Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Torvalds (pre-git) | 13674 | 88.31% | 9 | 13.64% |
Chas Williams | 1264 | 8.16% | 15 | 22.73% |
David S. Miller | 228 | 1.47% | 1 | 1.52% |
Mark Asselstine | 68 | 0.44% | 1 | 1.52% |
Arnaldo Carvalho de Melo | 25 | 0.16% | 2 | 3.03% |
SF Markus Elfring | 25 | 0.16% | 5 | 7.58% |
Tejun Heo | 21 | 0.14% | 2 | 3.03% |
Christophe Jaillet | 16 | 0.10% | 1 | 1.52% |
Rusty Russell | 16 | 0.10% | 1 | 1.52% |
Arnd Bergmann | 16 | 0.10% | 1 | 1.52% |
Kees Cook | 13 | 0.08% | 2 | 3.03% |
David Howells | 13 | 0.08% | 1 | 1.52% |
Kåre Särs | 13 | 0.08% | 1 | 1.52% |
Christoph Hellwig | 10 | 0.06% | 1 | 1.52% |
Jeff Garzik | 10 | 0.06% | 1 | 1.52% |
Andy Shevchenko | 9 | 0.06% | 2 | 3.03% |
Dan J Williams | 7 | 0.05% | 1 | 1.52% |
Linus Torvalds | 7 | 0.05% | 3 | 4.55% |
Randy Dunlap | 6 | 0.04% | 1 | 1.52% |
Peter Hüwe | 5 | 0.03% | 1 | 1.52% |
Patrick McHardy | 5 | 0.03% | 1 | 1.52% |
Al Viro | 5 | 0.03% | 1 | 1.52% |
Andrew Morton | 5 | 0.03% | 1 | 1.52% |
Lance Roy | 4 | 0.03% | 1 | 1.52% |
Ding Tianhong | 4 | 0.03% | 1 | 1.52% |
DaeSeok Youn | 4 | 0.03% | 1 | 1.52% |
Alan Cox | 3 | 0.02% | 1 | 1.52% |
Matthew Wilcox | 2 | 0.01% | 1 | 1.52% |
Harvey Harrison | 1 | 0.01% | 1 | 1.52% |
Arun Sharma | 1 | 0.01% | 1 | 1.52% |
H Hartley Sweeten | 1 | 0.01% | 1 | 1.52% |
Bhumika Goyal | 1 | 0.01% | 1 | 1.52% |
Arvind Yadav | 1 | 0.01% | 1 | 1.52% |
Thomas Gleixner | 1 | 0.01% | 1 | 1.52% |
Total | 15484 | 66 |
// SPDX-License-Identifier: GPL-2.0-only /* * nicstar.c * * Device driver supporting CBR for IDT 77201/77211 "NICStAR" based cards. * * IMPORTANT: The included file nicstarmac.c was NOT WRITTEN BY ME. * It was taken from the frle-0.22 device driver. * As the file doesn't have a copyright notice, in the file * nicstarmac.copyright I put the copyright notice from the * frle-0.22 device driver. * Some code is based on the nicstar driver by M. Welsh. * * Author: Rui Prior (rprior@inescn.pt) * PowerPC support by Jay Talbott (jay_talbott@mcg.mot.com) April 1999 * * * (C) INESC 1999 */ /* * IMPORTANT INFORMATION * * There are currently three types of spinlocks: * * 1 - Per card interrupt spinlock (to protect structures and such) * 2 - Per SCQ scq spinlock * 3 - Per card resource spinlock (to access registers, etc.) * * These must NEVER be grabbed in reverse order. * */ /* Header files */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/skbuff.h> #include <linux/atmdev.h> #include <linux/atm.h> #include <linux/pci.h> #include <linux/dma-mapping.h> #include <linux/types.h> #include <linux/string.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/sched.h> #include <linux/timer.h> #include <linux/interrupt.h> #include <linux/bitops.h> #include <linux/slab.h> #include <linux/idr.h> #include <asm/io.h> #include <linux/uaccess.h> #include <linux/atomic.h> #include <linux/etherdevice.h> #include "nicstar.h" #ifdef CONFIG_ATM_NICSTAR_USE_SUNI #include "suni.h" #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */ #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105 #include "idt77105.h" #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */ /* Additional code */ #include "nicstarmac.c" /* Configurable parameters */ #undef PHY_LOOPBACK #undef TX_DEBUG #undef RX_DEBUG #undef GENERAL_DEBUG #undef EXTRA_DEBUG /* Do not touch these */ #ifdef TX_DEBUG #define TXPRINTK(args...) printk(args) #else #define TXPRINTK(args...) #endif /* TX_DEBUG */ #ifdef RX_DEBUG #define RXPRINTK(args...) printk(args) #else #define RXPRINTK(args...) #endif /* RX_DEBUG */ #ifdef GENERAL_DEBUG #define PRINTK(args...) printk(args) #else #define PRINTK(args...) #endif /* GENERAL_DEBUG */ #ifdef EXTRA_DEBUG #define XPRINTK(args...) printk(args) #else #define XPRINTK(args...) #endif /* EXTRA_DEBUG */ /* Macros */ #define CMD_BUSY(card) (readl((card)->membase + STAT) & NS_STAT_CMDBZ) #define NS_DELAY mdelay(1) #define PTR_DIFF(a, b) ((u32)((unsigned long)(a) - (unsigned long)(b))) #ifndef ATM_SKB #define ATM_SKB(s) (&(s)->atm) #endif #define scq_virt_to_bus(scq, p) \ (scq->dma + ((unsigned long)(p) - (unsigned long)(scq)->org)) /* Function declarations */ static u32 ns_read_sram(ns_dev * card, u32 sram_address); static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value, int count); static int ns_init_card(int i, struct pci_dev *pcidev); static void ns_init_card_error(ns_dev * card, int error); static scq_info *get_scq(ns_dev *card, int size, u32 scd); static void free_scq(ns_dev *card, scq_info * scq, struct atm_vcc *vcc); static void push_rxbufs(ns_dev *, struct sk_buff *); static irqreturn_t ns_irq_handler(int irq, void *dev_id); static int ns_open(struct atm_vcc *vcc); static void ns_close(struct atm_vcc *vcc); static void fill_tst(ns_dev * card, int n, vc_map * vc); static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb); static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd, struct sk_buff *skb); static void process_tsq(ns_dev * card); static void drain_scq(ns_dev * card, scq_info * scq, int pos); static void process_rsq(ns_dev * card); static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe); static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb); static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count); static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb); static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb); static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb); static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page); static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg); #ifdef EXTRA_DEBUG static void which_list(ns_dev * card, struct sk_buff *skb); #endif static void ns_poll(struct timer_list *unused); static void ns_phy_put(struct atm_dev *dev, unsigned char value, unsigned long addr); static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr); /* Global variables */ static struct ns_dev *cards[NS_MAX_CARDS]; static unsigned num_cards; static const struct atmdev_ops atm_ops = { .open = ns_open, .close = ns_close, .ioctl = ns_ioctl, .send = ns_send, .phy_put = ns_phy_put, .phy_get = ns_phy_get, .proc_read = ns_proc_read, .owner = THIS_MODULE, }; static struct timer_list ns_timer; static char *mac[NS_MAX_CARDS]; module_param_array(mac, charp, NULL, 0); MODULE_LICENSE("GPL"); /* Functions */ static int nicstar_init_one(struct pci_dev *pcidev, const struct pci_device_id *ent) { static int index = -1; unsigned int error; index++; cards[index] = NULL; error = ns_init_card(index, pcidev); if (error) { cards[index--] = NULL; /* don't increment index */ goto err_out; } return 0; err_out: return -ENODEV; } static void nicstar_remove_one(struct pci_dev *pcidev) { int i, j; ns_dev *card = pci_get_drvdata(pcidev); struct sk_buff *hb; struct sk_buff *iovb; struct sk_buff *lb; struct sk_buff *sb; i = card->index; if (cards[i] == NULL) return; if (card->atmdev->phy && card->atmdev->phy->stop) card->atmdev->phy->stop(card->atmdev); /* Stop everything */ writel(0x00000000, card->membase + CFG); /* De-register device */ atm_dev_deregister(card->atmdev); /* Disable PCI device */ pci_disable_device(pcidev); /* Free up resources */ j = 0; PRINTK("nicstar%d: freeing %d huge buffers.\n", i, card->hbpool.count); while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL) { dev_kfree_skb_any(hb); j++; } PRINTK("nicstar%d: %d huge buffers freed.\n", i, j); j = 0; PRINTK("nicstar%d: freeing %d iovec buffers.\n", i, card->iovpool.count); while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL) { dev_kfree_skb_any(iovb); j++; } PRINTK("nicstar%d: %d iovec buffers freed.\n", i, j); while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL) dev_kfree_skb_any(lb); while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL) dev_kfree_skb_any(sb); free_scq(card, card->scq0, NULL); for (j = 0; j < NS_FRSCD_NUM; j++) { if (card->scd2vc[j] != NULL) free_scq(card, card->scd2vc[j]->scq, card->scd2vc[j]->tx_vcc); } idr_destroy(&card->idr); dma_free_coherent(&card->pcidev->dev, NS_RSQSIZE + NS_RSQ_ALIGNMENT, card->rsq.org, card->rsq.dma); dma_free_coherent(&card->pcidev->dev, NS_TSQSIZE + NS_TSQ_ALIGNMENT, card->tsq.org, card->tsq.dma); free_irq(card->pcidev->irq, card); iounmap(card->membase); kfree(card); } static const struct pci_device_id nicstar_pci_tbl[] = { { PCI_VDEVICE(IDT, PCI_DEVICE_ID_IDT_IDT77201), 0 }, {0,} /* terminate list */ }; MODULE_DEVICE_TABLE(pci, nicstar_pci_tbl); static struct pci_driver nicstar_driver = { .name = "nicstar", .id_table = nicstar_pci_tbl, .probe = nicstar_init_one, .remove = nicstar_remove_one, }; static int __init nicstar_init(void) { unsigned error = 0; /* Initialized to remove compile warning */ XPRINTK("nicstar: nicstar_init() called.