Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Hildenbrand | 3175 | 98.18% | 9 | 47.37% |
SF Markus Elfring | 45 | 1.39% | 2 | 10.53% |
Heiko Carstens | 6 | 0.19% | 2 | 10.53% |
Alexander Yarygin | 2 | 0.06% | 1 | 5.26% |
Adam Buchbinder | 2 | 0.06% | 1 | 5.26% |
Greg Kroah-Hartman | 2 | 0.06% | 2 | 10.53% |
Andrea Gelmini | 1 | 0.03% | 1 | 5.26% |
Dan Carpenter | 1 | 0.03% | 1 | 5.26% |
Total | 3234 | 19 |
// SPDX-License-Identifier: GPL-2.0 /* * kvm guest debug support * * Copyright IBM Corp. 2014 * * Author(s): David Hildenbrand <dahi@linux.vnet.ibm.com> */ #include <linux/kvm_host.h> #include <linux/errno.h> #include "kvm-s390.h" #include "gaccess.h" /* * Extends the address range given by *start and *stop to include the address * range starting with estart and the length len. Takes care of overflowing * intervals and tries to minimize the overall interval size. */ static void extend_address_range(u64 *start, u64 *stop, u64 estart, int len) { u64 estop; if (len > 0) len--; else len = 0; estop = estart + len; /* 0-0 range represents "not set" */ if ((*start == 0) && (*stop == 0)) { *start = estart; *stop = estop; } else if (*start <= *stop) { /* increase the existing range */ if (estart < *start) *start = estart; if (estop > *stop) *stop = estop; } else { /* "overflowing" interval, whereby *stop > *start */ if (estart <= *stop) { if (estop > *stop) *stop = estop; } else if (estop > *start) { if (estart < *start) *start = estart; } /* minimize the range */ else if ((estop - *stop) < (*start - estart)) *stop = estop; else *start = estart; } } #define MAX_INST_SIZE 6 static void enable_all_hw_bp(struct kvm_vcpu *vcpu) { unsigned long start, len; u64 *cr9 = &vcpu->arch.sie_block->gcr[9]; u64 *cr10 = &vcpu->arch.sie_block->gcr[10]; u64 *cr11 = &vcpu->arch.sie_block->gcr[11]; int i; if (vcpu->arch.guestdbg.nr_hw_bp <= 0 || vcpu->arch.guestdbg.hw_bp_info == NULL) return; /* * If the guest is not interested in branching events, we can safely * limit them to the PER address range. */ if (!(*cr9 & PER_EVENT_BRANCH)) *cr9 |= PER_CONTROL_BRANCH_ADDRESS; *cr9 |= PER_EVENT_IFETCH | PER_EVENT_BRANCH; for (i = 0; i < vcpu->arch.guestdbg.nr_hw_bp; i++) { start = vcpu->arch.guestdbg.hw_bp_info[i].addr; len = vcpu->arch.guestdbg.hw_bp_info[i].len; /* * The instruction in front of the desired bp has to * report instruction-fetching events */ if (start < MAX_INST_SIZE) { len += start; start = 0; } else { start -= MAX_INST_SIZE; len += MAX_INST_SIZE; } extend_address_range(cr10, cr11, start, len); } } static void enable_all_hw_wp(struct kvm_vcpu *vcpu) { unsigned long start, len; u64 *cr9 = &vcpu->arch.sie_block->gcr[9]; u64 *cr10 = &vcpu->arch.sie_block->gcr[10]; u64 *cr11 = &vcpu->arch.sie_block->gcr[11]; int i; if (vcpu->arch.guestdbg.nr_hw_wp <= 0 || vcpu->arch.guestdbg.hw_wp_info == NULL) return; /* if host uses storage alternation for special address * spaces, enable all events and give all to the guest */ if (*cr9 & PER_EVENT_STORE && *cr9 & PER_CONTROL_ALTERATION) { *cr9 &= ~PER_CONTROL_ALTERATION; *cr10 = 0; *cr11 = -1UL; } else { *cr9 &= ~PER_CONTROL_ALTERATION; *cr9 |= PER_EVENT_STORE; for (i = 0; i < vcpu->arch.guestdbg.nr_hw_wp; i++) { start = vcpu->arch.guestdbg.hw_wp_info[i].addr; len = vcpu->arch.guestdbg.hw_wp_info[i].len; extend_address_range(cr10, cr11, start, len); } } } void kvm_s390_backup_guest_per_regs(struct kvm_vcpu *vcpu) { vcpu->arch.guestdbg.cr0 = vcpu->arch.sie_block->gcr[0]; vcpu->arch.guestdbg.cr9 = vcpu->arch.sie_block->gcr[9]; vcpu->arch.guestdbg.cr10 = vcpu->arch.sie_block->gcr[10]; vcpu->arch.guestdbg.cr11 = vcpu->arch.sie_block->gcr[11]; } void kvm_s390_restore_guest_per_regs(struct kvm_vcpu *vcpu) { vcpu->arch.sie_block->gcr[0] = vcpu->arch.guestdbg.cr0; vcpu->arch.sie_block->gcr[9] = vcpu->arch.guestdbg.cr9; vcpu->arch.sie_block->gcr[10] = vcpu->arch.guestdbg.cr10; vcpu->arch.sie_block->gcr[11] = vcpu->arch.guestdbg.cr11; } void kvm_s390_patch_guest_per_regs(struct kvm_vcpu *vcpu) { /* * TODO: if guest psw has per enabled, otherwise 0s! * This reduces the amount of reported events. * Need to intercept all psw changes! */ if (guestdbg_sstep_enabled(vcpu)) { /* disable timer (clock-comparator) interrupts */ vcpu->arch.sie_block->gcr[0] &= ~CR0_CLOCK_COMPARATOR_SUBMASK; vcpu->arch.sie_block->gcr[9] |= PER_EVENT_IFETCH; vcpu->arch.sie_block->gcr[10] = 0; vcpu->arch.sie_block->gcr[11] = -1UL; } if (guestdbg_hw_bp_enabled(vcpu)) { enable_all_hw_bp(vcpu); enable_all_hw_wp(vcpu); } /* TODO: Instruction-fetching-nullification not allowed for now */ if (vcpu->arch.sie_block->gcr[9] & PER_EVENT_NULLIFICATION) vcpu->arch.sie_block->gcr[9] &= ~PER_EVENT_NULLIFICATION; } #define MAX_WP_SIZE 100 static int __import_wp_info(struct kvm_vcpu *vcpu, struct kvm_hw_breakpoint *bp_data, struct kvm_hw_wp_info_arch *wp_info) { int ret = 0; wp_info->len = bp_data->len; wp_info->addr = bp_data->addr; wp_info->phys_addr = bp_data->phys_addr; wp_info->old_data = NULL; if (wp_info->len < 0 || wp_info->len > MAX_WP_SIZE) return -EINVAL; wp_info->old_data = kmalloc(bp_data->len, GFP_KERNEL); if (!wp_info->old_data) return -ENOMEM; /* try to backup the original value */ ret = read_guest_abs(vcpu, wp_info->phys_addr, wp_info->old_data, wp_info->len); if (ret) { kfree(wp_info->old_data); wp_info->old_data = NULL; } return ret; } #define MAX_BP_COUNT 50 int kvm_s390_import_bp_data(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg) { int ret = 0, nr_wp = 0, nr_bp = 0, i; struct kvm_hw_breakpoint *bp_data = NULL; struct kvm_hw_wp_info_arch *wp_info = NULL; struct kvm_hw_bp_info_arch *bp_info = NULL; if (dbg->arch.nr_hw_bp <= 0 || !dbg->arch.hw_bp) return 0; else if (dbg->arch.nr_hw_bp > MAX_BP_COUNT) return -EINVAL; bp_data = memdup_user(dbg->arch.hw_bp, sizeof(*bp_data) * dbg->arch.nr_hw_bp); if (IS_ERR(bp_data)) return PTR_ERR(bp_data); for (i = 0; i < dbg->arch.nr_hw_bp; i++) { switch (bp_data[i].type) { case KVM_HW_WP_WRITE: nr_wp++; break; case KVM_HW_BP: nr_bp++; break; default: break; } } if (nr_wp > 0) { wp_info = kmalloc_array(nr_wp, sizeof(*wp_info), GFP_KERNEL); if (!wp_info) { ret = -ENOMEM; goto error; } } if (nr_bp > 0) { bp_info = kmalloc_array(nr_bp, sizeof(*bp_info), GFP_KERNEL); if (!bp_info) { ret = -ENOMEM; goto error; } } for (nr_wp = 0, nr_bp = 0, i = 0; i < dbg->arch.nr_hw_bp; i++) { switch (bp_data[i].type) { case KVM_HW_WP_WRITE: ret = __import_wp_info(vcpu, &bp_data[i], &wp_info[nr_wp]); if (ret) goto