Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Michael Holzheu | 1971 | 88.46% | 4 | 28.57% |
Heiko Carstens | 233 | 10.46% | 6 | 42.86% |
Mike Rapoport | 21 | 0.94% | 2 | 14.29% |
Martin Schwidefsky | 2 | 0.09% | 1 | 7.14% |
Greg Kroah-Hartman | 1 | 0.04% | 1 | 7.14% |
Total | 2228 | 14 |
// SPDX-License-Identifier: GPL-2.0 /* * NUMA support for s390 * * NUMA emulation (aka fake NUMA) distributes the available memory to nodes * without using real topology information about the physical memory of the * machine. * * It distributes the available CPUs to nodes while respecting the original * machine topology information. This is done by trying to avoid to separate * CPUs which reside on the same book or even on the same MC. * * Because the current Linux scheduler code requires a stable cpu to node * mapping, cores are pinned to nodes when the first CPU thread is set online. * * Copyright IBM Corp. 2015 */ #define KMSG_COMPONENT "numa_emu" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/kernel.h> #include <linux/cpumask.h> #include <linux/memblock.h> #include <linux/node.h> #include <linux/memory.h> #include <linux/slab.h> #include <asm/smp.h> #include <asm/topology.h> #include "numa_mode.h" #include "toptree.h" /* Distances between the different system components */ #define DIST_EMPTY 0 #define DIST_CORE 1 #define DIST_MC 2 #define DIST_BOOK 3 #define DIST_DRAWER 4 #define DIST_MAX 5 /* Node distance reported to common code */ #define EMU_NODE_DIST 10 /* Node ID for free (not yet pinned) cores */ #define NODE_ID_FREE -1 /* Different levels of toptree */ enum toptree_level {CORE, MC, BOOK, DRAWER, NODE, TOPOLOGY}; /* The two toptree IDs */ enum {TOPTREE_ID_PHYS, TOPTREE_ID_NUMA}; /* Number of NUMA nodes */ static int emu_nodes = 1; /* NUMA stripe size */ static unsigned long emu_size; /* * Node to core pinning information updates are protected by * "sched_domains_mutex". */ static struct { s32 to_node_id[CONFIG_NR_CPUS]; /* Pinned core to node mapping */ int total; /* Total number of pinned cores */ int per_node_target; /* Cores per node without extra cores */ int per_node[MAX_NUMNODES]; /* Number of cores pinned to node */ } *emu_cores; /* * Pin a core to a node */ static void pin_core_to_node(int core_id, int node_id) { if (emu_cores->to_node_id[core_id] == NODE_ID_FREE) { emu_cores->per_node[node_id]++; emu_cores->to_node_id[core_id] = node_id; emu_cores->total++; } else { WARN_ON(emu_cores->to_node_id[core_id] != node_id); } } /* * Number of pinned cores of a node */ static int cores_pinned(struct toptree *node) { return emu_cores->per_node[node->id]; } /* * ID of the node where the core is pinned (or NODE_ID_FREE) */ static int core_pinned_to_node_id(struct toptree *core) { return emu_cores->to_node_id[core->id]; } /* * Number of cores in the tree that are not yet pinned */ static int cores_free(struct toptree *tree) { struct toptree *core; int count = 0; toptree_for_each(core, tree, CORE) { if (core_pinned_to_node_id(core) == NODE_ID_FREE) count++; } return count; } /* * Return node of core */ static struct toptree *core_node(struct toptree *core) { return core->parent->parent->parent->parent; } /* * Return drawer of core */ static struct toptree *core_drawer(struct toptree *core) { return core->parent->parent->parent; } /* * Return book of core */ static struct toptree *core_book(struct toptree *core) { return core->parent->parent; } /* * Return mc of core */ static struct toptree *core_mc(struct toptree *core) { return core->parent; } /* * Distance between two cores */ static int dist_core_to_core(struct toptree *core1, struct toptree *core2) { if (core_drawer(core1)->id != core_drawer(core2)->id) return DIST_DRAWER; if (core_book(core1)->id != core_book(core2)->id) return DIST_BOOK; if (core_mc(core1)->id != core_mc(core2)->id) return DIST_MC; /* Same core or sibling on same MC */ return DIST_CORE; } /* * Distance of a node to a core */ static int dist_node_to_core(struct toptree *node, struct toptree *core) { struct toptree *core_node; int dist_min = DIST_MAX; toptree_for_each(core_node, node, CORE) dist_min = min(dist_min, dist_core_to_core(core_node, core)); return dist_min == DIST_MAX ? DIST_EMPTY : dist_min; } /* * Unify will delete empty nodes, therefore recreate nodes. */ static void toptree_unify_tree(struct toptree *tree) { int nid; toptree_unify(tree); for (nid = 0; nid < emu_nodes; nid++) toptree_get_child(tree, nid); } /* * Find the best/nearest node for a given core and ensure that no node * gets more than "emu_cores->per_node_target + extra" cores. */ static struct toptree *node_for_core(struct toptree *numa, struct toptree *core, int extra) { struct toptree *node, *node_best = NULL; int dist_cur, dist_best, cores_target; cores_target = emu_cores->per_node_target + extra; dist_best = DIST_MAX; node_best = NULL; toptree_for_each(node, numa, NODE) { /* Already pinned cores must use their nodes */ if (core_pinned_to_node_id(core) == node->id) { node_best = node; break; } /* Skip nodes that already have enough cores */ if (cores_pinned(node) >= cores_target) continue; dist_cur = dist_node_to_core(node, core); if (dist_cur < dist_best) { dist_best = dist_cur; node_best = node; } } return node_best; } /* * Find the best node for each core with respect to "extra" core count */ static void toptree_to_numa_single(struct toptree *numa, struct toptree *phys, int extra) { struct toptree *node, *core, *tmp; toptree_for_each_safe(core, tmp, phys, CORE) { node = node_for_core(numa, core, extra); if (!node) return; toptree_move(core, node); pin_core_to_node(core->id, node->id); } } /* * Move structures of given level to specified NUMA node */ static void move_level_to_numa_node(struct toptree *node, struct toptree *phys, enum toptree_level level, bool perfect) { int cores_free, cores_target = emu_cores->per_node_target; struct toptree *cur, *tmp; toptree_for_each_safe(cur, tmp, phys, level) { cores_free = cores_target - toptree_count(node, CORE); if (perfect) { if (cores_free == toptree_count(cur, CORE)) toptree_move(cur, node); } else { if (cores_free >= toptree_count(cur, CORE)) toptree_move(cur, node); } } } /* * Move structures of a given level to NUMA nodes. If "perfect" is specified * move only perfectly fitting structures. Otherwise move also smaller * than needed structures. */ static void move_level_to_numa(struct toptree *numa, struct toptree *phys, enum toptree_level level, bool perfect) { struct toptree *node; toptree_for_each(node, numa, NODE) move_level_to_numa_node(node, phys, level, perfect); } /* * For the first run try to move the big structures */ static void toptree_to_numa_first(struct toptree *numa, struct toptree *phys) { struct toptree *core; /* Always try to move perfectly fitting structures first */ move_level_to_numa(numa, phys, DRAWER, true); move_level_to_numa(numa, phys, DRAWER, false); move_level_to_numa(numa, phys, BOOK, true); move_level_to_numa(numa, phys, BOOK, false); move_level_to_numa(numa, phys, MC, true); move_level_to_numa(numa, phys, MC, false); /* Now pin all the moved cores */ toptree_for_each(core, numa, CORE) pin_core_to_node(core->id, core_node(core)->id); } /* * Allocate new topology and create required nodes */ static struct toptree *toptree_new(int id, int nodes) { struct toptree *tree; int nid; tree = toptree_alloc(TOPOLOGY, id); if (!tree) goto fail; for (nid = 0; nid < nodes; nid++) { if (!toptree_get_child(tree, nid)) goto fail; } return tree; fail: panic("NUMA emulation could not allocate topology"); } /* * Allocate and initialize core to node mapping */ static void __ref create_core_to_node_map(void) { int i; emu_cores = memblock_alloc(sizeof(*emu_cores), 8); if (!emu_cores) panic("%s: Failed to allocate %zu bytes align=0x%x\n", __func__, sizeof(*emu_cores), 8); for (i = 0; i < ARRAY_SIZE(emu_cores->to_node_id); i++) emu_cores->to_node_id[i] = NODE_ID_FREE; } /* * Move cores from physical topology into NUMA target topology * and try to keep as much of the physical topology as possible. */ static struct toptree *toptree_to_numa(struct toptree *phys) { static int first = 1; struct toptree *numa; int cores_total; cores_total = emu_cores->total + cores_free(phys); emu_cores->per_node_target = cores_total / emu_nodes; numa = toptree_new(TOPTREE_ID_NUMA, emu_nodes); if (first) { toptree_to_numa_first(numa, phys); first = 0; } toptree_to_numa_single(numa, phys, 0); toptree_to_numa_single(numa, phys, 1); toptree_unify_tree(numa); WARN_ON(cpumask_weight(&phys->mask)); return numa; } /* * Create a toptree out of the physical topology that we got from the hypervisor */ static struct toptree *toptree_from_topology(void) { struct toptree *phys, *node, *drawer, *book, *mc, *core; struct cpu_topology_s390 *top; int cpu; phys = toptree_new(TOPTREE_ID_PHYS, 1); for_each_cpu(cpu, &cpus_with_topology) { top = &cpu_topology[cpu]; node = toptree_get_child(phys, 0); drawer = toptree_get_child(node, top->drawer_id); book = toptree_get_child(drawer, top->book_id); mc = toptree_get_child(book, top->socket_id); core = toptree_get_child(mc, smp_get_base_cpu(cpu)); if (!drawer || !book || !mc || !core) panic("NUMA