\n"); error = pci_register_driver(&nicstar_driver); TXPRINTK("nicstar: TX debug enabled.\n"); RXPRINTK("nicstar: RX debug enabled.\n"); PRINTK("nicstar: General debug enabled.\n"); #ifdef PHY_LOOPBACK printk("nicstar: using PHY loopback.\n"); #endif /* PHY_LOOPBACK */ XPRINTK("nicstar: nicstar_init() returned.\n"); if (!error) { timer_setup(&ns_timer, ns_poll, 0); ns_timer.expires = jiffies + NS_POLL_PERIOD; add_timer(&ns_timer); } return error; } static void __exit nicstar_cleanup(void) { XPRINTK("nicstar: nicstar_cleanup() called.\n"); del_timer(&ns_timer); pci_unregister_driver(&nicstar_driver); XPRINTK("nicstar: nicstar_cleanup() returned.\n"); } static u32 ns_read_sram(ns_dev * card, u32 sram_address) { unsigned long flags; u32 data; sram_address <<= 2; sram_address &= 0x0007FFFC; /* address must be dword aligned */ sram_address |= 0x50000000; /* SRAM read command */ spin_lock_irqsave(&card->res_lock, flags); while (CMD_BUSY(card)) ; writel(sram_address, card->membase + CMD); while (CMD_BUSY(card)) ; data = readl(card->membase + DR0); spin_unlock_irqrestore(&card->res_lock, flags); return data; } static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value, int count) { unsigned long flags; int i, c; count--; /* count range now is 0..3 instead of 1..4 */ c = count; c <<= 2; /* to use increments of 4 */ spin_lock_irqsave(&card->res_lock, flags); while (CMD_BUSY(card)) ; for (i = 0; i <= c; i += 4) writel(*(value++), card->membase + i); /* Note: DR# registers are the first 4 dwords in nicstar's memspace, so card->membase + DR0 == card->membase */ sram_address <<= 2; sram_address &= 0x0007FFFC; sram_address |= (0x40000000 | count); writel(sram_address, card->membase + CMD); spin_unlock_irqrestore(&card->res_lock, flags); } static int ns_init_card(int i, struct pci_dev *pcidev) { int j; struct ns_dev *card = NULL; unsigned char pci_latency; unsigned error; u32 data; u32 u32d[4]; u32 ns_cfg_rctsize; int bcount; unsigned long membase; error = 0; if (pci_enable_device(pcidev)) { printk("nicstar%d: can't enable PCI device\n", i); error = 2; ns_init_card_error(card, error); return error; } if (dma_set_mask_and_coherent(&pcidev->dev, DMA_BIT_MASK(32)) != 0) { printk(KERN_WARNING "nicstar%d: No suitable DMA available.\n", i); error = 2; ns_init_card_error(card, error); return error; } card = kmalloc(sizeof(*card), GFP_KERNEL); if (!card) { printk ("nicstar%d: can't allocate memory for device structure.\n", i); error = 2; ns_init_card_error(card, error); return error; } cards[i] = card; spin_lock_init(&card->int_lock); spin_lock_init(&card->res_lock); pci_set_drvdata(pcidev, card); card->index = i; card->atmdev = NULL; card->pcidev = pcidev; membase = pci_resource_start(pcidev, 1); card->membase = ioremap(membase, NS_IOREMAP_SIZE); if (!card->membase) { printk("nicstar%d: can't ioremap() membase.\n", i); error = 3; ns_init_card_error(card, error); return error; } PRINTK("nicstar%d: membase at 0x%p.\n", i, card->membase); pci_set_master(pcidev); if (pci_read_config_byte(pcidev, PCI_LATENCY_TIMER, &pci_latency) != 0) { printk("nicstar%d: can't read PCI latency timer.\n", i); error = 6; ns_init_card_error(card, error); return error; } #ifdef NS_PCI_LATENCY if (pci_latency < NS_PCI_LATENCY) { PRINTK("nicstar%d: setting PCI latency timer to %d.\n", i, NS_PCI_LATENCY); for (j = 1; j < 4; j++) { if (pci_write_config_byte (pcidev, PCI_LATENCY_TIMER, NS_PCI_LATENCY) != 0) break; } if (j == 4) { printk ("nicstar%d: can't set PCI latency timer to %d.\n", i, NS_PCI_LATENCY); error = 7; ns_init_card_error(card, error); return error; } } #endif /* NS_PCI_LATENCY */ /* Clear timer overflow */ data = readl(card->membase + STAT); if (data & NS_STAT_TMROF) writel(NS_STAT_TMROF, card->membase + STAT); /* Software reset */ writel(NS_CFG_SWRST, card->membase + CFG); NS_DELAY; writel(0x00000000, card->membase + CFG); /* PHY reset */ writel(0x00000008, card->membase + GP); NS_DELAY; writel(0x00000001, card->membase + GP); NS_DELAY; while (CMD_BUSY(card)) ; writel(NS_CMD_WRITE_UTILITY | 0x00000100, card->membase + CMD); /* Sync UTOPIA with SAR clock */ NS_DELAY; /* Detect PHY type */ while (CMD_BUSY(card)) ; writel(NS_CMD_READ_UTILITY | 0x00000200, card->membase + CMD); while (CMD_BUSY(card)) ; data = readl(card->membase + DR0); switch (data) { case 0x00000009: printk("nicstar%d: PHY seems to be 25 Mbps.\n", i); card->max_pcr = ATM_25_PCR; while (CMD_BUSY(card)) ; writel(0x00000008, card->membase + DR0); writel(NS_CMD_WRITE_UTILITY | 0x00000200, card->membase + CMD); /* Clear an eventual pending interrupt */ writel(NS_STAT_SFBQF, card->membase + STAT); #ifdef PHY_LOOPBACK while (CMD_BUSY(card)) ; writel(0x00000022, card->membase + DR0); writel(NS_CMD_WRITE_UTILITY | 0x00000202, card->membase + CMD); #endif /* PHY_LOOPBACK */ break; case 0x00000030: case 0x00000031: printk("nicstar%d: PHY seems to be 155 Mbps.\n", i); card->max_pcr = ATM_OC3_PCR; #ifdef PHY_LOOPBACK while (CMD_BUSY(card)) ; writel(0x00000002, card->membase + DR0); writel(NS_CMD_WRITE_UTILITY | 0x00000205, card->membase + CMD); #endif /* PHY_LOOPBACK */ break; default: printk("nicstar%d: unknown PHY type (0x%08X).\n", i, data); error = 8; ns_init_card_error(card, error); return error; } writel(0x00000000, card->membase + GP); /* Determine SRAM size */ data = 0x76543210; ns_write_sram(card, 0x1C003, &data, 1); data = 0x89ABCDEF; ns_write_sram(card, 0x14003, &data, 1); if (ns_read_sram(card, 0x14003) == 0x89ABCDEF && ns_read_sram(card, 0x1C003) == 0x76543210) card->sram_size = 128; else card->sram_size = 32; PRINTK("nicstar%d: %dK x 32bit SRAM size.\n", i, card->sram_size); card->rct_size = NS_MAX_RCTSIZE; #if (NS_MAX_RCTSIZE == 4096) if (card->sram_size == 128) printk ("nicstar%d: limiting maximum VCI. See NS_MAX_RCTSIZE in nicstar.h\n", i); #elif (NS_MAX_RCTSIZE == 16384) if (card->sram_size == 32) { printk ("nicstar%d: wasting memory. See NS_MAX_RCTSIZE in nicstar.h\n", i); card->rct_size = 4096; } #else #error NS_MAX_RCTSIZE must be either 4096 or 16384 in nicstar.c #endif card->vpibits = NS_VPIBITS; if (card->rct_size == 4096) card->vcibits = 12 - NS_VPIBITS; else /* card->rct_size == 16384 */ card->vcibits = 14 - NS_VPIBITS; /* Initialize the nicstar eeprom/eprom stuff, for the MAC addr */ if (mac[i] == NULL) nicstar_init_eprom(card->membase); /* Set the VPI/VCI MSb mask to zero so we can receive OAM cells */ writel(0x00000000, card->membase + VPM); /* Initialize TSQ */ card->tsq.org = dma_alloc_coherent(&card->pcidev->dev, NS_TSQSIZE + NS_TSQ_ALIGNMENT, &card->tsq.dma, GFP_KERNEL); if (card->tsq.org == NULL) { printk("nicstar%d: can't allocate TSQ.\n", i); error = 10; ns_init_card_error(card, error); return error; } card->tsq.base = PTR_ALIGN(card->tsq.org, NS_TSQ_ALIGNMENT); card->tsq.next = card->tsq.base; card->tsq.last = card->tsq.base + (NS_TSQ_NUM_ENTRIES - 1); for (j = 0; j < NS_TSQ_NUM_ENTRIES; j++) ns_tsi_init(card->tsq.base + j); writel(0x00000000, card->membase + TSQH); writel(ALIGN(card->tsq.dma, NS_TSQ_ALIGNMENT), card->membase + TSQB); PRINTK("nicstar%d: TSQ base at 0x%p.\n", i, card->tsq.base); /* Initialize RSQ */ card->rsq.org = dma_alloc_coherent(&card->pcidev->dev, NS_RSQSIZE + NS_RSQ_ALIGNMENT, &card->rsq.dma, GFP_KERNEL); if (card->rsq.org == NULL) { printk("nicstar%d: can't allocate RSQ.\n", i); error = 11; ns_init_card_error(card, error); return error; } card->rsq.base = PTR_ALIGN(card->rsq.org, NS_RSQ_ALIGNMENT); card->rsq.next = card->rsq.base; card->rsq.last = card->rsq.base + (NS_RSQ_NUM_ENTRIES - 1); for (j = 0; j < NS_RSQ_NUM_ENTRIES; j++) ns_rsqe_init(card->rsq.base + j); writel(0x00000000, card->membase + RSQH); writel(ALIGN(card->rsq.dma, NS_RSQ_ALIGNMENT), card->membase + RSQB); PRINTK("nicstar%d: RSQ base at 0x%p.\n", i, card->rsq.base); /* Initialize SCQ0, the only VBR SCQ used */ card->scq1 = NULL; card->scq2 = NULL; card->scq0 = get_scq(card, VBR_SCQSIZE, NS_VRSCD0); if (card->scq0 == NULL) { printk("nicstar%d: can't get SCQ0.\n", i); error = 12; ns_init_card_error(card, error); return error; } u32d[0] = scq_virt_to_bus(card->scq0, card->scq0->base); u32d[1] = (u32) 0x00000000; u32d[2] = (u32) 0xffffffff; u32d[3] = (u32) 0x00000000; ns_write_sram(card, NS_VRSCD0, u32d, 4); ns_write_sram(card, NS_VRSCD1, u32d, 4); /* These last two won't be used */ ns_write_sram(card, NS_VRSCD2, u32d, 4); /* but are initialized, just in case... */ card->scq0->scd = NS_VRSCD0; PRINTK("nicstar%d: VBR-SCQ0 base at 0x%p.