error; nr_wp++; break; case KVM_HW_BP: bp_info[nr_bp].len = bp_data[i].len; bp_info[nr_bp].addr = bp_data[i].addr; nr_bp++; break; } } vcpu->arch.guestdbg.nr_hw_bp = nr_bp; vcpu->arch.guestdbg.hw_bp_info = bp_info; vcpu->arch.guestdbg.nr_hw_wp = nr_wp; vcpu->arch.guestdbg.hw_wp_info = wp_info; return 0; error: kfree(bp_data); kfree(wp_info); kfree(bp_info); return ret; } void kvm_s390_clear_bp_data(struct kvm_vcpu *vcpu) { int i; struct kvm_hw_wp_info_arch *hw_wp_info = NULL; for (i = 0; i < vcpu->arch.guestdbg.nr_hw_wp; i++) { hw_wp_info = &vcpu->arch.guestdbg.hw_wp_info[i]; kfree(hw_wp_info->old_data); hw_wp_info->old_data = NULL; } kfree(vcpu->arch.guestdbg.hw_wp_info); vcpu->arch.guestdbg.hw_wp_info = NULL; kfree(vcpu->arch.guestdbg.hw_bp_info); vcpu->arch.guestdbg.hw_bp_info = NULL; vcpu->arch.guestdbg.nr_hw_wp = 0; vcpu->arch.guestdbg.nr_hw_bp = 0; } static inline int in_addr_range(u64 addr, u64 a, u64 b) { if (a <= b) return (addr >= a) && (addr <= b); else /* "overflowing" interval */ return (addr >= a) || (addr <= b); } #define end_of_range(bp_info) (bp_info->addr + bp_info->len - 1) static struct kvm_hw_bp_info_arch *find_hw_bp(struct kvm_vcpu *vcpu, unsigned long addr) { struct kvm_hw_bp_info_arch *bp_info = vcpu->arch.guestdbg.hw_bp_info; int i; if (vcpu->arch.guestdbg.nr_hw_bp == 0) return NULL; for (i = 0; i < vcpu->arch.guestdbg.nr_hw_bp; i++) { /* addr is directly the start or in the range of a bp */ if (addr == bp_info->addr) goto found; if (bp_info->len > 0 && in_addr_range(addr, bp_info->addr, end_of_range(bp_info))) goto found; bp_info++; } return NULL; found: return bp_info; } static struct kvm_hw_wp_info_arch *any_wp_changed(struct kvm_vcpu *vcpu) { int i; struct kvm_hw_wp_info_arch *wp_info = NULL; void *temp = NULL; if (vcpu->arch.guestdbg.nr_hw_wp == 0) return NULL; for (i = 0; i < vcpu->arch.guestdbg.nr_hw_wp; i++) { wp_info = &vcpu->arch.guestdbg.hw_wp_info[i]; if (!wp_info || !wp_info->old_data || wp_info->len <= 0) continue; temp = kmalloc(wp_info->len, GFP_KERNEL); if (!temp) continue; /* refetch the wp data and compare it to the old value */ if (!read_guest_abs(vcpu, wp_info->phys_addr, temp, wp_info->len)) { if (memcmp(temp, wp_info->old_data, wp_info->len)) { kfree(temp); return wp_info; } } kfree(temp); temp = NULL; } return NULL; } void kvm_s390_prepare_debug_exit(struct kvm_vcpu *vcpu) { vcpu->run->exit_reason = KVM_EXIT_DEBUG; vcpu->guest_debug &= ~KVM_GUESTDBG_EXIT_PENDING; } #define PER_CODE_MASK (PER_EVENT_MASK >> 24) #define PER_CODE_BRANCH (PER_EVENT_BRANCH >> 24) #define PER_CODE_IFETCH (PER_EVENT_IFETCH >> 24) #define PER_CODE_STORE (PER_EVENT_STORE >> 24) #define PER_CODE_STORE_REAL (PER_EVENT_STORE_REAL >> 24) #define per_bp_event(code) \ (code & (PER_CODE_IFETCH | PER_CODE_BRANCH)) #define per_write_wp_event(code) \ (code & (PER_CODE_STORE | PER_CODE_STORE_REAL)) static int debug_exit_required(struct kvm_vcpu *vcpu, u8 perc, unsigned long peraddr) { struct kvm_debug_exit_arch *debug_exit = &vcpu->run->debug.arch; struct kvm_hw_wp_info_arch *wp_info = NULL; struct kvm_hw_bp_info_arch *bp_info = NULL; unsigned long addr = vcpu->arch.sie_block->gpsw.addr; if (guestdbg_hw_bp_enabled(vcpu)) { if (per_write_wp_event(perc) && vcpu->arch.guestdbg.nr_hw_wp > 0) { wp_info = any_wp_changed(vcpu); if (wp_info) { debug_exit->addr = wp_info->addr; debug_exit->type = KVM_HW_WP_WRITE; goto exit_required; } } if (per_bp_event(perc) && vcpu->arch.guestdbg.nr_hw_bp > 0) { bp_info = find_hw_bp(vcpu, addr); /* remove duplicate events if PC==PER address */ if (bp_info && (addr != peraddr)) { debug_exit->addr = addr; debug_exit->type = KVM_HW_BP; vcpu->arch.guestdbg.last_bp = addr; goto exit_required; } /* breakpoint missed */ bp_info = find_hw_bp(vcpu, peraddr); if (bp_info && vcpu->arch.guestdbg.last_bp != peraddr) { debug_exit->addr = peraddr; debug_exit->type = KVM_HW_BP; goto exit_required; } } } if (guestdbg_sstep_enabled(vcpu) && per_bp_event(perc)) { debug_exit->addr = addr; debug_exit->type = KVM_SINGLESTEP; goto exit_required; } return 0; exit_required: return 1; } static int per_fetched_addr(struct kvm_vcpu *vcpu, unsigned long *addr) { u8 exec_ilen = 0; u16 opcode[3]; int rc; if (vcpu->arch.sie_block->icptcode == ICPT_PROGI) { /* PER address references the fetched or the execute instr */ *addr = vcpu->arch.sie_block->peraddr; /* * Manually detect if we have an EXECUTE instruction. As * instructions are always 2 byte aligned we can read the * first two bytes unconditionally */ rc = read_guest_instr(vcpu, *addr, &opcode, 2); if (rc) return rc; if (opcode[0] >> 8 == 0x44) exec_ilen = 4; if ((opcode[0] & 0xff0f) == 0xc600) exec_ilen = 6; } else { /* instr was suppressed, calculate the responsible instr */ *addr = __rewind_psw(vcpu->arch.sie_block->gpsw, kvm_s390_get_ilen(vcpu)); if (vcpu->arch.sie_block->icptstatus & 0x01) { exec_ilen = (vcpu->arch.sie_block->icptstatus & 0x60) >> 4; if (!exec_ilen) exec_ilen = 4; } } if (exec_ilen) { /* read the complete EXECUTE instr to detect the fetched addr */ rc = read_guest_instr(vcpu, *addr, &opcode, exec_ilen); if (rc) return rc; if (exec_ilen == 6) { /* EXECUTE RELATIVE LONG - RIL-b format */ s32 rl = *((s32 *) (opcode + 1)); /* rl is a _signed_ 32 bit value specifying halfwords */ *addr += (u64)(s64) rl * 2; } else { /* EXECUTE - RX-a format */ u32 base = (opcode[1] & 0xf000) >> 12; u32 disp = opcode[1] & 0x0fff; u32 index = opcode[0] & 0x000f; *addr = base ? vcpu->run->s.regs.gprs[base] : 0; *addr += index ? vcpu->run->s.regs.gprs[index] : 0; *addr += disp; } *addr = kvm_s390_logical_to_effective(vcpu, *addr); } return 0; } #define guest_per_enabled(vcpu) \ (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PER) int kvm_s390_handle_per_ifetch_icpt(struct kvm_vcpu *vcpu) { const u64 cr10 = vcpu->arch.sie_block->gcr[10]; const u64 cr11 = vcpu->arch.sie_block->gcr[11]; const u8 ilen = kvm_s390_get_ilen(vcpu); struct kvm_s390_pgm_info pgm_info = { .code = PGM_PER, .per_code = PER_CODE_IFETCH, .per_address = __rewind_psw(vcpu->arch.sie_block->gpsw, ilen), }; unsigned long fetched_addr; int rc; /* * The PSW points to the next instruction, therefore the intercepted * instruction generated a PER i-fetch event. PER address therefore * points at the previous PSW address (could be an EXECUTE function). */ if (!guestdbg_enabled(vcpu)) return kvm_s390_inject_prog_irq(vcpu, &pgm_info); if (debug_exit_required(vcpu, pgm_info.per_code, pgm_info.per_address)) vcpu->guest_debug |= KVM_GUESTDBG_EXIT_PENDING; if (!guest_per_enabled(vcpu) || !