Contributors: 30
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Jason Jin |
984 |
36.87% |
1 |
1.79% |
Timur Tabi |
308 |
11.54% |
4 |
7.14% |
Minghuan Lian |
285 |
10.68% |
1 |
1.79% |
Scott Wood |
261 |
9.78% |
2 |
3.57% |
Li Yang |
215 |
8.06% |
4 |
7.14% |
Tudor Laurentiu |
207 |
7.76% |
4 |
7.14% |
Lan Chunhe-B25806 |
68 |
2.55% |
1 |
1.79% |
Grant C. Likely |
67 |
2.51% |
8 |
14.29% |
Jia Hongtao |
67 |
2.51% |
1 |
1.79% |
Michael Ellerman |
36 |
1.35% |
3 |
5.36% |
Kumar Gala |
34 |
1.27% |
2 |
3.57% |
Daniel Axtens |
28 |
1.05% |
1 |
1.79% |
Paul Mackerras |
20 |
0.75% |
1 |
1.79% |
Sebastian Andrzej Siewior |
13 |
0.49% |
1 |
1.79% |
Thomas Gleixner |
13 |
0.49% |
5 |
8.93% |
Milton D. Miller II |
9 |
0.34% |
2 |
3.57% |
Andrew Lunn |
8 |
0.30% |
1 |
1.79% |
Alexander Gordeev |
7 |
0.26% |
1 |
1.79% |
Jiang Liu |
5 |
0.19% |
2 |
3.57% |
Lennert Buytenhek |
5 |
0.19% |
1 |
1.79% |
Liu Shuo |
5 |
0.19% |
1 |
1.79% |
Anton Vorontsov |
4 |
0.15% |
1 |
1.79% |
Joe Perches |
4 |
0.15% |
1 |
1.79% |
Rob Herring |
4 |
0.15% |
1 |
1.79% |
Tejun Heo |
3 |
0.11% |
1 |
1.79% |
Marc Zyngier |
3 |
0.11% |
1 |
1.79% |
Kim Phillips |
2 |
0.07% |
1 |
1.79% |
Wei Yongjun |
2 |
0.07% |
1 |
1.79% |
Kevin Hao |
1 |
0.04% |
1 |
1.79% |
Uwe Kleine-König |
1 |
0.04% |
1 |
1.79% |
Total |
2669 |
|
56 |
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2007-2011 Freescale Semiconductor, Inc.
*
* Author: Tony Li <tony.li@freescale.com>
* Jason Jin <Jason.jin@freescale.com>
*
* The hwirq alloc and free code reuse from sysdev/mpic_msi.c
*/
#include <linux/irq.h>
#include <linux/msi.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/of_platform.h>
#include <linux/interrupt.h>
#include <linux/seq_file.h>
#include <sysdev/fsl_soc.h>
#include <asm/prom.h>
#include <asm/hw_irq.h>
#include <asm/ppc-pci.h>
#include <asm/mpic.h>
#include <asm/fsl_hcalls.h>
#include "fsl_msi.h"
#include "fsl_pci.h"
#define MSIIR_OFFSET_MASK 0xfffff
#define MSIIR_IBS_SHIFT 0
#define MSIIR_SRS_SHIFT 5
#define MSIIR1_IBS_SHIFT 4
#define MSIIR1_SRS_SHIFT 0
#define MSI_SRS_MASK 0xf
#define MSI_IBS_MASK 0x1f
#define msi_hwirq(msi, msir_index, intr_index) \
((msir_index) << (msi)->srs_shift | \
((intr_index) << (msi)->ibs_shift))
static LIST_HEAD(msi_head);
struct fsl_msi_feature {
u32 fsl_pic_ip;
u32 msiir_offset; /* Offset of MSIIR, relative to start of MSIR bank */
};
struct fsl_msi_cascade_data {
struct fsl_msi *msi_data;
int index;
int virq;
};
static inline u32 fsl_msi_read(u32 __iomem *base, unsigned int reg)
{
return in_be32(base + (reg >> 2));
}
/*
* We do not need this actually. The MSIR register has been read once
* in the cascade interrupt. So, this MSI interrupt has been acked
*/
static void fsl_msi_end_irq(struct irq_data *d)
{
}
static void fsl_msi_print_chip(struct irq_data *irqd, struct seq_file *p)
{
struct fsl_msi *msi_data = irqd->domain->host_data;
irq_hw_number_t hwirq = irqd_to_hwirq(irqd);
int cascade_virq, srs;
srs = (hwirq >> msi_data->srs_shift) & MSI_SRS_MASK;
cascade_virq = msi_data->cascade_array[srs]->virq;
seq_printf(p, " fsl-msi-%d", cascade_virq);
}
static struct irq_chip fsl_msi_chip = {
