Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Michael Grundy | 931 | 35.97% | 1 | 2.13% |
Heiko Carstens | 862 | 33.31% | 14 | 29.79% |
Martin Schwidefsky | 637 | 24.61% | 10 | 21.28% |
Gerald Schaefer | 47 | 1.82% | 2 | 4.26% |
Bibo Mao | 36 | 1.39% | 1 | 2.13% |
Ananth N. Mavinakayanahalli | 21 | 0.81% | 1 | 2.13% |
Masami Hiramatsu | 19 | 0.73% | 4 | 8.51% |
Srinivasa D S | 8 | 0.31% | 1 | 2.13% |
Christoph Lameter | 7 | 0.27% | 1 | 2.13% |
Christoph Hellwig | 3 | 0.12% | 2 | 4.26% |
Paul Gortmaker | 3 | 0.12% | 1 | 2.13% |
Jan Willeke | 3 | 0.12% | 1 | 2.13% |
Greg Kroah-Hartman | 2 | 0.08% | 2 | 4.26% |
Rusty Russell | 2 | 0.08% | 1 | 2.13% |
Tejun Heo | 2 | 0.08% | 1 | 2.13% |
Thomas Gleixner | 2 | 0.08% | 1 | 2.13% |
Anoop Thomas Mathew | 1 | 0.04% | 1 | 2.13% |
Laura Abbott | 1 | 0.04% | 1 | 2.13% |
Frederik Schwarzer | 1 | 0.04% | 1 | 2.13% |
Total | 2588 | 47 |
// SPDX-License-Identifier: GPL-2.0+ /* * Kernel Probes (KProbes) * * Copyright IBM Corp. 2002, 2006 * * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com> */ #include <linux/kprobes.h> #include <linux/ptrace.h> #include <linux/preempt.h> #include <linux/stop_machine.h> #include <linux/kdebug.h> #include <linux/uaccess.h> #include <linux/extable.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/hardirq.h> #include <linux/ftrace.h> #include <asm/set_memory.h> #include <asm/sections.h> #include <asm/dis.h> DEFINE_PER_CPU(struct kprobe *, current_kprobe); DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); struct kretprobe_blackpoint kretprobe_blacklist[] = { }; DEFINE_INSN_CACHE_OPS(s390_insn); static int insn_page_in_use; static char insn_page[PAGE_SIZE] __aligned(PAGE_SIZE); static void *alloc_s390_insn_page(void) { if (xchg(&insn_page_in_use, 1) == 1) return NULL; set_memory_x((unsigned long) &insn_page, 1); return &insn_page; } static void free_s390_insn_page(void *page) { set_memory_nx((unsigned long) page, 1); xchg(&insn_page_in_use, 0); } struct kprobe_insn_cache kprobe_s390_insn_slots = { .mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex), .alloc = alloc_s390_insn_page, .free = free_s390_insn_page, .pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages), .insn_size = MAX_INSN_SIZE, }; static void copy_instruction(struct kprobe *p) { unsigned long ip = (unsigned long) p->addr; s64 disp, new_disp; u64 addr, new_addr; if (ftrace_location(ip) == ip) { /* * If kprobes patches the instruction that is morphed by * ftrace make sure that kprobes always sees the branch * "jg .+24" that skips the mcount block or the "brcl 0,0" * in case of hotpatch. */ ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn); p->ainsn.is_ftrace_insn = 1; } else memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8)); p->opcode = p->ainsn.insn[0]; if (!probe_is_insn_relative_long(p->ainsn.insn)) return; /* * For pc-relative instructions in RIL-b or RIL-c format patch the * RI2 displacement field. We have already made sure that the insn * slot for the patched instruction is within the same 2GB area * as the original instruction (either kernel image or module area). * Therefore the new displacement will always fit. */ disp = *(s32 *)&p->ainsn.insn[1]; addr = (u64)(unsigned long)p->addr; new_addr = (u64)(unsigned long)p->ainsn.insn; new_disp = ((addr + (disp * 2)) - new_addr) / 2; *(s32 *)&p->ainsn.insn[1] = new_disp; } NOKPROBE_SYMBOL(copy_instruction); static inline int is_kernel_addr(void *addr) { return addr < (void *)_end; } static int s390_get_insn_slot(struct kprobe *p) { /* * Get an insn slot that is within the same 2GB area like the original * instruction. That way instructions with a 32bit signed displacement * field can be patched and executed within the insn slot. */ p->ainsn.insn = NULL; if (is_kernel_addr(p->addr)) p->ainsn.insn = get_s390_insn_slot(); else if (is_module_addr(p->addr)) p->ainsn.insn = get_insn_slot(); return p->ainsn.insn ? 