(vcpu->arch.sie_block->gcr[9] & PER_EVENT_IFETCH)) return 0; rc = per_fetched_addr(vcpu, &fetched_addr); if (rc < 0) return rc; if (rc) /* instruction-fetching exceptions */ return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); if (in_addr_range(fetched_addr, cr10, cr11)) return kvm_s390_inject_prog_irq(vcpu, &pgm_info); return 0; } static int filter_guest_per_event(struct kvm_vcpu *vcpu) { const u8 perc = vcpu->arch.sie_block->perc; u64 addr = vcpu->arch.sie_block->gpsw.addr; u64 cr9 = vcpu->arch.sie_block->gcr[9]; u64 cr10 = vcpu->arch.sie_block->gcr[10]; u64 cr11 = vcpu->arch.sie_block->gcr[11]; /* filter all events, demanded by the guest */ u8 guest_perc = perc & (cr9 >> 24) & PER_CODE_MASK; unsigned long fetched_addr; int rc; if (!guest_per_enabled(vcpu)) guest_perc = 0; /* filter "successful-branching" events */ if (guest_perc & PER_CODE_BRANCH && cr9 & PER_CONTROL_BRANCH_ADDRESS && !in_addr_range(addr, cr10, cr11)) guest_perc &= ~PER_CODE_BRANCH; /* filter "instruction-fetching" events */ if (guest_perc & PER_CODE_IFETCH) { rc = per_fetched_addr(vcpu, &fetched_addr); if (rc < 0) return rc; /* * Don't inject an irq on exceptions. This would make handling * on icpt code 8 very complex (as PSW was already rewound). */ if (rc || !in_addr_range(fetched_addr, cr10, cr11)) guest_perc &= ~PER_CODE_IFETCH; } /* All other PER events will be given to the guest */ /* TODO: Check altered address/address space */ vcpu->arch.sie_block->perc = guest_perc; if (!guest_perc) vcpu->arch.sie_block->iprcc &= ~PGM_PER; return 0; } #define pssec(vcpu) (vcpu->arch.sie_block->gcr[1] & _ASCE_SPACE_SWITCH) #define hssec(vcpu) (vcpu->arch.sie_block->gcr[13] & _ASCE_SPACE_SWITCH) #define old_ssec(vcpu) ((vcpu->arch.sie_block->tecmc >> 31) & 0x1) #define old_as_is_home(vcpu) !(vcpu->arch.sie_block->tecmc & 0xffff) int kvm_s390_handle_per_event(struct kvm_vcpu *vcpu) { int rc, new_as; if (debug_exit_required(vcpu, vcpu->arch.sie_block->perc, vcpu->arch.sie_block->peraddr)) vcpu->guest_debug |= KVM_GUESTDBG_EXIT_PENDING; rc = filter_guest_per_event(vcpu); if (rc) return rc; /* * Only RP, SAC, SACF, PT, PTI, PR, PC instructions can trigger * a space-switch event. PER events enforce space-switch events * for these instructions. So if no PER event for the guest is left, * we might have to filter the space-switch element out, too. */ if (vcpu->arch.sie_block->iprcc == PGM_SPACE_SWITCH) { vcpu->arch.sie_block->iprcc = 0; new_as = psw_bits(vcpu->arch.sie_block->gpsw).as; /* * If the AS changed from / to home, we had RP, SAC or SACF * instruction. Check primary and home space-switch-event * controls. (theoretically home -> home produced no event) */ if (((new_as == PSW_BITS_AS_HOME) ^ old_as_is_home(vcpu)) && (pssec(vcpu) || hssec(vcpu))) vcpu->arch.sie_block->iprcc = PGM_SPACE_SWITCH; /* * PT, PTI, PR, PC instruction operate on primary AS only. Check * if the primary-space-switch-event control was or got set. */ if (new_as == PSW_BITS_AS_PRIMARY && !old_as_is_home(vcpu) && (pssec(vcpu) || old_ssec(vcpu))) vcpu->arch.sie_block->iprcc = PGM_SPACE_SWITCH; } return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1