.irq_mask = pci_msi_mask_irq,
.irq_unmask = pci_msi_unmask_irq,
.irq_ack = fsl_msi_end_irq,
.irq_print_chip = fsl_msi_print_chip,
};
static int fsl_msi_host_map(struct irq_domain *h, unsigned int virq,
irq_hw_number_t hw)
{
struct fsl_msi *msi_data = h->host_data;
struct irq_chip *chip = &fsl_msi_chip;
irq_set_status_flags(virq, IRQ_TYPE_EDGE_FALLING);
irq_set_chip_data(virq, msi_data);
irq_set_chip_and_handler(virq, chip, handle_edge_irq);
return 0;
}
static const struct irq_domain_ops fsl_msi_host_ops = {
.map = fsl_msi_host_map,
};
static int fsl_msi_init_allocator(struct fsl_msi *msi_data)
{
int rc, hwirq;
rc = msi_bitmap_alloc(&msi_data->bitmap, NR_MSI_IRQS_MAX,
irq_domain_get_of_node(msi_data->irqhost));
if (rc)
return rc;
/*
* Reserve all the hwirqs
* The available hwirqs will be released in fsl_msi_setup_hwirq()
*/
for (hwirq = 0; hwirq < NR_MSI_IRQS_MAX; hwirq++)
msi_bitmap_reserve_hwirq(&msi_data->bitmap, hwirq);
return 0;
}
static void fsl_teardown_msi_irqs(struct pci_dev *pdev)
{
struct msi_desc *entry;
struct fsl_msi *msi_data;
irq_hw_number_t hwirq;
for_each_pci_msi_entry(entry, pdev) {
if (!entry->irq)
continue;
hwirq = virq_to_hw(entry->irq);
msi_data = irq_get_chip_data(entry->irq);
irq_set_msi_desc(entry->irq, NULL);
irq_dispose_mapping(entry->irq);
msi_bitmap_free_hwirqs(&msi_data->bitmap, hwirq, 1);
}
return;
}
static void fsl_compose_msi_msg(struct pci_dev *pdev, int hwirq,
struct msi_msg *msg,
struct fsl_msi *fsl_msi_data)
{
struct fsl_msi *msi_data = fsl_msi_data;
struct pci_controller *hose = pci_bus_to_host(pdev->bus);
u64 address; /* Physical address of the MSIIR */
int len;
const __be64 *reg;
/* If the msi-address-64 property exists, then use it */
reg = of_get_property(hose->dn, "msi-address-64", &len);
if (reg && (len == sizeof(u64)))
address = be64_to_cpup(reg);
else
address = fsl_pci_immrbar_base(hose) + msi_data->msiir_offset;
msg->address_lo = lower_32_bits(address);
msg->address_hi = upper_32_bits(address);
/*
* MPIC version 2.0 has erratum PIC1. It causes
* that neither MSI nor MSI-X can work fine.
* This is a workaround to allow MSI-X to function
* properly. It only works for MSI-X, we prevent
* MSI on buggy chips in fsl_setup_msi_irqs().
*/
if (msi_data->feature & MSI_HW_ERRATA_ENDIAN)
msg->data = __swab32(hwirq);
else
msg->data = hwirq;
pr_debug("%s: allocated srs: %d, ibs: %d\n", __func__,
(hwirq >> msi_data->srs_shift) & MSI_SRS_MASK,
(hwirq >> msi_data->ibs_shift) & MSI_IBS_MASK);
}
static int fsl_setup_msi_irqs(struct pci_dev *pdev, int nvec, int type)
{
struct pci_controller *hose = pci_bus_to_host(pdev->bus);
struct device_node *np;
phandle phandle = 0;
int rc, hwirq = -ENOMEM;
unsigned int virq;
struct msi_desc *entry;
struct msi_msg msg;
struct fsl_msi *msi_data;
if (type == PCI_CAP_ID_MSI) {
/*
* MPIC version 2.0 has erratum PIC1. For now MSI
* could not work. So check to prevent MSI from
* being used on the board with this erratum.
*/
list_for_each_entry(msi_data, &msi_head, list)
if (msi_data->feature & MSI_HW_ERRATA_ENDIAN)
return -EINVAL;
}
/*
* If the PCI node has an fsl,msi property, then we need to use it
* to find the specific MSI.