\n", i, card->scq0->base); /* Initialize TSTs */ card->tst_addr = NS_TST0; card->tst_free_entries = NS_TST_NUM_ENTRIES; data = NS_TST_OPCODE_VARIABLE; for (j = 0; j < NS_TST_NUM_ENTRIES; j++) ns_write_sram(card, NS_TST0 + j, &data, 1); data = ns_tste_make(NS_TST_OPCODE_END, NS_TST0); ns_write_sram(card, NS_TST0 + NS_TST_NUM_ENTRIES, &data, 1); for (j = 0; j < NS_TST_NUM_ENTRIES; j++) ns_write_sram(card, NS_TST1 + j, &data, 1); data = ns_tste_make(NS_TST_OPCODE_END, NS_TST1); ns_write_sram(card, NS_TST1 + NS_TST_NUM_ENTRIES, &data, 1); for (j = 0; j < NS_TST_NUM_ENTRIES; j++) card->tste2vc[j] = NULL; writel(NS_TST0 << 2, card->membase + TSTB); /* Initialize RCT. AAL type is set on opening the VC. */ #ifdef RCQ_SUPPORT u32d[0] = NS_RCTE_RAWCELLINTEN; #else u32d[0] = 0x00000000; #endif /* RCQ_SUPPORT */ u32d[1] = 0x00000000; u32d[2] = 0x00000000; u32d[3] = 0xFFFFFFFF; for (j = 0; j < card->rct_size; j++) ns_write_sram(card, j * 4, u32d, 4); memset(card->vcmap, 0, sizeof(card->vcmap)); for (j = 0; j < NS_FRSCD_NUM; j++) card->scd2vc[j] = NULL; /* Initialize buffer levels */ card->sbnr.min = MIN_SB; card->sbnr.init = NUM_SB; card->sbnr.max = MAX_SB; card->lbnr.min = MIN_LB; card->lbnr.init = NUM_LB; card->lbnr.max = MAX_LB; card->iovnr.min = MIN_IOVB; card->iovnr.init = NUM_IOVB; card->iovnr.max = MAX_IOVB; card->hbnr.min = MIN_HB; card->hbnr.init = NUM_HB; card->hbnr.max = MAX_HB; card->sm_handle = NULL; card->sm_addr = 0x00000000; card->lg_handle = NULL; card->lg_addr = 0x00000000; card->efbie = 1; /* To prevent push_rxbufs from enabling the interrupt */ idr_init(&card->idr); /* Pre-allocate some huge buffers */ skb_queue_head_init(&card->hbpool.queue); card->hbpool.count = 0; for (j = 0; j < NUM_HB; j++) { struct sk_buff *hb; hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL); if (hb == NULL) { printk ("nicstar%d: can't allocate %dth of %d huge buffers.\n", i, j, NUM_HB); error = 13; ns_init_card_error(card, error); return error; } NS_PRV_BUFTYPE(hb) = BUF_NONE; skb_queue_tail(&card->hbpool.queue, hb); card->hbpool.count++; } /* Allocate large buffers */ skb_queue_head_init(&card->lbpool.queue); card->lbpool.count = 0; /* Not used */ for (j = 0; j < NUM_LB; j++) { struct sk_buff *lb; lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL); if (lb == NULL) { printk ("nicstar%d: can't allocate %dth of %d large buffers.\n", i, j, NUM_LB); error = 14; ns_init_card_error(card, error); return error; } NS_PRV_BUFTYPE(lb) = BUF_LG; skb_queue_tail(&card->lbpool.queue, lb); skb_reserve(lb, NS_SMBUFSIZE); push_rxbufs(card, lb); /* Due to the implementation of push_rxbufs() this is 1, not 0 */ if (j == 1) { card->rcbuf = lb; card->rawcell = (struct ns_rcqe *) lb->data; card->rawch = NS_PRV_DMA(lb); } } /* Test for strange behaviour which leads to crashes */ if ((bcount = ns_stat_lfbqc_get(readl(card->membase + STAT))) < card->lbnr.min) { printk ("nicstar%d: Strange... Just allocated %d large buffers and lfbqc = %d.\n", i, j, bcount); error = 14; ns_init_card_error(card, error); return error; } /* Allocate small buffers */ skb_queue_head_init(&card->sbpool.queue); card->sbpool.count = 0; /* Not used */ for (j = 0; j < NUM_SB; j++) { struct sk_buff *sb; sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL); if (sb == NULL) { printk ("nicstar%d: can't allocate %dth of %d small buffers.\n", i, j, NUM_SB); error = 15; ns_init_card_error(card, error); return error; } NS_PRV_BUFTYPE(sb) = BUF_SM; skb_queue_tail(&card->sbpool.queue, sb); skb_reserve(sb, NS_AAL0_HEADER); push_rxbufs(card, sb); } /* Test for strange behaviour which leads to crashes */ if ((bcount = ns_stat_sfbqc_get(readl(card->membase + STAT))) < card->sbnr.min) { printk ("nicstar%d: Strange... Just allocated %d small buffers and sfbqc = %d.\n", i, j, bcount); error = 15; ns_init_card_error(card, error); return error; } /* Allocate iovec buffers */ skb_queue_head_init(&card->iovpool.queue); card->iovpool.count = 0; for (j = 0; j < NUM_IOVB; j++) { struct sk_buff *iovb; iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL); if (iovb == NULL) { printk ("nicstar%d: can't allocate %dth of %d iovec buffers.\n", i, j, NUM_IOVB); error = 16; ns_init_card_error(card, error); return error; } NS_PRV_BUFTYPE(iovb) = BUF_NONE; skb_queue_tail(&card->iovpool.queue, iovb); card->iovpool.count++; } /* Configure NICStAR */ if (card->rct_size == 4096) ns_cfg_rctsize = NS_CFG_RCTSIZE_4096_ENTRIES; else /* (card->rct_size == 16384) */ ns_cfg_rctsize = NS_CFG_RCTSIZE_16384_ENTRIES; card->efbie = 1; card->intcnt = 0; if (request_irq (pcidev->irq, &ns_irq_handler, IRQF_SHARED, "nicstar", card) != 0) { printk("nicstar%d: can't allocate IRQ %d.\n", i, pcidev->irq); error = 9; ns_init_card_error(card, error); return error; } /* Register device */ card->atmdev = atm_dev_register("nicstar", &card->pcidev->dev, &atm_ops, -1, NULL); if (card->atmdev == NULL) { printk("nicstar%d: can't register device.\n", i); error = 17; ns_init_card_error(card, error); return error; } if (mac[i] == NULL || !mac_pton(mac[i], card->atmdev->esi)) { nicstar_read_eprom(card->membase, NICSTAR_EPROM_MAC_ADDR_OFFSET, card->atmdev->esi, 6); if (ether_addr_equal(card->atmdev->esi, "\x00\x00\x00\x00\x00\x00")) { nicstar_read_eprom(card->membase, NICSTAR_EPROM_MAC_ADDR_OFFSET_ALT, card->atmdev->esi, 6); } } printk("nicstar%d: MAC address %pM\n", i, card->atmdev->esi); card->atmdev->dev_data = card; card->atmdev->ci_range.vpi_bits = card->vpibits; card->atmdev->ci_range.vci_bits = card->vcibits; card->atmdev->link_rate = card->max_pcr; card->atmdev->phy = NULL; #ifdef CONFIG_ATM_NICSTAR_USE_SUNI if (card->max_pcr == ATM_OC3_PCR) suni_init(card->atmdev); #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */ #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105 if (card->max_pcr == ATM_25_PCR) idt77105_init(card->atmdev); #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */ if (card->atmdev->phy && card->atmdev->phy->start) card->atmdev->phy->start(card->atmdev); writel(NS_CFG_RXPATH | NS_CFG_SMBUFSIZE | NS_CFG_LGBUFSIZE | NS_CFG_EFBIE | NS_CFG_RSQSIZE | NS_CFG_VPIBITS | ns_cfg_rctsize | NS_CFG_RXINT_NODELAY | NS_CFG_RAWIE | /* Only enabled if RCQ_SUPPORT */ NS_CFG_RSQAFIE | NS_CFG_TXEN | NS_CFG_TXIE | NS_CFG_TSQFIE_OPT | /* Only enabled if ENABLE_TSQFIE */ NS_CFG_PHYIE, card->membase + CFG); num_cards++; return error; } static void ns_init_card_error(ns_dev *card, int error) { if (error >= 17) { writel(0x00000000, card->membase + CFG); } if (error >= 16) { struct sk_buff *iovb; while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL) dev_kfree_skb_any(iovb); } if (error >= 15) { struct sk_buff *sb; while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL) dev_kfree_skb_any(sb); free_scq(card, card->scq0, NULL); } if (error >= 14) { struct sk_buff *lb; while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL) dev_kfree_skb_any(lb); } if (error >= 13) { struct sk_buff *hb; while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL) dev_kfree_skb_any(hb); } if (error >= 12) { kfree(card->rsq.org); } if (error >= 11) { kfree(card->tsq.org); } if (error >= 10) { free_irq(card->pcidev->irq, card); } if (error >= 4) { iounmap(card->membase); } if (error >= 3) { pci_disable_device(card->pcidev); kfree(card); } } static scq_info *get_scq(ns_dev *card, int size, u32 scd) { scq_info *scq; int i; if (size != VBR_SCQSIZE && size != CBR_SCQSIZE) return NULL; scq = kmalloc(sizeof(*scq), GFP_KERNEL); if (!scq) return NULL; scq->org = dma_alloc_coherent(&card->pcidev->dev, 2 * size, &scq->dma, GFP_KERNEL); if (!scq->org) { kfree(scq); return NULL; } scq->skb = kmalloc_array(size / NS_SCQE_SIZE, sizeof(*scq->skb), GFP_KERNEL); if (!scq->skb) { dma_free_coherent(&card->pcidev->dev, 2 * size, scq->org, scq->dma); kfree(scq); return NULL; } scq->num_entries = size / NS_SCQE_SIZE; scq->base = PTR_ALIGN(scq->org, size); scq->next = scq->base; scq->last = scq->base + (scq->num_entries - 1); scq->tail = scq->last; scq->scd = scd; scq->num_entries = size / NS_SCQE_SIZE; scq->tbd_count = 0; init_waitqueue_head(&scq->scqfull_waitq); scq->full = 0; spin_lock_init(&scq->lock); for (i = 0; i < scq->num_entries; i++) scq->skb[i] = NULL; return scq; } /* For variable rate SCQ vcc must be NULL */ static void free_scq(ns_dev *card, scq_info *scq, struct atm_vcc *vcc) { int i; if (scq->num_entries == VBR_SCQ_NUM_ENTRIES) for (i = 0; i < scq->num_entries; i++) { if (scq->skb[i] != NULL) { vcc = ATM_SKB(scq->skb[i])->vcc; if (vcc->pop != NULL) vcc->pop(vcc, scq->skb[i]); else dev_kfree_skb_any(scq->skb[i]); } } else { /* vcc must be != NULL */ if (vcc == NULL) { printk ("nicstar: free_scq() called with vcc == NULL for fixed rate scq."); for (i = 0; i < scq->num_entries; i++) dev_kfree_skb_any(scq->skb[i]); } else for (i = 0; i < scq->num_entries; i++) { if (scq->skb[i] != NULL) { if (vcc->pop != NULL) vcc->pop(vcc, scq->skb[i]); else dev_kfree_skb_any(scq->skb[i]); } } } kfree(scq->skb); dma_free_coherent(&card->pcidev->dev, 2 * (scq->num_entries == VBR_SCQ_NUM_ENTRIES ? VBR_SCQSIZE : CBR_SCQSIZE), scq->org, scq->dma); kfree(scq); } /* The handles passed must be pointers to the sk_buff containing the small or large buffer(s) cast to u32. */ static void push_rxbufs(ns_dev * card, struct sk_buff *skb) { struct sk_buff *handle1, *handle2; int id1, id2; u32 addr1, addr2; u32 stat; unsigned long flags; /* *BARF* */ handle2 = NULL; addr2 = 0; handle1 = skb; addr1 = dma_map_single(&card->pcidev->dev, skb->data, (NS_PRV_BUFTYPE(skb) == BUF_SM ? NS_SMSKBSIZE : NS_LGSKBSIZE), DMA_TO_DEVICE); NS_PRV_DMA(skb) = addr1; /* save so we can unmap later */ #ifdef GENERAL_DEBUG if (!addr1) printk("nicstar%d: push_rxbufs called with addr1 = 0.