0 : -ENOMEM; } NOKPROBE_SYMBOL(s390_get_insn_slot); static void s390_free_insn_slot(struct kprobe *p) { if (!p->ainsn.insn) return; if (is_kernel_addr(p->addr)) free_s390_insn_slot(p->ainsn.insn, 0); else free_insn_slot(p->ainsn.insn, 0); p->ainsn.insn = NULL; } NOKPROBE_SYMBOL(s390_free_insn_slot); int arch_prepare_kprobe(struct kprobe *p) { if ((unsigned long) p->addr & 0x01) return -EINVAL; /* Make sure the probe isn't going on a difficult instruction */ if (probe_is_prohibited_opcode(p->addr)) return -EINVAL; if (s390_get_insn_slot(p)) return -ENOMEM; copy_instruction(p); return 0; } NOKPROBE_SYMBOL(arch_prepare_kprobe); int arch_check_ftrace_location(struct kprobe *p) { return 0; } struct swap_insn_args { struct kprobe *p; unsigned int arm_kprobe : 1; }; static int swap_instruction(void *data) { struct swap_insn_args *args = data; struct ftrace_insn new_insn, *insn; struct kprobe *p = args->p; size_t len; new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode; len = sizeof(new_insn.opc); if (!p->ainsn.is_ftrace_insn) goto skip_ftrace; len = sizeof(new_insn); insn = (struct ftrace_insn *) p->addr; if (args->arm_kprobe) { if (is_ftrace_nop(insn)) new_insn.disp = KPROBE_ON_FTRACE_NOP; else new_insn.disp = KPROBE_ON_FTRACE_CALL; } else { ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr); if (insn->disp == KPROBE_ON_FTRACE_NOP) ftrace_generate_nop_insn(&new_insn); } skip_ftrace: s390_kernel_write(p->addr, &new_insn, len); return 0; } NOKPROBE_SYMBOL(swap_instruction); void arch_arm_kprobe(struct kprobe *p) { struct swap_insn_args args = {.p = p, .arm_kprobe = 1}; stop_machine_cpuslocked(swap_instruction, &args, NULL); } NOKPROBE_SYMBOL(arch_arm_kprobe); void arch_disarm_kprobe(struct kprobe *p) { struct swap_insn_args args = {.p = p, .arm_kprobe = 0}; stop_machine_cpuslocked(swap_instruction, &args, NULL); } NOKPROBE_SYMBOL(arch_disarm_kprobe); void arch_remove_kprobe(struct kprobe *p) { s390_free_insn_slot(p); } NOKPROBE_SYMBOL(arch_remove_kprobe); static void enable_singlestep(struct kprobe_ctlblk *kcb, struct pt_regs *regs, unsigned long ip) { struct per_regs per_kprobe; /* Set up the PER control registers %cr9-%cr11 */ per_kprobe.control = PER_EVENT_IFETCH; per_kprobe.start = ip; per_kprobe.end = ip; /* Save control regs and psw mask */ __ctl_store(kcb->kprobe_saved_ctl, 9, 11); kcb->kprobe_saved_imask = regs->psw.mask & (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT); /* Set PER control regs, turns on single step for the given address */ __ctl_load(per_kprobe, 9, 11); regs->psw.mask |= PSW_MASK_PER; regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT); regs->psw.addr = ip; } NOKPROBE_SYMBOL(enable_singlestep); static void disable_singlestep(struct kprobe_ctlblk *kcb, struct pt_regs *regs, unsigned long ip) { /* Restore control regs and psw mask, set new psw address */ __ctl_load(kcb->kprobe_saved_ctl, 9, 11); regs->psw.mask &= ~PSW_MASK_PER; regs->psw.mask |= kcb->kprobe_saved_imask; regs->psw.addr = ip; } NOKPROBE_SYMBOL(disable_singlestep); /* * Activate a kprobe by storing its pointer to current_kprobe. The * previous kprobe is stored in kcb->prev_kprobe. A stack of up to * two kprobes can be active, see KPROBE_REENTER. */ static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p) { kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe); kcb->prev_kprobe.status = kcb->kprobe_status; __this_cpu_write(current_kprobe, p); } NOKPROBE_SYMBOL(push_kprobe); /* * Deactivate a kprobe by backing up to the previous state. If the * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL, * for any other state prev_kprobe.kp will be NULL. */ static void pop_kprobe(struct kprobe_ctlblk *kcb) { __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); kcb->kprobe_status = kcb->prev_kprobe.status; } NOKPROBE_SYMBOL(pop_kprobe); void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) { ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14]; /* Replace the return addr with trampoline addr */ regs->gprs[14] = (unsigned long) &kretprobe_trampoline; } NOKPROBE_SYMBOL(arch_prepare_kretprobe); static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p) { switch (kcb->kprobe_status) { case KPROBE_HIT_SSDONE: case KPROBE_HIT_ACTIVE: kprobes_inc_nmissed_count(p); break; case KPROBE_HIT_SS: case KPROBE_REENTER: default: /* * A kprobe on the code path to single step an instruction * is a BUG. The code path resides in the .kprobes.text * section and is executed with interrupts disabled. */ pr_err("Invalid kprobe detected.\n"); dump_kprobe(p); BUG(); } } NOKPROBE_SYMBOL(kprobe_reenter_check); static int kprobe_handler(struct pt_regs *regs) { struct kprobe_ctlblk *kcb; struct kprobe *p; /* * We want to disable preemption for the entire duration of kprobe * processing. That includes the calls to the pre/post handlers * and single stepping the kprobe instruction. */ preempt_disable(); kcb = get_kprobe_ctlblk(); p = get_kprobe((void *)(regs->psw.addr - 2)); if (p) { if (kprobe_running()) { /* * We have hit a kprobe while another is still * active. This can happen in the pre and post * handler. Single step the instruction of the * new probe but do not call any handler function * of this secondary kprobe. * push_kprobe and pop_kprobe saves and restores * the currently active kprobe. */ kprobe_reenter_check(kcb, p); push_kprobe(kcb, p); kcb->kprobe_status = KPROBE_REENTER; } else { /* * If we have no pre-handler or it returned 0, we * continue with single stepping. If we have a * pre-handler and it returned non-zero, it prepped * for changing execution path, so get out doing * nothing more here. */ push_kprobe(kcb, p); kcb->kprobe_status = KPROBE_HIT_ACTIVE; if (p->pre_handler && p->pre_handler(p, regs)) { pop_kprobe(kcb); preempt_enable_no_resched(); return 1; } kcb->kprobe_status = KPROBE_HIT_SS; } enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn); return 1; } /* else: * No kprobe at this address and no active kprobe. The trap has * not been caused by a kprobe breakpoint. The race of breakpoint * vs. kprobe remove does not exist because on s390 as we use * stop_machine to arm/disarm the breakpoints. */ preempt_enable_no_resched(); return 0; } NOKPROBE_SYMBOL(kprobe_handler); /* * Function return probe trampoline: * - init_kprobes() establishes a probepoint here * - When the probed function returns, this probe * causes the handlers to fire */ static void __used kretprobe_trampoline_holder(void) { asm volatile(".global kretprobe_trampoline\n" "kretprobe_trampoline: bcr 0,0\n"); } /* * Called when the probe at kretprobe trampoline is hit */ static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) { struct kretprobe_instance *ri; struct hlist_head *head, empty_rp; struct hlist_node *tmp; unsigned long flags, orig_ret_address; unsigned long trampoline_address; kprobe_opcode_t *correct_ret_addr; INIT_HLIST_HEAD(&empty_rp); kretprobe_hash_lock(current, &head, &flags); /* * It is possible to