*/
np = of_parse_phandle(hose->dn, "fsl,msi", 0);
if (np) {
if (of_device_is_compatible(np, "fsl,mpic-msi") ||
of_device_is_compatible(np, "fsl,vmpic-msi") ||
of_device_is_compatible(np, "fsl,vmpic-msi-v4.3"))
phandle = np->phandle;
else {
dev_err(&pdev->dev,
"node %pOF has an invalid fsl,msi phandle %u\n",
hose->dn, np->phandle);
return -EINVAL;
}
}
for_each_pci_msi_entry(entry, pdev) {
/*
* Loop over all the MSI devices until we find one that has an
* available interrupt.
*/
list_for_each_entry(msi_data, &msi_head, list) {
/*
* If the PCI node has an fsl,msi property, then we
* restrict our search to the corresponding MSI node.
* The simplest way is to skip over MSI nodes with the
* wrong phandle. Under the Freescale hypervisor, this
* has the additional benefit of skipping over MSI
* nodes that are not mapped in the PAMU.
*/
if (phandle && (phandle != msi_data->phandle))
continue;
hwirq = msi_bitmap_alloc_hwirqs(&msi_data->bitmap, 1);
if (hwirq >= 0)
break;
}
if (hwirq < 0) {
rc = hwirq;
dev_err(&pdev->dev, "could not allocate MSI interrupt\n");
goto out_free;
}
virq = irq_create_mapping(msi_data->irqhost, hwirq);
if (!virq) {
dev_err(&pdev->dev, "fail mapping hwirq %i\n", hwirq);
msi_bitmap_free_hwirqs(&msi_data->bitmap, hwirq, 1);
rc = -ENOSPC;
goto out_free;
}
/* chip_data is msi_data via host->hostdata in host->map() */
irq_set_msi_desc(virq, entry);
fsl_compose_msi_msg(pdev, hwirq, &msg, msi_data);
pci_write_msi_msg(virq, &msg);
}
return 0;
out_free:
/* free by the caller of this function */
return rc;
}
static irqreturn_t fsl_msi_cascade(int irq, void *data)
{
unsigned int cascade_irq;
struct fsl_msi *msi_data;
int msir_index = -1;
u32 msir_value = 0;
u32 intr_index;
u32 have_shift = 0;
struct fsl_msi_cascade_data *cascade_data = data;
irqreturn_t ret = IRQ_NONE;
msi_data = cascade_data->msi_data;
msir_index = cascade_data->index;
if (msir_index >= NR_MSI_REG_MAX)
cascade_irq = 0;
switch (msi_data->feature & FSL_PIC_IP_MASK) {
case FSL_PIC_IP_MPIC:
msir_value = fsl_msi_read(msi_data->msi_regs,
msir_index * 0x10);
break;
case FSL_PIC_IP_IPIC:
msir_value = fsl_msi_read(msi_data->msi_regs, msir_index * 0x4);
break;
#ifdef CONFIG_EPAPR_PARAVIRT
case FSL_PIC_IP_VMPIC: {
unsigned int ret;
ret = fh_vmpic_get_msir(virq_to_hw(irq), &msir_value);
if (ret) {
pr_err("fsl-msi: fh_vmpic_get_msir() failed for "
"irq %u (ret=%u)\n", irq, ret);
msir_value = 0;
}
break;
}
#endif
}
while (msir_value) {
intr_index = ffs(msir_value) - 1;
cascade_irq = irq_linear_revmap(msi_data->irqhost,
msi_hwirq(msi_data, msir_index,
intr_index + have_shift));
if (cascade_irq) {
generic_handle_irq(cascade_irq);
ret = IRQ_HANDLED;
}
have_shift += intr_index + 1;
msir_value = msir_value >> (intr_index + 1);
}
return ret;
}
static int fsl_of_msi_remove(struct platform_device *ofdev)
{
struct fsl_msi *msi = platform_get_drvdata(ofdev);
int virq, i;
if (msi->list.prev != NULL)
list_del(&msi->list);
for (i = 0; i < NR_MSI_REG_MAX; i++) {
if (msi->cascade_array[i]) {
virq = msi->cascade_array[i]->virq;
BUG_ON(!virq);
free_irq(virq, msi->cascade_array[i]);
kfree(msi->cascade_array[i]);
irq_dispose_mapping(virq);
}
}
if (msi->bitmap.bitmap)
msi_bitmap_free(&msi->bitmap);
if ((msi->feature & FSL_PIC_IP_MASK) != FSL_PIC_IP_VMPIC)
iounmap(msi->msi_regs);
kfree(msi);
return 0;
}