\n", card->index); #endif /* GENERAL_DEBUG */ stat = readl(card->membase + STAT); card->sbfqc = ns_stat_sfbqc_get(stat); card->lbfqc = ns_stat_lfbqc_get(stat); if (NS_PRV_BUFTYPE(skb) == BUF_SM) { if (!addr2) { if (card->sm_addr) { addr2 = card->sm_addr; handle2 = card->sm_handle; card->sm_addr = 0x00000000; card->sm_handle = NULL; } else { /* (!sm_addr) */ card->sm_addr = addr1; card->sm_handle = handle1; } } } else { /* buf_type == BUF_LG */ if (!addr2) { if (card->lg_addr) { addr2 = card->lg_addr; handle2 = card->lg_handle; card->lg_addr = 0x00000000; card->lg_handle = NULL; } else { /* (!lg_addr) */ card->lg_addr = addr1; card->lg_handle = handle1; } } } if (addr2) { if (NS_PRV_BUFTYPE(skb) == BUF_SM) { if (card->sbfqc >= card->sbnr.max) { skb_unlink(handle1, &card->sbpool.queue); dev_kfree_skb_any(handle1); skb_unlink(handle2, &card->sbpool.queue); dev_kfree_skb_any(handle2); return; } else card->sbfqc += 2; } else { /* (buf_type == BUF_LG) */ if (card->lbfqc >= card->lbnr.max) { skb_unlink(handle1, &card->lbpool.queue); dev_kfree_skb_any(handle1); skb_unlink(handle2, &card->lbpool.queue); dev_kfree_skb_any(handle2); return; } else card->lbfqc += 2; } id1 = idr_alloc(&card->idr, handle1, 0, 0, GFP_ATOMIC); if (id1 < 0) goto out; id2 = idr_alloc(&card->idr, handle2, 0, 0, GFP_ATOMIC); if (id2 < 0) goto out; spin_lock_irqsave(&card->res_lock, flags); while (CMD_BUSY(card)) ; writel(addr2, card->membase + DR3); writel(id2, card->membase + DR2); writel(addr1, card->membase + DR1); writel(id1, card->membase + DR0); writel(NS_CMD_WRITE_FREEBUFQ | NS_PRV_BUFTYPE(skb), card->membase + CMD); spin_unlock_irqrestore(&card->res_lock, flags); XPRINTK("nicstar%d: Pushing %s buffers at 0x%x and 0x%x.\n", card->index, (NS_PRV_BUFTYPE(skb) == BUF_SM ? "small" : "large"), addr1, addr2); } if (!card->efbie && card->sbfqc >= card->sbnr.min && card->lbfqc >= card->lbnr.min) { card->efbie = 1; writel((readl(card->membase + CFG) | NS_CFG_EFBIE), card->membase + CFG); } out: return; } static irqreturn_t ns_irq_handler(int irq, void *dev_id) { u32 stat_r; ns_dev *card; struct atm_dev *dev; unsigned long flags; card = (ns_dev *) dev_id; dev = card->atmdev; card->intcnt++; PRINTK("nicstar%d: NICStAR generated an interrupt\n", card->index); spin_lock_irqsave(&card->int_lock, flags); stat_r = readl(card->membase + STAT); /* Transmit Status Indicator has been written to T. S. Queue */ if (stat_r & NS_STAT_TSIF) { TXPRINTK("nicstar%d: TSI interrupt\n", card->index); process_tsq(card); writel(NS_STAT_TSIF, card->membase + STAT); } /* Incomplete CS-PDU has been transmitted */ if (stat_r & NS_STAT_TXICP) { writel(NS_STAT_TXICP, card->membase + STAT); TXPRINTK("nicstar%d: Incomplete CS-PDU transmitted.\n", card->index); } /* Transmit Status Queue 7/8 full */ if (stat_r & NS_STAT_TSQF) { writel(NS_STAT_TSQF, card->membase + STAT); PRINTK("nicstar%d: TSQ full.\n", card->index); process_tsq(card); } /* Timer overflow */ if (stat_r & NS_STAT_TMROF) { writel(NS_STAT_TMROF, card->membase + STAT); PRINTK("nicstar%d: Timer overflow.\n", card->index); } /* PHY device interrupt signal active */ if (stat_r & NS_STAT_PHYI) { writel(NS_STAT_PHYI, card->membase + STAT); PRINTK("nicstar%d: PHY interrupt.\n", card->index); if (dev->phy && dev->phy->interrupt) { dev->phy->interrupt(dev); } } /* Small Buffer Queue is full */ if (stat_r & NS_STAT_SFBQF) { writel(NS_STAT_SFBQF, card->membase + STAT); printk("nicstar%d: Small free buffer queue is full.\n", card->index); } /* Large Buffer Queue is full */ if (stat_r & NS_STAT_LFBQF) { writel(NS_STAT_LFBQF, card->membase + STAT); printk("nicstar%d: Large free buffer queue is full.\n", card->index); } /* Receive Status Queue is full */ if (stat_r & NS_STAT_RSQF) { writel(NS_STAT_RSQF, card->membase + STAT); printk("nicstar%d: RSQ full.\n", card->index); process_rsq(card); } /* Complete CS-PDU received */ if (stat_r & NS_STAT_EOPDU) { RXPRINTK("nicstar%d: End of CS-PDU received.\n", card->index); process_rsq(card); writel(NS_STAT_EOPDU, card->membase + STAT); } /* Raw cell received */ if (stat_r & NS_STAT_RAWCF) { writel(NS_STAT_RAWCF, card->membase + STAT); #ifndef RCQ_SUPPORT printk("nicstar%d: Raw cell received and no support yet...\n", card->index); #endif /* RCQ_SUPPORT */ /* NOTE: the following procedure may keep a raw cell pending until the next interrupt. As this preliminary support is only meant to avoid buffer leakage, this is not an issue. */ while (readl(card->membase + RAWCT) != card->rawch) { if (ns_rcqe_islast(card->rawcell)) { struct sk_buff *oldbuf; oldbuf = card->rcbuf; card->rcbuf = idr_find(&card->idr, ns_rcqe_nextbufhandle(card->rawcell)); card->rawch = NS_PRV_DMA(card->rcbuf); card->rawcell = (struct ns_rcqe *) card->rcbuf->data; recycle_rx_buf(card, oldbuf); } else { card->rawch += NS_RCQE_SIZE; card->rawcell++; } } } /* Small buffer queue is empty */ if (stat_r & NS_STAT_SFBQE) { int i; struct sk_buff *sb; writel(NS_STAT_SFBQE, card->membase + STAT); printk("nicstar%d: Small free buffer queue empty.\n", card->index); for (i = 0; i < card->sbnr.min; i++) { sb = dev_alloc_skb(NS_SMSKBSIZE); if (sb == NULL) { writel(readl(card->membase + CFG) & ~NS_CFG_EFBIE, card->membase + CFG); card->efbie = 0; break; } NS_PRV_BUFTYPE(sb) = BUF_SM; skb_queue_tail(&card->sbpool.queue, sb); skb_reserve(sb, NS_AAL0_HEADER); push_rxbufs(card, sb); } card->sbfqc = i; process_rsq(card); } /* Large buffer queue empty */ if (stat_r & NS_STAT_LFBQE) { int i; struct sk_buff *lb; writel(NS_STAT_LFBQE, card->membase + STAT); printk("nicstar%d: Large free buffer queue empty.\n", card->index); for (i = 0; i < card->lbnr.min; i++) { lb = dev_alloc_skb(NS_LGSKBSIZE); if (lb == NULL) { writel(readl(card->membase + CFG) & ~NS_CFG_EFBIE, card->membase + CFG); card->efbie = 0; break; } NS_PRV_BUFTYPE(lb) = BUF_LG; skb_queue_tail(&card->lbpool.queue, lb); skb_reserve(lb, NS_SMBUFSIZE); push_rxbufs(card, lb); } card->lbfqc = i; process_rsq(card); } /* Receive Status Queue is 7/8 full */ if (stat_r & NS_STAT_RSQAF) { writel(NS_STAT_RSQAF, card->membase + STAT); RXPRINTK("nicstar%d: RSQ almost full.\n", card->index); process_rsq(card); } spin_unlock_irqrestore(&card->int_lock, flags); PRINTK("nicstar%d: end of interrupt service\n", card->index); return IRQ_HANDLED; } static int ns_open(struct atm_vcc *vcc) { ns_dev *card; vc_map *vc; unsigned long tmpl, modl; int tcr, tcra; /* target cell rate, and absolute value */ int n = 0; /* Number of entries in the TST. Initialized to remove the compiler warning. */ u32 u32d[4]; int frscdi = 0; /* Index of the SCD. Initialized to remove the compiler warning. How I wish compilers were clever enough to tell which variables can truly be used uninitialized... */ int inuse; /* tx or rx vc already in use by another vcc */ short vpi = vcc->vpi; int vci = vcc->vci; card = (ns_dev *) vcc->dev->dev_data; PRINTK("nicstar%d: opening vpi.vci %d.%d \n", card->index, (int)vpi, vci); if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) { PRINTK("nicstar%d: unsupported AAL.\n", card->index); return -EINVAL; } vc = &(card->vcmap[vpi << card->vcibits | vci]); vcc->dev_data = vc; inuse = 0; if (vcc->qos.txtp.traffic_class != ATM_NONE && vc->tx) inuse = 1; if (vcc->qos.rxtp.traffic_class != ATM_NONE && vc->rx) inuse += 2; if (inuse) { printk("nicstar%d: %s vci already in use.\n", card->index, inuse == 1 ? "tx" : inuse == 2 ? "rx" : "tx and rx"); return -EINVAL; } set_bit(ATM_VF_ADDR, &vcc->flags); /* NOTE: You are not allowed to modify an open connection's QOS. To change that, remove the ATM_VF_PARTIAL flag checking. There may be other changes needed to do that. */ if (!test_bit(ATM_VF_PARTIAL, &vcc->flags)) { scq_info *scq; set_bit(ATM_VF_PARTIAL, &vcc->flags); if (vcc->qos.txtp.traffic_class == ATM_CBR) { /* Check requested cell rate and availability of SCD */ if (vcc->qos.txtp.max_pcr == 0 && vcc->qos.txtp.pcr == 0 && vcc->qos.txtp.min_pcr == 0) { PRINTK ("nicstar%d: trying to open a CBR vc with cell rate = 0 \n", card->index); clear_bit(ATM_VF_PARTIAL, &vcc->flags); clear_bit(ATM_VF_ADDR, &vcc->flags); return -EINVAL; } tcr = atm_pcr_goal(&(vcc->qos.txtp)); tcra = tcr >= 0 ? tcr : -tcr; PRINTK("nicstar%d: target cell rate = %d.