have multiple instances associated with a given * task either because an multiple functions in the call path * have a return probe installed on them, and/or more than one return * return probe was registered for a target function. * * We can handle this because: * - instances are always inserted at the head of the list * - when multiple return probes are registered for the same * function, the first instance's ret_addr will point to the * real return address, and all the rest will point to * kretprobe_trampoline */ ri = NULL; orig_ret_address = 0; correct_ret_addr = NULL; trampoline_address = (unsigned long) &kretprobe_trampoline; hlist_for_each_entry_safe(ri, tmp, head, hlist) { if (ri->task != current) /* another task is sharing our hash bucket */ continue; orig_ret_address = (unsigned long) ri->ret_addr; if (orig_ret_address != trampoline_address) /* * This is the real return address. Any other * instances associated with this task are for * other calls deeper on the call stack */ break; } kretprobe_assert(ri, orig_ret_address, trampoline_address); correct_ret_addr = ri->ret_addr; hlist_for_each_entry_safe(ri, tmp, head, hlist) { if (ri->task != current) /* another task is sharing our hash bucket */ continue; orig_ret_address = (unsigned long) ri->ret_addr; if (ri->rp && ri->rp->handler) { ri->ret_addr = correct_ret_addr; ri->rp->handler(ri, regs); } recycle_rp_inst(ri, &empty_rp); if (orig_ret_address != trampoline_address) /* * This is the real return address. Any other * instances associated with this task are for * other calls deeper on the call stack */ break; } regs->psw.addr = orig_ret_address; kretprobe_hash_unlock(current, &flags); hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { hlist_del(&ri->hlist); kfree(ri); } /* * By returning a non-zero value, we are telling * kprobe_handler() that we don't want the post_handler * to run (and have re-enabled preemption) */ return 1; } NOKPROBE_SYMBOL(trampoline_probe_handler); /* * Called after single-stepping. p->addr is the address of the * instruction whose first byte has been replaced by the "breakpoint" * instruction. To avoid the SMP problems that can occur when we * temporarily put back the original opcode to single-step, we * single-stepped a copy of the instruction. The address of this * copy is p->ainsn.insn. */ static void resume_execution(struct kprobe *p, struct pt_regs *regs) { struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); unsigned long ip = regs->psw.addr; int fixup = probe_get_fixup_type(p->ainsn.insn); /* Check if the kprobes location is an enabled ftrace caller */ if (p->ainsn.is_ftrace_insn) { struct ftrace_insn *insn = (struct ftrace_insn *) p->addr; struct ftrace_insn call_insn; ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr); /* * A kprobe on an enabled ftrace call site actually single * stepped an unconditional branch (ftrace nop equivalent). * Now we need to fixup things and pretend that a brasl r0,... * was executed instead. */ if (insn->disp == KPROBE_ON_FTRACE_CALL) { ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE; regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn); } } if (fixup & FIXUP_PSW_NORMAL) ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn; if (fixup & FIXUP_BRANCH_NOT_TAKEN) { int ilen = insn_length(p->ainsn.insn[0] >> 8); if (ip - (unsigned long) p->ainsn.insn == ilen) ip = (unsigned long) p->addr + ilen; } if (fixup & FIXUP_RETURN_REGISTER) { int reg = (p->ainsn.insn[0] & 0xf0) >> 4; regs->gprs[reg] += (unsigned long) p->addr - (unsigned long) p->ainsn.insn; } disable_singlestep(kcb, regs, ip); } NOKPROBE_SYMBOL(resume_execution); static