static struct lock_class_key fsl_msi_irq_class;
static struct lock_class_key fsl_msi_irq_request_class;
static int fsl_msi_setup_hwirq(struct fsl_msi *msi, struct platform_device *dev,
int offset, int irq_index)
{
struct fsl_msi_cascade_data *cascade_data = NULL;
int virt_msir, i, ret;
virt_msir = irq_of_parse_and_map(dev->dev.of_node, irq_index);
if (!virt_msir) {
dev_err(&dev->dev, "%s: Cannot translate IRQ index %d\n",
__func__, irq_index);
return 0;
}
cascade_data = kzalloc(sizeof(struct fsl_msi_cascade_data), GFP_KERNEL);
if (!cascade_data) {
dev_err(&dev->dev, "No memory for MSI cascade data\n");
return -ENOMEM;
}
irq_set_lockdep_class(virt_msir, &fsl_msi_irq_class,
&fsl_msi_irq_request_class);
cascade_data->index = offset;
cascade_data->msi_data = msi;
cascade_data->virq = virt_msir;
msi->cascade_array[irq_index] = cascade_data;
ret = request_irq(virt_msir, fsl_msi_cascade, IRQF_NO_THREAD,
"fsl-msi-cascade", cascade_data);
if (ret) {
dev_err(&dev->dev, "failed to request_irq(%d), ret = %d\n",
virt_msir, ret);
return ret;
}
/* Release the hwirqs corresponding to this MSI register */
for (i = 0; i < IRQS_PER_MSI_REG; i++)
msi_bitmap_free_hwirqs(&msi->bitmap,
msi_hwirq(msi, offset, i), 1);
return 0;
}
static const struct of_device_id fsl_of_msi_ids[];
static int fsl_of_msi_probe(struct platform_device *dev)
{
const struct of_device_id *match;
struct fsl_msi *msi;
struct resource res, msiir;
int err, i, j, irq_index, count;
const u32 *p;
const struct fsl_msi_feature *features;
int len;
u32 offset;
struct pci_controller *phb;
match = of_match_device(fsl_of_msi_ids, &dev->dev);
if (!match)
return -EINVAL;
features = match->data;
printk(KERN_DEBUG "Setting up Freescale MSI support\n");
msi = kzalloc(sizeof(struct fsl_msi), GFP_KERNEL);
if (!msi) {
dev_err(&dev->dev, "No memory for MSI structure\n");
return -ENOMEM;
}
platform_set_drvdata(dev, msi);
msi->irqhost = irq_domain_add_linear(dev->dev.of_node,
NR_MSI_IRQS_MAX, &fsl_msi_host_ops, msi);
if (msi->irqhost == NULL) {
dev_err(&dev->dev, "No memory for MSI irqhost\n");
err = -ENOMEM;
goto error_out;
}
/*
* Under the Freescale hypervisor, the msi nodes don't have a 'reg'
* property. Instead, we use hypercalls to access the MSI.
*/
if ((features->fsl_pic_ip & FSL_PIC_IP_MASK) != FSL_PIC_IP_VMPIC) {
err = of_address_to_resource(dev->dev.of_node, 0, &res);
if (err) {
dev_err(&dev->dev, "invalid resource for node %pOF\n",
dev->dev.of_node);
goto error_out;
}
msi->msi_regs = ioremap(res.start, resource_size(&res));
if (!msi->msi_regs) {
err = -ENOMEM;
dev_err(&dev->dev, "could not map node %pOF\n",
dev->dev.of_node);
goto error_out;
}
msi->msiir_offset =
features->msiir_offset + (res.start & 0xfffff);
/*
* First read the MSIIR/MSIIR1 offset from dts
* On failure use the hardcode MSIIR offset
*/
if (of_address_to_resource(dev->dev.of_node, 1, &msiir))
msi->msiir_offset = features->msiir_offset +
(res.start & MSIIR_OFFSET_MASK);
else
msi->msiir_offset = msiir.start & MSIIR_OFFSET_MASK;
}
msi->feature = features->fsl_pic_ip;
/* For erratum PIC1 on MPIC version 2.0*/
if ((features->fsl_pic_ip & FSL_PIC_IP_MASK) == FSL_PIC_IP_MPIC
&& (fsl_mpic_primary_get_version() == 0x0200))
msi->feature |= MSI_HW_ERRATA_ENDIAN;
/*
* Remember the phandle, so that we can match with any PCI nodes
* that have an "fsl,msi" property.