\n", card->index, vcc->qos.txtp.max_pcr); tmpl = (unsigned long)tcra *(unsigned long) NS_TST_NUM_ENTRIES; modl = tmpl % card->max_pcr; n = (int)(tmpl / card->max_pcr); if (tcr > 0) { if (modl > 0) n++; } else if (tcr == 0) { if ((n = (card->tst_free_entries - NS_TST_RESERVED)) <= 0) { PRINTK ("nicstar%d: no CBR bandwidth free.\n", card->index); clear_bit(ATM_VF_PARTIAL, &vcc->flags); clear_bit(ATM_VF_ADDR, &vcc->flags); return -EINVAL; } } if (n == 0) { printk ("nicstar%d: selected bandwidth < granularity.\n", card->index); clear_bit(ATM_VF_PARTIAL, &vcc->flags); clear_bit(ATM_VF_ADDR, &vcc->flags); return -EINVAL; } if (n > (card->tst_free_entries - NS_TST_RESERVED)) { PRINTK ("nicstar%d: not enough free CBR bandwidth.\n", card->index); clear_bit(ATM_VF_PARTIAL, &vcc->flags); clear_bit(ATM_VF_ADDR, &vcc->flags); return -EINVAL; } else card->tst_free_entries -= n; XPRINTK("nicstar%d: writing %d tst entries.\n", card->index, n); for (frscdi = 0; frscdi < NS_FRSCD_NUM; frscdi++) { if (card->scd2vc[frscdi] == NULL) { card->scd2vc[frscdi] = vc; break; } } if (frscdi == NS_FRSCD_NUM) { PRINTK ("nicstar%d: no SCD available for CBR channel.\n", card->index); card->tst_free_entries += n; clear_bit(ATM_VF_PARTIAL, &vcc->flags); clear_bit(ATM_VF_ADDR, &vcc->flags); return -EBUSY; } vc->cbr_scd = NS_FRSCD + frscdi * NS_FRSCD_SIZE; scq = get_scq(card, CBR_SCQSIZE, vc->cbr_scd); if (scq == NULL) { PRINTK("nicstar%d: can't get fixed rate SCQ.\n", card->index); card->scd2vc[frscdi] = NULL; card->tst_free_entries += n; clear_bit(ATM_VF_PARTIAL, &vcc->flags); clear_bit(ATM_VF_ADDR, &vcc->flags); return -ENOMEM; } vc->scq = scq; u32d[0] = scq_virt_to_bus(scq, scq->base); u32d[1] = (u32) 0x00000000; u32d[2] = (u32) 0xffffffff; u32d[3] = (u32) 0x00000000; ns_write_sram(card, vc->cbr_scd, u32d, 4); fill_tst(card, n, vc); } else if (vcc->qos.txtp.traffic_class == ATM_UBR) { vc->cbr_scd = 0x00000000; vc->scq = card->scq0; } if (vcc->qos.txtp.traffic_class != ATM_NONE) { vc->tx = 1; vc->tx_vcc = vcc; vc->tbd_count = 0; } if (vcc->qos.rxtp.traffic_class != ATM_NONE) { u32 status; vc->rx = 1; vc->rx_vcc = vcc; vc->rx_iov = NULL; /* Open the connection in hardware */ if (vcc->qos.aal == ATM_AAL5) status = NS_RCTE_AAL5 | NS_RCTE_CONNECTOPEN; else /* vcc->qos.aal == ATM_AAL0 */ status = NS_RCTE_AAL0 | NS_RCTE_CONNECTOPEN; #ifdef RCQ_SUPPORT status |= NS_RCTE_RAWCELLINTEN; #endif /* RCQ_SUPPORT */ ns_write_sram(card, NS_RCT + (vpi << card->vcibits | vci) * NS_RCT_ENTRY_SIZE, &status, 1); } } set_bit(ATM_VF_READY, &vcc->flags); return 0; } static void ns_close(struct atm_vcc *vcc) { vc_map *vc; ns_dev *card; u32 data; int i; vc = vcc->dev_data; card = vcc->dev->dev_data; PRINTK("nicstar%d: closing vpi.vci %d.%d \n", card->index, (int)vcc->vpi, vcc->vci); clear_bit(ATM_VF_READY, &vcc->flags); if (vcc->qos.rxtp.traffic_class != ATM_NONE) { u32 addr; unsigned long flags; addr = NS_RCT + (vcc->vpi << card->vcibits | vcc->vci) * NS_RCT_ENTRY_SIZE; spin_lock_irqsave(&card->res_lock, flags); while (CMD_BUSY(card)) ; writel(NS_CMD_CLOSE_CONNECTION | addr << 2, card->membase + CMD); spin_unlock_irqrestore(&card->res_lock, flags); vc->rx = 0; if (vc->rx_iov != NULL) { struct sk_buff *iovb; u32 stat; stat = readl(card->membase + STAT); card->sbfqc = ns_stat_sfbqc_get(stat); card->lbfqc = ns_stat_lfbqc_get(stat); PRINTK ("nicstar%d: closing a VC with pending rx buffers.\n", card->index); iovb = vc->rx_iov; recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data, NS_PRV_IOVCNT(iovb)); NS_PRV_IOVCNT(iovb) = 0; spin_lock_irqsave(&card->int_lock, flags); recycle_iov_buf(card, iovb); spin_unlock_irqrestore(&card->int_lock, flags); vc->rx_iov = NULL; } } if (vcc->qos.txtp.traffic_class != ATM_NONE) { vc->tx = 0; } if (vcc->qos.txtp.traffic_class == ATM_CBR) { unsigned long flags; ns_scqe *scqep; scq_info *scq; scq = vc->scq; for (;;) { spin_lock_irqsave(&scq->lock, flags); scqep = scq->next; if (scqep == scq->base) scqep = scq->last; else scqep--; if (scqep == scq->tail) { spin_unlock_irqrestore(&scq->lock, flags); break; } /* If the last entry is not a TSR, place one in the SCQ in order to be able to completely drain it and then close. */ if (!ns_scqe_is_tsr(scqep) && scq->tail != scq->next) { ns_scqe tsr; u32 scdi, scqi; u32 data; int index; tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE); scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE; scqi = scq->next - scq->base; tsr.word_2 = ns_tsr_mkword_2(scdi, scqi); tsr.word_3 = 0x00000000; tsr.word_4 = 0x00000000; *scq->next = tsr; index = (int)scqi; scq->skb[index] = NULL; if (scq->next == scq->last) scq->next = scq->base; else scq->next++; data = scq_virt_to_bus(scq, scq->next); ns_write_sram(card, scq->scd, &data, 1); } spin_unlock_irqrestore(&scq->lock, flags); schedule(); } /* Free all TST entries */ data = NS_TST_OPCODE_VARIABLE; for (i = 0; i < NS_TST_NUM_ENTRIES; i++) { if (card->tste2vc[i] == vc) { ns_write_sram(card, card->tst_addr + i, &data, 1); card->tste2vc[i] = NULL; card->tst_free_entries++; } } card->scd2vc[(vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE] = NULL; free_scq(card, vc->scq, vcc); } /* remove all references to vcc before deleting it */ if (vcc->qos.txtp.traffic_class != ATM_NONE) { unsigned long flags; scq_info *scq = card->scq0; spin_lock_irqsave(&scq->lock, flags); for (i = 0; i < scq->num_entries; i++) { if (scq->skb[i] && ATM_SKB(scq->skb[i])->vcc == vcc) { ATM_SKB(scq->skb[i])->vcc = NULL; atm_return(vcc, scq->skb[i]->truesize); PRINTK ("nicstar: deleted pending vcc mapping\n"); } } spin_unlock_irqrestore(&scq->lock, flags); } vcc->dev_data = NULL; clear_bit(ATM_VF_PARTIAL, &vcc->flags); clear_bit(ATM_VF_ADDR, &vcc->flags); #ifdef RX_DEBUG { u32 stat, cfg; stat = readl(card->membase + STAT); cfg = readl(card->membase + CFG); printk("STAT = 0x%08X CFG = 0x%08X \n", stat, cfg); printk ("TSQ: base = 0x%p next = 0x%p last = 0x%p TSQT = 0x%08X \n", card->tsq.base, card->tsq.next, card->tsq.last, readl(card->membase + TSQT)); printk ("RSQ: base = 0x%p next = 0x%p last = 0x%p RSQT = 0x%08X \n", card->rsq.base, card->rsq.next, card->rsq.last, readl(card->membase + RSQT)); printk("Empty free buffer queue interrupt %s \n", card->efbie ? "enabled" : "disabled"); printk("SBCNT = %d count = %d LBCNT = %d count = %d \n", ns_stat_sfbqc_get(stat), card->sbpool.count, ns_stat_lfbqc_get(stat), card->lbpool.count); printk("hbpool.count = %d iovpool.count = %d \n", card->hbpool.count, card->iovpool.count); } #endif /* RX_DEBUG */ } static void fill_tst(ns_dev * card, int n, vc_map * vc) { u32 new_tst; unsigned long cl; int e, r; u32 data; /* It would be very complicated to keep the two TSTs synchronized while assuring that writes are only made to the inactive TST. So, for now I will use only one TST. If problems occur, I will change this again */ new_tst = card->tst_addr; /* Fill procedure */ for (e = 0; e < NS_TST_NUM_ENTRIES; e++) { if (card->tste2vc[e] == NULL) break; } if (e == NS_TST_NUM_ENTRIES) { printk("nicstar%d: No free TST entries found. \n", card->index); return; } r = n; cl = NS_TST_NUM_ENTRIES; data = ns_tste_make(NS_TST_OPCODE_FIXED, vc->cbr_scd); while (r > 0) { if (cl >= NS_TST_NUM_ENTRIES && card->tste2vc[e] == NULL) { card->tste2vc[e] = vc; ns_write_sram(card, new_tst + e, &data, 1); cl -= NS_TST_NUM_ENTRIES; r--; } if (++e == NS_TST_NUM_ENTRIES) { e = 0; } cl += n; } /* End of fill procedure */ data = ns_tste_make(NS_TST_OPCODE_END, new_tst); ns_write_sram(card, new_tst + NS_TST_NUM_ENTRIES, &data, 1); ns_write_sram(card, card->tst_addr + NS_TST_NUM_ENTRIES, &data, 1); card->tst_addr = new_tst; } static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb) { ns_dev *card; vc_map *vc; scq_info *scq; unsigned long buflen; ns_scqe scqe; u32 flags; /* TBD flags, not CPU flags */ card = vcc->dev->dev_data; TXPRINTK("nicstar%d: ns_send() called.\n", card->index); if ((vc = (vc_map *) vcc->dev_data) == NULL) { printk("nicstar%d: vcc->dev_data == NULL on ns_send().\n", card->index); atomic_inc(&vcc->stats->tx_err); dev_kfree_skb_any(skb); return -EINVAL; } if (!vc->tx) { printk("nicstar%d: Trying to transmit on a non-tx VC.\n", card->index); atomic_inc(&vcc->stats->tx_err); dev_kfree_skb_any(skb); return -EINVAL; } if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) { printk("nicstar%d: Only AAL0 and AAL5 are supported.