEM), spu_acct_time(spu, SPU_UTIL_IOWAIT), spu_acct_time(spu, SPU_UTIL_IDLE_LOADED), spu->stats.vol_ctx_switch, spu->stats.invol_ctx_switch, spu->stats.slb_flt, spu->stats.hash_flt, spu->stats.min_flt, spu->stats.maj_flt, spu->stats.class2_intr, spu->stats.libassist); } static DEVICE_ATTR(stat, 0444, spu_stat_show, NULL); #ifdef CONFIG_KEXEC_CORE struct crash_spu_info { struct spu *spu; u32 saved_spu_runcntl_RW; u32 saved_spu_status_R; u32 saved_spu_npc_RW; u64 saved_mfc_sr1_RW; u64 saved_mfc_dar; u64 saved_mfc_dsisr; }; #define CRASH_NUM_SPUS 16 /* Enough for current hardware */ static struct crash_spu_info crash_spu_info[CRASH_NUM_SPUS]; static void crash_kexec_stop_spus(void) { struct spu *spu; int i; u64 tmp; for (i = 0; i < CRASH_NUM_SPUS; i++) { if (!crash_spu_info[i].spu) continue; spu = crash_spu_info[i].spu; crash_spu_info[i].saved_spu_runcntl_RW = in_be32(&spu->problem->spu_runcntl_RW); crash_spu_info[i].saved_spu_status_R = in_be32(&spu->problem->spu_status_R); crash_spu_info[i].saved_spu_npc_RW = in_be32(&spu->problem->spu_npc_RW); crash_spu_info[i].saved_mfc_dar = spu_mfc_dar_get(spu); crash_spu_info[i].saved_mfc_dsisr = spu_mfc_dsisr_get(spu); tmp = spu_mfc_sr1_get(spu); crash_spu_info[i].saved_mfc_sr1_RW = tmp; tmp &= ~MFC_STATE1_MASTER_RUN_CONTROL_MASK; spu_mfc_sr1_set(spu, tmp); __delay(200); } } static void crash_register_spus(struct list_head *list) { struct spu *spu; int ret; list_for_each_entry(spu, list, full_list) { if (WARN_ON(spu->number >= CRASH_NUM_SPUS)) continue; crash_spu_info[spu->number].spu = spu; } ret = crash_shutdown_register(&crash_kexec_stop_spus); if (ret) printk(KERN_ERR "Could not register SPU crash handler"); } #else static inline void crash_register_spus(struct list_head *list) { } #endif static void spu_shutdown(void) { struct spu *spu; mutex_lock(&spu_full_list_mutex); list_for_each_entry(spu, &spu_full_list, full_list) { spu_free_irqs(spu); spu_destroy_spu(spu); } mutex_unlock(&spu_full_list_mutex); } static struct syscore_ops spu_syscore_ops = { .shutdown = spu_shutdown, }; static int __init init_spu_base(void) { int i, ret = 0; for (i = 0; i < MAX_NUMNODES; i++) { mutex_init(&cbe_spu_info[i].list_mutex); INIT_LIST_HEAD(&cbe_spu_info[i].spus); } if (!spu_management_ops) goto out; /* create system subsystem for spus */ ret = subsys_system_register(&spu_subsys, NULL); if (ret) goto out; ret = spu_enumerate_spus(create_spu); if (ret < 0) { printk(KERN_WARNING "%s: Error initializing spus\n", __func__); goto out_unregister_subsys; } if (ret > 0) fb_append_extra_logo(&logo_spe_clut224, ret); mutex_lock(&spu_full_list_mutex); xmon_register_spus(&spu_full_list); crash_register_spus(&spu_full_list); mutex_unlock(&spu_full_list_mutex); spu_add_dev_attr(&dev_attr_stat); register_syscore_ops(&spu_syscore_ops); spu_init_affinity(); return 0; out_unregister_subsys: bus_unregister(&spu_subsys); out: return ret; } device_initcall(init_spu_base);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1