*/
msi->phandle = dev->dev.of_node->phandle;
err = fsl_msi_init_allocator(msi);
if (err) {
dev_err(&dev->dev, "Error allocating MSI bitmap\n");
goto error_out;
}
p = of_get_property(dev->dev.of_node, "msi-available-ranges", &len);
if (of_device_is_compatible(dev->dev.of_node, "fsl,mpic-msi-v4.3") ||
of_device_is_compatible(dev->dev.of_node, "fsl,vmpic-msi-v4.3")) {
msi->srs_shift = MSIIR1_SRS_SHIFT;
msi->ibs_shift = MSIIR1_IBS_SHIFT;
if (p)
dev_warn(&dev->dev, "%s: dose not support msi-available-ranges property\n",
__func__);
for (irq_index = 0; irq_index < NR_MSI_REG_MSIIR1;
irq_index++) {
err = fsl_msi_setup_hwirq(msi, dev,
irq_index, irq_index);
if (err)
goto error_out;
}
} else {
static const u32 all_avail[] =
{ 0, NR_MSI_REG_MSIIR * IRQS_PER_MSI_REG };
msi->srs_shift = MSIIR_SRS_SHIFT;
msi->ibs_shift = MSIIR_IBS_SHIFT;
if (p && len % (2 * sizeof(u32)) != 0) {
dev_err(&dev->dev, "%s: Malformed msi-available-ranges property\n",
__func__);
err = -EINVAL;
goto error_out;
}
if (!p) {
p = all_avail;
len = sizeof(all_avail);
}
for (irq_index = 0, i = 0; i < len / (2 * sizeof(u32)); i++) {
if (p[i * 2] % IRQS_PER_MSI_REG ||
p[i * 2 + 1] % IRQS_PER_MSI_REG) {
pr_warn("%s: %pOF: msi available range of %u at %u is not IRQ-aligned\n",
__func__, dev->dev.of_node,
p[i * 2 + 1], p[i * 2]);
err = -EINVAL;
goto error_out;
}
offset = p[i * 2] / IRQS_PER_MSI_REG;
count = p[i * 2 + 1] / IRQS_PER_MSI_REG;
for (j = 0; j < count; j++, irq_index++) {
err = fsl_msi_setup_hwirq(msi, dev, offset + j,
irq_index);
if (err)
goto error_out;
}
}
}
list_add_tail(&msi->list, &msi_head);
/*
* Apply the MSI ops to all the controllers.
* It doesn't hurt to reassign the same ops,
* but bail out if we find another MSI driver.
*/
list_for_each_entry(phb, &hose_list, list_node) {
if (!phb->controller_ops.setup_msi_irqs) {
phb->controller_ops.setup_msi_irqs = fsl_setup_msi_irqs;
phb->controller_ops.teardown_msi_irqs = fsl_teardown_msi_irqs;
} else if (phb->controller_ops.setup_msi_irqs != fsl_setup_msi_irqs) {
dev_err(&dev->dev, "Different MSI driver already installed!\n");
err = -ENODEV;
goto error_out;
}
}
return 0;
error_out:
fsl_of_msi_remove(dev);
return err;
}
static const struct fsl_msi_feature mpic_msi_feature = {
.fsl_pic_ip = FSL_PIC_IP_MPIC,
.msiir_offset = 0x140,
};
static const struct fsl_msi_feature ipic_msi_feature = {
.fsl_pic_ip = FSL_PIC_IP_IPIC,
.msiir_offset = 0x38,
};
static const struct fsl_msi_feature vmpic_msi_feature = {
.fsl_pic_ip = FSL_PIC_IP_VMPIC,
.msiir_offset = 0,
};
static const struct of_device_id fsl_of_msi_ids[] = {
{
.compatible = "fsl,mpic-msi",
.data = &mpic_msi_feature,
},
{
.compatible = "fsl,mpic-msi-v4.3",
.data = &mpic_msi_feature,
},
{
.compatible = "fsl,ipic-msi",
.data = &ipic_msi_feature,
},
#ifdef CONFIG_EPAPR_PARAVIRT
{
.compatible = "fsl,vmpic-msi",
.data = &vmpic_msi_feature,
},
{
.compatible = "fsl,vmpic-msi-v4.3",
.data = &vmpic_msi_feature,
},
#endif
{}
};
static struct platform_driver fsl_of_msi_driver = {
.driver = {
.name = "fsl-msi",
.of_match_table = fsl_of_msi_ids,
},
.probe = fsl_of_msi_probe,
.remove = fsl_of_msi_remove,
};
static __init int fsl_of_msi_init(void)
{
return platform_driver_register(&fsl_of_msi_driver);
}
subsys_initcall(fsl_of_msi_init);