\n", card->index); atomic_inc(&vcc->stats->tx_err); dev_kfree_skb_any(skb); return -EINVAL; } if (skb_shinfo(skb)->nr_frags != 0) { printk("nicstar%d: No scatter-gather yet.\n", card->index); atomic_inc(&vcc->stats->tx_err); dev_kfree_skb_any(skb); return -EINVAL; } ATM_SKB(skb)->vcc = vcc; NS_PRV_DMA(skb) = dma_map_single(&card->pcidev->dev, skb->data, skb->len, DMA_TO_DEVICE); if (vcc->qos.aal == ATM_AAL5) { buflen = (skb->len + 47 + 8) / 48 * 48; /* Multiple of 48 */ flags = NS_TBD_AAL5; scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb)); scqe.word_3 = cpu_to_le32(skb->len); scqe.word_4 = ns_tbd_mkword_4(0, (u32) vcc->vpi, (u32) vcc->vci, 0, ATM_SKB(skb)-> atm_options & ATM_ATMOPT_CLP ? 1 : 0); flags |= NS_TBD_EOPDU; } else { /* (vcc->qos.aal == ATM_AAL0) */ buflen = ATM_CELL_PAYLOAD; /* i.e., 48 bytes */ flags = NS_TBD_AAL0; scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb) + NS_AAL0_HEADER); scqe.word_3 = cpu_to_le32(0x00000000); if (*skb->data & 0x02) /* Payload type 1 - end of pdu */ flags |= NS_TBD_EOPDU; scqe.word_4 = cpu_to_le32(*((u32 *) skb->data) & ~NS_TBD_VC_MASK); /* Force the VPI/VCI to be the same as in VCC struct */ scqe.word_4 |= cpu_to_le32((((u32) vcc-> vpi) << NS_TBD_VPI_SHIFT | ((u32) vcc-> vci) << NS_TBD_VCI_SHIFT) & NS_TBD_VC_MASK); } if (vcc->qos.txtp.traffic_class == ATM_CBR) { scqe.word_1 = ns_tbd_mkword_1_novbr(flags, (u32) buflen); scq = ((vc_map *) vcc->dev_data)->scq; } else { scqe.word_1 = ns_tbd_mkword_1(flags, (u32) 1, (u32) 1, (u32) buflen); scq = card->scq0; } if (push_scqe(card, vc, scq, &scqe, skb) != 0) { atomic_inc(&vcc->stats->tx_err); dev_kfree_skb_any(skb); return -EIO; } atomic_inc(&vcc->stats->tx); return 0; } static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd, struct sk_buff *skb) { unsigned long flags; ns_scqe tsr; u32 scdi, scqi; int scq_is_vbr; u32 data; int index; spin_lock_irqsave(&scq->lock, flags); while (scq->tail == scq->next) { if (in_interrupt()) { spin_unlock_irqrestore(&scq->lock, flags); printk("nicstar%d: Error pushing TBD.\n", card->index); return 1; } scq->full = 1; wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq, scq->tail != scq->next, scq->lock, SCQFULL_TIMEOUT); if (scq->full) { spin_unlock_irqrestore(&scq->lock, flags); printk("nicstar%d: Timeout pushing TBD.\n", card->index); return 1; } } *scq->next = *tbd; index = (int)(scq->next - scq->base); scq->skb[index] = skb; XPRINTK("nicstar%d: sending skb at 0x%p (pos %d).\n", card->index, skb, index); XPRINTK("nicstar%d: TBD written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n", card->index, le32_to_cpu(tbd->word_1), le32_to_cpu(tbd->word_2), le32_to_cpu(tbd->word_3), le32_to_cpu(tbd->word_4), scq->next); if (scq->next == scq->last) scq->next = scq->base; else scq->next++; vc->tbd_count++; if (scq->num_entries == VBR_SCQ_NUM_ENTRIES) { scq->tbd_count++; scq_is_vbr = 1; } else scq_is_vbr = 0; if (vc->tbd_count >= MAX_TBD_PER_VC || scq->tbd_count >= MAX_TBD_PER_SCQ) { int has_run = 0; while (scq->tail == scq->next) { if (in_interrupt()) { data = scq_virt_to_bus(scq, scq->next); ns_write_sram(card, scq->scd, &data, 1); spin_unlock_irqrestore(&scq->lock, flags); printk("nicstar%d: Error pushing TSR.\n", card->index); return 0; } scq->full = 1; if (has_run++) break; wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq, scq->tail != scq->next, scq->lock, SCQFULL_TIMEOUT); } if (!scq->full) { tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE); if (scq_is_vbr) scdi = NS_TSR_SCDISVBR; else scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE; scqi = scq->next - scq->base; tsr.word_2 = ns_tsr_mkword_2(scdi, scqi); tsr.word_3 = 0x00000000; tsr.word_4 = 0x00000000; *scq->next = tsr; index = (int)scqi; scq->skb[index] = NULL; XPRINTK ("nicstar%d: TSR written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n", card->index, le32_to_cpu(tsr.word_1), le32_to_cpu(tsr.word_2), le32_to_cpu(tsr.word_3), le32_to_cpu(tsr.word_4), scq->next); if (scq->next == scq->last) scq->next = scq->base; else scq->next++; vc->tbd_count = 0; scq->tbd_count = 0; } else PRINTK("nicstar%d: Timeout pushing TSR.\n", card->index); } data = scq_virt_to_bus(scq, scq->next); ns_write_sram(card, scq->scd, &data, 1); spin_unlock_irqrestore(&scq->lock, flags); return 0; } static void process_tsq(ns_dev * card) { u32 scdi; scq_info *scq; ns_tsi *previous = NULL, *one_ahead, *two_ahead; int serviced_entries; /* flag indicating at least on entry was serviced */ serviced_entries = 0; if (card->tsq.next == card->tsq.last) one_ahead = card->tsq.base; else one_ahead = card->tsq.next + 1; if (one_ahead == card->tsq.last) two_ahead = card->tsq.base; else two_ahead = one_ahead + 1; while (!ns_tsi_isempty(card->tsq.next) || !ns_tsi_isempty(one_ahead) || !ns_tsi_isempty(two_ahead)) /* At most two empty, as stated in the 77201 errata */ { serviced_entries = 1; /* Skip the one or two possible empty entries */ while (ns_tsi_isempty(card->tsq.next)) { if (card->tsq.next == card->tsq.last) card->tsq.next = card->tsq.base; else card->tsq.next++; } if (!ns_tsi_tmrof(card->tsq.next)) { scdi = ns_tsi_getscdindex(card->tsq.next); if (scdi == NS_TSI_SCDISVBR) scq = card->scq0; else { if (card->scd2vc[scdi] == NULL) { printk ("nicstar%d: could not find VC from SCD index.\n", card->index); ns_tsi_init(card->tsq.next); return; } scq = card->scd2vc[scdi]->scq; } drain_scq(card, scq, ns_tsi_getscqpos(card->tsq.next)); scq->full = 0; wake_up_interruptible(&(scq->scqfull_waitq)); } ns_tsi_init(card->tsq.next); previous = card->tsq.next; if (card->tsq.next == card->tsq.last) card->tsq.next = card->tsq.base; else card->tsq.next++; if (card->tsq.next == card->tsq.last) one_ahead = card->tsq.base; else one_ahead = card->tsq.next + 1; if (one_ahead == card->tsq.last) two_ahead = card->tsq.base; else two_ahead = one_ahead + 1; } if (serviced_entries) writel(PTR_DIFF(previous, card->tsq.base), card->membase + TSQH); } static void drain_scq(ns_dev * card, scq_info * scq, int pos) { struct atm_vcc *vcc; struct sk_buff *skb; int i; unsigned long flags; XPRINTK("nicstar%d: drain_scq() called, scq at 0x%p, pos %d.\n", card->index, scq, pos); if (pos >= scq->num_entries) { printk("nicstar%d: Bad index on drain_scq().\n", card->index); return; } spin_lock_irqsave(&scq->lock, flags); i = (int)(scq->tail - scq->base); if (++i == scq->num_entries) i = 0; while (i != pos) { skb = scq->skb[i]; XPRINTK("nicstar%d: freeing skb at 0x%p (index %d).\n", card->index, skb, i); if (skb != NULL) { dma_unmap_single(&card->pcidev->dev, NS_PRV_DMA(skb), skb->len, DMA_TO_DEVICE); vcc = ATM_SKB(skb)->vcc; if (vcc && vcc->pop != NULL) { vcc->pop(vcc, skb); } else { dev_kfree_skb_irq(skb); } scq->skb[i] = NULL; } if (++i == scq->num_entries) i = 0; } scq->tail = scq->base + pos; spin_unlock_irqrestore(&scq->lock, flags); } static void process_rsq(ns_dev * card) { ns_rsqe *previous; if (!ns_rsqe_valid(card->rsq.next)) return; do { dequeue_rx(card, card->rsq.next); ns_rsqe_init(card->rsq.next); previous = card->rsq.next; if (card->rsq.next == card->rsq.last) card->rsq.next = card->rsq.base; else card->rsq.next++; } while (ns_rsqe_valid(card->rsq.next)); writel(PTR_DIFF(previous, card->rsq.base), card->membase + RSQH); } static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe) { u32 vpi, vci; vc_map *vc; struct sk_buff *iovb; struct iovec *iov; struct atm_vcc *vcc; struct sk_buff *skb; unsigned short aal5_len; int len; u32 stat; u32 id; stat = readl(card->membase + STAT); card->sbfqc = ns_stat_sfbqc_get(stat); card->lbfqc = ns_stat_lfbqc_get(stat); id = le32_to_cpu(rsqe->buffer_handle); skb = idr_remove(&card->idr, id); if (!skb) { RXPRINTK(KERN_ERR "nicstar%d: skb not found!\n", card->index); return; } dma_sync_single_for_cpu(&card->pcidev->dev, NS_PRV_DMA(skb), (NS_PRV_BUFTYPE(skb) == BUF_SM ? NS_SMSKBSIZE : NS_LGSKBSIZE), DMA_FROM_DEVICE); dma_unmap_single(&card->pcidev->dev, NS_PRV_DMA(skb), (NS_PRV_BUFTYPE(skb) == BUF_SM ? NS_SMSKBSIZE : NS_LGSKBSIZE), DMA_FROM_DEVICE); vpi = ns_rsqe_vpi(rsqe); vci = ns_rsqe_vci(rsqe); if (vpi >= 1UL << card->vpibits || vci >= 1UL << card->vcibits) { printk("nicstar%d: SDU received for out-of-range vc %d.%d.\n", card->index, vpi, vci); recycle_rx_buf(card, skb); return; } vc = &(card->vcmap[vpi << card->vcibits | vci]); if (!vc->rx) { RXPRINTK("nicstar%d: SDU received on non-rx vc %d.%d.\n", card->index, vpi, vci); recycle_rx_buf(card, skb); return; } vcc = vc->rx_vcc; if (vcc->qos.aal == ATM_AAL0) { struct sk_buff *sb; unsigned char *cell; int i; cell = skb->data; for (i = ns_rsqe_cellcount(rsqe); i; i--) { sb = dev_alloc_skb(NS_SMSKBSIZE); if (!sb) { printk ("nicstar%d: Can't allocate buffers for aal0.