int post_kprobe_handler(struct pt_regs *regs) { struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); struct kprobe *p = kprobe_running(); if (!p) return 0; if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) { kcb->kprobe_status = KPROBE_HIT_SSDONE; p->post_handler(p, regs, 0); } resume_execution(p, regs); pop_kprobe(kcb); preempt_enable_no_resched(); /* * if somebody else is singlestepping across a probe point, psw mask * will have PER set, in which case, continue the remaining processing * of do_single_step, as if this is not a probe hit. */ if (regs->psw.mask & PSW_MASK_PER) return 0; return 1; } NOKPROBE_SYMBOL(post_kprobe_handler); static int kprobe_trap_handler(struct pt_regs *regs, int trapnr) { struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); struct kprobe *p = kprobe_running(); const struct exception_table_entry *entry; switch(kcb->kprobe_status) { case KPROBE_HIT_SS: case KPROBE_REENTER: /* * We are here because the instruction being single * stepped caused a page fault. We reset the current * kprobe and the nip points back to the probe address * and allow the page fault handler to continue as a * normal page fault. */ disable_singlestep(kcb, regs, (unsigned long) p->addr); pop_kprobe(kcb); preempt_enable_no_resched(); break; case KPROBE_HIT_ACTIVE: case KPROBE_HIT_SSDONE: /* * We increment the nmissed count for accounting, * we can also use npre/npostfault count for accounting * these specific fault cases. */ kprobes_inc_nmissed_count(p); /* * We come here because instructions in the pre/post * handler caused the page_fault, this could happen * if handler tries to access user space by * copy_from_user(), get_user() etc. Let the * user-specified handler try to fix it first. */ if (p->fault_handler && p->fault_handler(p, regs, trapnr)) return 1; /* * In case the user-specified fault handler returned * zero, try to fix up. */ entry = s390_search_extables(regs->psw.addr); if (entry) { regs->psw.addr = extable_fixup(entry); return 1; } /* * fixup_exception() could not handle it, * Let do_page_fault() fix it. */ break; default: break; } return 0; } NOKPROBE_SYMBOL(kprobe_trap_handler); int kprobe_fault_handler(struct pt_regs *regs, int trapnr) { int ret; if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) local_irq_disable(); ret = kprobe_trap_handler(regs, trapnr); if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); return ret; } NOKPROBE_SYMBOL(kprobe_fault_handler); /* * Wrapper routine to for handling exceptions. */ int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, void *data) { struct die_args *args = (struct die_args *) data; struct pt_regs *regs = args->regs; int ret = NOTIFY_DONE; if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) local_irq_disable(); switch (val) { case DIE_BPT: if (kprobe_handler(regs)) ret = NOTIFY_STOP; break; case DIE_SSTEP: if (post_kprobe_handler(regs)) ret = NOTIFY_STOP; break; case DIE_TRAP: if (!preemptible() && kprobe_running() && kprobe_trap_handler(regs, args->trapnr)) ret = NOTIFY_STOP; break; default: break; } if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); return ret; } NOKPROBE_SYMBOL(kprobe_exceptions_notify); static struct kprobe trampoline = { .addr = (kprobe_opcode_t *) &kretprobe_trampoline, .pre_handler = trampoline_probe_handler }; int __init arch_init_kprobes(void) { return register_kprobe(&trampoline); } int arch_trampoline_kprobe(struct kprobe *p) { return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline; } NOKPROBE_SYMBOL(arch_trampoline_kprobe);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1