emulation could not allocate memory"); cpumask_set_cpu(cpu, &core->mask); toptree_update_mask(mc); } return phys; } /* * Add toptree core to topology and create correct CPU masks */ static void topology_add_core(struct toptree *core) { struct cpu_topology_s390 *top; int cpu; for_each_cpu(cpu, &core->mask) { top = &cpu_topology[cpu]; cpumask_copy(&top->thread_mask, &core->mask); cpumask_copy(&top->core_mask, &core_mc(core)->mask); cpumask_copy(&top->book_mask, &core_book(core)->mask); cpumask_copy(&top->drawer_mask, &core_drawer(core)->mask); cpumask_set_cpu(cpu, &node_to_cpumask_map[core_node(core)->id]); top->node_id = core_node(core)->id; } } /* * Apply toptree to topology and create CPU masks */ static void toptree_to_topology(struct toptree *numa) { struct toptree *core; int i; /* Clear all node masks */ for (i = 0; i < MAX_NUMNODES; i++) cpumask_clear(&node_to_cpumask_map[i]); /* Rebuild all masks */ toptree_for_each(core, numa, CORE) topology_add_core(core); } /* * Show the node to core mapping */ static void print_node_to_core_map(void) { int nid, cid; if (!numa_debug_enabled) return; printk(KERN_DEBUG "NUMA node to core mapping\n"); for (nid = 0; nid < emu_nodes; nid++) { printk(KERN_DEBUG " node %3d: ", nid); for (cid = 0; cid < ARRAY_SIZE(emu_cores->to_node_id); cid++) { if (emu_cores->to_node_id[cid] == nid) printk(KERN_CONT "%d ", cid); } printk(KERN_CONT "\n"); } } static void pin_all_possible_cpus(void) { int core_id, node_id, cpu; static int initialized; if (initialized) return; print_node_to_core_map(); node_id = 0; for_each_possible_cpu(cpu) { core_id = smp_get_base_cpu(cpu); if (emu_cores->to_node_id[core_id] != NODE_ID_FREE) continue; pin_core_to_node(core_id, node_id); cpu_topology[cpu].node_id = node_id; node_id = (node_id + 1) % emu_nodes; } print_node_to_core_map(); initialized = 1; } /* * Transfer physical topology into a NUMA topology and modify CPU masks * according to the NUMA topology. * * Must be called with "sched_domains_mutex" lock held. */ static void emu_update_cpu_topology(void) { struct toptree *phys, *numa; if (emu_cores == NULL) create_core_to_node_map(); phys = toptree_from_topology(); numa = toptree_to_numa(phys); toptree_free(phys); toptree_to_topology(numa); toptree_free(numa); pin_all_possible_cpus(); } /* * If emu_size is not set, use CONFIG_EMU_SIZE. Then round to minimum * alignment (needed for memory hotplug). */ static unsigned long emu_setup_size_adjust(unsigned long size) { unsigned long size_new; size = size ? : CONFIG_EMU_SIZE; size_new = roundup(size, memory_block_size_bytes()); if (size_new == size) return size; pr_warn("Increasing memory stripe size from %ld MB to %ld MB\n", size >> 20, size_new >> 20); return size_new; } /* * If we have not enough memory for the specified nodes, reduce the node count. */ static int emu_setup_nodes_adjust(int nodes) { int nodes_max; nodes_max = memblock.memory.total_size / emu_size; nodes_max = max(nodes_max, 1); if (nodes_max >= nodes) return nodes; pr_warn("Not enough memory for %d nodes, reducing node count\n", nodes); return nodes_max; } /* * Early emu setup */ static void emu_setup(void) { int nid; emu_size = emu_setup_size_adjust(emu_size); emu_nodes = emu_setup_nodes_adjust(emu_nodes); for (nid = 0; nid < emu_nodes; nid++) node_set(nid, node_possible_map); pr_info("Creating %d nodes with memory stripe size %ld MB\n", emu_nodes, emu_size >> 20); } /* * Return node id for given page number */ static int emu_pfn_to_nid(unsigned long pfn) { return (pfn / (emu_size >> PAGE_SHIFT)) % emu_nodes; } /* * Return stripe size */ static unsigned long emu_align(void) { return emu_size; } /* * Return distance between two nodes */ static int emu_distance(int node1, int node2) { return (node1 != node2) * EMU_NODE_DIST; } /* * Define callbacks for generic s390 NUMA infrastructure */ const struct numa_mode numa_mode_emu = { .name = "emu", .setup = emu_setup, .update_cpu_topology = emu_update_cpu_topology, .__pfn_to_nid = emu_pfn_to_nid, .align = emu_align, .distance = emu_distance, }; /* * Kernel parameter: emu_nodes=<n> */ static int __init early_parse_emu_nodes(char *p) { int count; if (kstrtoint(p, 0, &count) != 0 || count <= 0) return 0; if (count <= 0) return 0; emu_nodes = min(count, MAX_NUMNODES); return 0; } early_param("emu_nodes", early_parse_emu_nodes); /* * Kernel parameter: emu_size=[<n>[k|M|G|T]] */ static int __init early_parse_emu_size(char *p) { emu_size = memparse(p, NULL); return 0; } early_param("emu_size", early_parse_emu_size);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1