\n", card->index); atomic_add(i, &vcc->stats->rx_drop); break; } if (!atm_charge(vcc, sb->truesize)) { RXPRINTK ("nicstar%d: atm_charge() dropped aal0 packets.\n", card->index); atomic_add(i - 1, &vcc->stats->rx_drop); /* already increased by 1 */ dev_kfree_skb_any(sb); break; } /* Rebuild the header */ *((u32 *) sb->data) = le32_to_cpu(rsqe->word_1) << 4 | (ns_rsqe_clp(rsqe) ? 0x00000001 : 0x00000000); if (i == 1 && ns_rsqe_eopdu(rsqe)) *((u32 *) sb->data) |= 0x00000002; skb_put(sb, NS_AAL0_HEADER); memcpy(skb_tail_pointer(sb), cell, ATM_CELL_PAYLOAD); skb_put(sb, ATM_CELL_PAYLOAD); ATM_SKB(sb)->vcc = vcc; __net_timestamp(sb); vcc->push(vcc, sb); atomic_inc(&vcc->stats->rx); cell += ATM_CELL_PAYLOAD; } recycle_rx_buf(card, skb); return; } /* To reach this point, the AAL layer can only be AAL5 */ if ((iovb = vc->rx_iov) == NULL) { iovb = skb_dequeue(&(card->iovpool.queue)); if (iovb == NULL) { /* No buffers in the queue */ iovb = alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC); if (iovb == NULL) { printk("nicstar%d: Out of iovec buffers.\n", card->index); atomic_inc(&vcc->stats->rx_drop); recycle_rx_buf(card, skb); return; } NS_PRV_BUFTYPE(iovb) = BUF_NONE; } else if (--card->iovpool.count < card->iovnr.min) { struct sk_buff *new_iovb; if ((new_iovb = alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC)) != NULL) { NS_PRV_BUFTYPE(iovb) = BUF_NONE; skb_queue_tail(&card->iovpool.queue, new_iovb); card->iovpool.count++; } } vc->rx_iov = iovb; NS_PRV_IOVCNT(iovb) = 0; iovb->len = 0; iovb->data = iovb->head; skb_reset_tail_pointer(iovb); /* IMPORTANT: a pointer to the sk_buff containing the small or large buffer is stored as iovec base, NOT a pointer to the small or large buffer itself. */ } else if (NS_PRV_IOVCNT(iovb) >= NS_MAX_IOVECS) { printk("nicstar%d: received too big AAL5 SDU.\n", card->index); atomic_inc(&vcc->stats->rx_err); recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data, NS_MAX_IOVECS); NS_PRV_IOVCNT(iovb) = 0; iovb->len = 0; iovb->data = iovb->head; skb_reset_tail_pointer(iovb); } iov = &((struct iovec *)iovb->data)[NS_PRV_IOVCNT(iovb)++]; iov->iov_base = (void *)skb; iov->iov_len = ns_rsqe_cellcount(rsqe) * 48; iovb->len += iov->iov_len; #ifdef EXTRA_DEBUG if (NS_PRV_IOVCNT(iovb) == 1) { if (NS_PRV_BUFTYPE(skb) != BUF_SM) { printk ("nicstar%d: Expected a small buffer, and this is not one.\n", card->index); which_list(card, skb); atomic_inc(&vcc->stats->rx_err); recycle_rx_buf(card, skb); vc->rx_iov = NULL; recycle_iov_buf(card, iovb); return; } } else { /* NS_PRV_IOVCNT(iovb) >= 2 */ if (NS_PRV_BUFTYPE(skb) != BUF_LG) { printk ("nicstar%d: Expected a large buffer, and this is not one.\n", card->index); which_list(card, skb); atomic_inc(&vcc->stats->rx_err); recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data, NS_PRV_IOVCNT(iovb)); vc->rx_iov = NULL; recycle_iov_buf(card, iovb); return; } } #endif /* EXTRA_DEBUG */ if (ns_rsqe_eopdu(rsqe)) { /* This works correctly regardless of the endianness of the host */ unsigned char *L1L2 = (unsigned char *) (skb->data + iov->iov_len - 6); aal5_len = L1L2[0] << 8 | L1L2[1]; len = (aal5_len == 0x0000) ? 0x10000 : aal5_len; if (ns_rsqe_crcerr(rsqe) || len + 8 > iovb->len || len + (47 + 8) < iovb->len) { printk("nicstar%d: AAL5 CRC error", card->index); if (len + 8 > iovb->len || len + (47 + 8) < iovb->len) printk(" - PDU size mismatch.\n"); else printk(".\n"); atomic_inc(&vcc->stats->rx_err); recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data, NS_PRV_IOVCNT(iovb)); vc->rx_iov = NULL; recycle_iov_buf(card, iovb); return; } /* By this point we (hopefully) have a complete SDU without errors. */ if (NS_PRV_IOVCNT(iovb) == 1) { /* Just a small buffer */ /* skb points to a small buffer */ if (!atm_charge(vcc, skb->truesize)) { push_rxbufs(card, skb); atomic_inc(&vcc->stats->rx_drop); } else { skb_put(skb, len); dequeue_sm_buf(card, skb); ATM_SKB(skb)->vcc = vcc; __net_timestamp(skb); vcc->push(vcc, skb); atomic_inc(&vcc->stats->rx); } } else if (NS_PRV_IOVCNT(iovb) == 2) { /* One small plus one large buffer */ struct sk_buff *sb; sb = (struct sk_buff *)(iov - 1)->iov_base; /* skb points to a large buffer */ if (len <= NS_SMBUFSIZE) { if (!atm_charge(vcc, sb->truesize)) { push_rxbufs(card, sb); atomic_inc(&vcc->stats->rx_drop); } else { skb_put(sb, len); dequeue_sm_buf(card, sb); ATM_SKB(sb)->vcc = vcc; __net_timestamp(sb); vcc->push(vcc, sb); atomic_inc(&vcc->stats->rx); } push_rxbufs(card, skb); } else { /* len > NS_SMBUFSIZE, the usual case */ if (!atm_charge(vcc, skb->truesize)) { push_rxbufs(card, skb); atomic_inc(&vcc->stats->rx_drop); } else { dequeue_lg_buf(card, skb); skb_push(skb, NS_SMBUFSIZE); skb_copy_from_linear_data(sb, skb->data, NS_SMBUFSIZE); skb_put(skb, len - NS_SMBUFSIZE); ATM_SKB(skb)->vcc = vcc; __net_timestamp(skb); vcc->push(vcc, skb); atomic_inc(&vcc->stats->rx); } push_rxbufs(card, sb); } } else { /* Must push a huge buffer */ struct sk_buff *hb, *sb, *lb; int remaining, tocopy; int j; hb = skb_dequeue(&(card->hbpool.queue)); if (hb == NULL) { /* No buffers in the queue */ hb = dev_alloc_skb(NS_HBUFSIZE); if (hb == NULL) { printk ("nicstar%d: Out of huge buffers.\n", card->index); atomic_inc(&vcc->stats->rx_drop); recycle_iovec_rx_bufs(card, (struct iovec *) iovb->data, NS_PRV_IOVCNT(iovb)); vc->rx_iov = NULL; recycle_iov_buf(card, iovb); return; } else if (card->hbpool.count < card->hbnr.min) { struct sk_buff *new_hb; if ((new_hb = dev_alloc_skb(NS_HBUFSIZE)) != NULL) { skb_queue_tail(&card->hbpool. queue, new_hb); card->hbpool.count++; } } NS_PRV_BUFTYPE(hb) = BUF_NONE; } else if (--card->hbpool.count < card->hbnr.min) { struct sk_buff *new_hb; if ((new_hb = dev_alloc_skb(NS_HBUFSIZE)) != NULL) { NS_PRV_BUFTYPE(new_hb) = BUF_NONE; skb_queue_tail(&card->hbpool.queue, new_hb); card->hbpool.count++; } if (card->hbpool.count < card->hbnr.min) { if ((new_hb = dev_alloc_skb(NS_HBUFSIZE)) != NULL) { NS_PRV_BUFTYPE(new_hb) = BUF_NONE; skb_queue_tail(&card->hbpool. queue, new_hb); card->hbpool.count++; } } } iov = (struct iovec *)iovb->data; if (!atm_charge(vcc, hb->truesize)) { recycle_iovec_rx_bufs(card, iov, NS_PRV_IOVCNT(iovb)); if (card->hbpool.count < card->hbnr.max) { skb_queue_tail(&card->hbpool.queue, hb); card->hbpool.count++; } else dev_kfree_skb_any(hb); atomic_inc(&vcc->stats->rx_drop); } else { /* Copy the small buffer to the huge buffer */ sb = (struct sk_buff *)iov->iov_base; skb_copy_from_linear_data(sb, hb->data, iov->iov_len); skb_put(hb, iov->iov_len); remaining = len - iov->iov_len; iov++; /* Free the small buffer */ push_rxbufs(card, sb); /* Copy all large buffers to the huge buffer and free them */ for (j = 1; j < NS_PRV_IOVCNT(iovb); j++) { lb = (struct sk_buff *)iov->iov_base; tocopy = min_t(int, remaining, iov->iov_len); skb_copy_from_linear_data(lb, skb_tail_pointer (hb), tocopy); skb_put(hb, tocopy); iov++; remaining -= tocopy; push_rxbufs(card, lb); } #ifdef EXTRA_DEBUG if (remaining != 0 || hb->len != len) printk ("nicstar%d: Huge buffer len mismatch.\n", card->index); #endif /* EXTRA_DEBUG */ ATM_SKB(hb)->vcc = vcc; __net_timestamp(hb); vcc->push(vcc, hb); atomic_inc(&vcc->stats->rx); } } vc->rx_iov = NULL; recycle_iov_buf(card, iovb); } } static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb) { if (unlikely(NS_PRV_BUFTYPE(skb) == BUF_NONE)) { printk("nicstar%d: What kind of rx buffer is this?\n", card->index); dev_kfree_skb_any(skb); } else push_rxbufs(card, skb); } static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count) { while (count-- > 0) recycle_rx_buf(card, (struct sk_buff *)(iov++)->iov_base); } static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb) { if (card->iovpool.count < card->iovnr.max) { skb_queue_tail(&card->iovpool.queue, iovb); card->iovpool.count++; } else dev_kfree_skb_any(iovb); } static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb) { skb_unlink(sb, &card->sbpool.queue); if (card->sbfqc < card->sbnr.init) { struct sk_buff *new_sb; if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) { NS_PRV_BUFTYPE(new_sb) = BUF_SM; skb_queue_tail(&card->sbpool.queue, new_sb); skb_reserve(new_sb, NS_AAL0_HEADER); push_rxbufs(card, new_sb); } } if (card->sbfqc < card->sbnr.init) { struct sk_buff *new_sb; if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) { NS_PRV_BUFTYPE(new_sb) = BUF_SM; skb_queue_tail(&card->sbpool.queue, new_sb); skb_reserve(new_sb, NS_AAL0_HEADER); push_rxbufs(card, new_sb); } } } static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb) { skb_unlink(lb, &card->lbpool.queue); if (card->lbfqc < card->lbnr.init) { struct sk_buff *new_lb; if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) { NS_PRV_BUFTYPE(new_lb) = BUF_LG; skb_queue_tail(&card->lbpool.queue, new_lb); skb_reserve(new_lb, NS_SMBUFSIZE); push_rxbufs(card, new_lb); } } if (card->lbfqc < card->lbnr.init) { struct sk_buff *new_lb; if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) { NS_PRV_BUFTYPE(new_lb) = BUF_LG; skb_queue_tail(&card->lbpool.queue, new_lb); skb_reserve(new_lb, NS_SMBUFSIZE); push_rxbufs(card, new_lb); } } } static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page) { u32 stat; ns_dev *card; int left; left = (int)*pos; card = (ns_dev *) dev->dev_data; stat = readl(card->membase + STAT); if (!left--) return sprintf(page, "Pool count min init max \n"); if (!left--) return sprintf(page, "Small %5d %5d %5d %5d \n", ns_stat_sfbqc_get(stat), card->sbnr.min, card->sbnr.init, card->sbnr.max); if (!left--) return sprintf(page, "Large %5d %5d %5d %5d \n", ns_stat_lfbqc_get(stat), card->lbnr.min, card->lbnr.init, card->lbnr.max); if (!left--) return sprintf(page, "Huge %5d %5d %5d %5d \n", card->hbpool.count, card->hbnr.min, card->hbnr.init, card->hbnr.max); if (!left--) return sprintf(page, "Iovec %5d %5d %5d %5d \n", card->iovpool.count, card->iovnr.min, card->iovnr.init, card->iovnr.max); if (!left--) { int retval; retval = sprintf(page, "Interrupt counter: %u \n", card->intcnt); card->intcnt = 0; return retval; } #if 0 /* Dump 25.6 Mbps PHY registers */ /* Now there's a 25.6 Mbps PHY driver this code isn't needed. I left it here just in case it's needed for debugging. */ if (card->max_pcr == ATM_25_PCR && !left--) { u32 phy_regs[4]; u32 i; for (i = 0; i < 4; i++) { while (CMD_BUSY(card)) ; writel(NS_CMD_READ_UTILITY | 0x00000200 | i, card->membase + CMD); while (CMD_BUSY(card)) ; phy_regs[i] = readl(card->membase + DR0) & 0x000000FF; } return sprintf(page, "PHY regs: 0x%02X 0x%02X 0x%02X 0x%02X \n", phy_regs[0], phy_regs[1], phy_regs[2], phy_regs[3]); } #endif /* 0 - Dump 25.6 Mbps PHY registers */ #if 0 /* Dump TST */ if (left-- < NS_TST_NUM_ENTRIES) { if (card->tste2vc[left + 1] == NULL) return sprintf(page, "%5d - VBR/UBR \n", left + 1); else return sprintf(page, "%5d - %d %d \n", left + 1, card->tste2vc[left + 1]->tx_vcc->vpi, card->tste2vc[left + 1]->tx_vcc->vci); } #endif /* 0 */ return 0; } static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg) { ns_dev *card; pool_levels pl; long btype; unsigned long flags; card = dev->dev_data; switch (cmd) { case NS_GETPSTAT: if (get_user (pl.buftype, &((pool_levels __user *) arg)->buftype)) return -EFAULT; switch (pl.buftype) { case NS_BUFTYPE_SMALL: pl.count = ns_stat_sfbqc_get(readl(card->membase + STAT)); pl.level.min = card->sbnr.min; pl.level.init = card->sbnr.init; pl.level.max = card->sbnr.max; break; case NS_BUFTYPE_LARGE: pl.count = ns_stat_lfbqc_get(readl(card->membase + STAT)); pl.level.min = card->lbnr.min; pl.level.init = card->lbnr.init; pl.level.max = card->lbnr.max; break; case NS_BUFTYPE_HUGE: pl.count = card->hbpool.count; pl.level.min = card->hbnr.min; pl.level.init = card->hbnr.init; pl.level.max = card->hbnr.max; break; case NS_BUFTYPE_IOVEC: pl.count = card->iovpool.count; pl.level.min = card->iovnr.min; pl.level.init = card->iovnr.init; pl.level.max = card->iovnr.max; break; default: return -ENOIOCTLCMD; } if (!copy_to_user((pool_levels __user *) arg, &pl, sizeof(pl))) return (sizeof(pl)); else return -EFAULT; case NS_SETBUFLEV: if (!capable(CAP_NET_ADMIN)) return -EPERM; if (copy_from_user(&pl, (pool_levels __user *) arg, sizeof(pl))) return -EFAULT; if (pl.level.min >= pl.level.init || pl.level.init >= pl.level.max) return -EINVAL; if (pl.level.min == 0) return -EINVAL; switch (pl.buftype) { case NS_BUFTYPE_SMALL: if (pl.level.max > TOP_SB) return -EINVAL; card->sbnr.min = pl.level.min; card->sbnr.init = pl.level.init; card->sbnr.max = pl.level.max; break; case NS_BUFTYPE_LARGE: if (pl.level.max > TOP_LB) return -EINVAL; card->lbnr.min = pl.level.min; card->lbnr.init = pl.level.init; card->lbnr.max = pl.level.max; break; case NS_BUFTYPE_HUGE: if (pl.level.max > TOP_HB) return -EINVAL; card->hbnr.min = pl.level.min; card->hbnr.init = pl.level.init; card->hbnr.max = pl.level.max; break; case NS_BUFTYPE_IOVEC: if (pl.level.max > TOP_IOVB) return -EINVAL; card->iovnr.min = pl.level.min; card->iovnr.init = pl.level.init; card->iovnr.max = pl.level.max; break; default: return -EINVAL; } return 0; case NS_ADJBUFLEV: if (!capable(CAP_NET_ADMIN)) return -EPERM; btype = (long)arg; /* a long is the same size as a pointer or bigger */ switch (btype) { case NS_BUFTYPE_SMALL: while (card->sbfqc < card->sbnr.init) { struct sk_buff *sb; sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL); if (sb == NULL) return -ENOMEM; NS_PRV_BUFTYPE(sb) = BUF_SM; skb_queue_tail(&card->sbpool.queue, sb); skb_reserve(sb, NS_AAL0_HEADER); push_rxbufs(card, sb); } break; case NS_BUFTYPE_LARGE: while (card->lbfqc < card->lbnr.init) { struct sk_buff *lb; lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL); if (lb == NULL) return -ENOMEM; NS_PRV_BUFTYPE(lb) = BUF_LG; skb_queue_tail(&card->lbpool.queue, lb); skb_reserve(lb, NS_SMBUFSIZE); push_rxbufs(card, lb); } break; case NS_BUFTYPE_HUGE: while (card->hbpool.count > card->hbnr.init) { struct sk_buff *hb; spin_lock_irqsave(&card->int_lock, flags); hb = skb_dequeue(&card->hbpool.queue); card->hbpool.count--; spin_unlock_irqrestore(&card->int_lock, flags); if (hb == NULL) printk ("nicstar%d: huge buffer count inconsistent.\n", card->index); else dev_kfree_skb_any(hb); } while (card->hbpool.count < card->hbnr.init) { struct sk_buff *hb; hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL); if (hb == NULL) return -ENOMEM; NS_PRV_BUFTYPE(hb) = BUF_NONE; spin_lock_irqsave(&card->int_lock, flags); skb_queue_tail(&card->hbpool.queue, hb); card->hbpool.count++; spin_unlock_irqrestore(&card->int_lock, flags); } break; case NS_BUFTYPE_IOVEC: while (card->iovpool.count > card->iovnr.init) { struct sk_buff *iovb; spin_lock_irqsave(&card->int_lock, flags); iovb = skb_dequeue(&card->iovpool.queue); card->iovpool.count--; spin_unlock_irqrestore(&card->int_lock, flags); if (iovb == NULL) printk ("nicstar%d: iovec buffer count inconsistent.\n", card->index); else dev_kfree_skb_any(iovb); } while (card->iovpool.count < card->iovnr.init) { struct sk_buff *iovb; iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL); if (iovb == NULL) return -ENOMEM; NS_PRV_BUFTYPE(iovb) = BUF_NONE; spin_lock_irqsave(&card->int_lock, flags); skb_queue_tail(&card->iovpool.queue, iovb); card->iovpool.count++; spin_unlock_irqrestore(&card->int_lock, flags); } break; default: return -EINVAL; } return 0; default: if (dev->phy && dev->phy->ioctl) { return dev->phy->ioctl(dev, cmd, arg); } else { printk("nicstar%d: %s == NULL \n", card->index, dev->phy ? "dev->phy->ioctl" : "dev->phy"); return -ENOIOCTLCMD; } } } #ifdef EXTRA_DEBUG static void which_list(ns_dev * card, struct sk_buff *skb) { printk("skb buf_type: 0x%08x\n", NS_PRV_BUFTYPE(skb)); } #endif /* EXTRA_DEBUG */ static void ns_poll(struct timer_list *unused) { int i; ns_dev *card; unsigned long flags; u32 stat_r, stat_w; PRINTK("nicstar: Entering ns_poll().\n"); for (i = 0; i < num_cards; i++) { card = cards[i]; if (!spin_trylock_irqsave(&card->int_lock, flags)) { /* Probably it isn't worth spinning */ continue; } stat_w = 0; stat_r = readl(card->membase + STAT); if (stat_r & NS_STAT_TSIF) stat_w |= NS_STAT_TSIF; if (stat_r & NS_STAT_EOPDU) stat_w |= NS_STAT_EOPDU; process_tsq(card); process_rsq(card); writel(stat_w, card->membase + STAT); spin_unlock_irqrestore(&card->int_lock, flags); } mod_timer(&ns_timer, jiffies + NS_POLL_PERIOD); PRINTK("nicstar: Leaving ns_poll().\n"); } static void ns_phy_put(struct atm_dev *dev, unsigned char value, unsigned long addr) { ns_dev *card; unsigned long flags; card = dev->dev_data; spin_lock_irqsave(&card->res_lock, flags); while (CMD_BUSY(card)) ; writel((u32) value, card->membase + DR0); writel(NS_CMD_WRITE_UTILITY | 0x00000200 | (addr & 0x000000FF), card->membase + CMD); spin_unlock_irqrestore(&card->res_lock, flags); } static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr) { ns_dev *card; unsigned long flags; u32 data; card = dev->dev_data; spin_lock_irqsave(&card->res_lock, flags); while (CMD_BUSY(card)) ; writel(NS_CMD_READ_UTILITY | 0x00000200 | (addr & 0x000000FF), card->membase + CMD); while (CMD_BUSY(card)) ; data = readl(card->membase + DR0) & 0x000000FF; spin_unlock_irqrestore(&card->res_lock, flags); return (unsigned char)data; } module_init(nicstar_init); module_exit(nicstar_cleanup);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1