Contributors: 25
Author Tokens Token Proportion Commits Commit Proportion
David Woodhouse 6360 77.44% 31 46.27%
Nathan Williams 1121 13.65% 5 7.46%
Simon Farnsworth 447 5.44% 2 2.99%
Philip A. Prindeville 67 0.82% 3 4.48%
Corentin Labbe 56 0.68% 1 1.49%
Chas Williams 34 0.41% 1 1.49%
Julia Lawall 24 0.29% 6 8.96%
Andrew Morton 23 0.28% 1 1.49%
Dan J Williams 16 0.19% 1 1.49%
Ben Hutchings 15 0.18% 1 1.49%
Karl Hiramoto 12 0.15% 1 1.49%
Jiri Slaby 10 0.12% 1 1.49%
Jesper Juhl 4 0.05% 1 1.49%
Yang Hongyang 4 0.05% 1 1.49%
David S. Miller 3 0.04% 1 1.49%
Geliang Tang 3 0.04% 1 1.49%
Tejun Heo 3 0.04% 1 1.49%
Thomas Gleixner 2 0.02% 1 1.49%
Kees Cook 2 0.02% 1 1.49%
Amitoj Kaur Chawla 2 0.02% 1 1.49%
Dan Carpenter 1 0.01% 1 1.49%
Johannes Berg 1 0.01% 1 1.49%
Arvind Yadav 1 0.01% 1 1.49%
DaeSeok Youn 1 0.01% 1 1.49%
Bhumika Goyal 1 0.01% 1 1.49%
Total 8213 67


// SPDX-License-Identifier: GPL-2.0-only
/*
 * Driver for the Solos PCI ADSL2+ card, designed to support Linux by
 *  Traverse Technologies -- http://www.traverse.com.au/
 *  Xrio Limited          -- http://www.xrio.com/
 *
 * Copyright © 2008 Traverse Technologies
 * Copyright © 2008 Intel Corporation
 *
 * Authors: Nathan Williams <nathan@traverse.com.au>
 *          David Woodhouse <dwmw2@infradead.org>
 *          Treker Chen <treker@xrio.com>
 */

#define DEBUG
#define VERBOSE_DEBUG

#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/atm.h>
#include <linux/atmdev.h>
#include <linux/skbuff.h>
#include <linux/sysfs.h>
#include <linux/device.h>
#include <linux/kobject.h>
#include <linux/firmware.h>
#include <linux/ctype.h>
#include <linux/swab.h>
#include <linux/slab.h>

#define VERSION "1.04"
#define DRIVER_VERSION 0x01
#define PTAG "solos-pci"

#define CONFIG_RAM_SIZE	128
#define FLAGS_ADDR	0x7C
#define IRQ_EN_ADDR	0x78
#define FPGA_VER	0x74
#define IRQ_CLEAR	0x70
#define WRITE_FLASH	0x6C
#define PORTS		0x68
#define FLASH_BLOCK	0x64
#define FLASH_BUSY	0x60
#define FPGA_MODE	0x5C
#define FLASH_MODE	0x58
#define GPIO_STATUS	0x54
#define DRIVER_VER	0x50
#define TX_DMA_ADDR(port)	(0x40 + (4 * (port)))
#define RX_DMA_ADDR(port)	(0x30 + (4 * (port)))

#define DATA_RAM_SIZE	32768
#define BUF_SIZE	2048
#define OLD_BUF_SIZE	4096 /* For FPGA versions <= 2*/
/* Old boards use ATMEL AD45DB161D flash */
#define ATMEL_FPGA_PAGE	528 /* FPGA flash page size*/
#define ATMEL_SOLOS_PAGE	512 /* Solos flash page size*/
#define ATMEL_FPGA_BLOCK	(ATMEL_FPGA_PAGE * 8) /* FPGA block size*/
#define ATMEL_SOLOS_BLOCK	(ATMEL_SOLOS_PAGE * 8) /* Solos block size*/
/* Current boards use M25P/M25PE SPI flash */
#define SPI_FLASH_BLOCK	(256 * 64)

#define RX_BUF(card, nr) ((card->buffers) + (nr)*(card->buffer_size)*2)
#define TX_BUF(card, nr) ((card->buffers) + (nr)*(card->buffer_size)*2 + (card->buffer_size))
#define FLASH_BUF ((card->buffers) + 4*(card->buffer_size)*2)

#define RX_DMA_SIZE	2048

#define FPGA_VERSION(a,b) (((a) << 8) + (b))
#define LEGACY_BUFFERS	2
#define DMA_SUPPORTED	4

static int reset = 0;
static int atmdebug = 0;
static int firmware_upgrade = 0;
static int fpga_upgrade = 0;
static int db_firmware_upgrade = 0;
static int db_fpga_upgrade = 0;

struct pkt_hdr {
	__le16 size;
	__le16 vpi;
	__le16 vci;
	__le16 type;
};

struct solos_skb_cb {
	struct atm_vcc *vcc;
	uint32_t dma_addr;
};


#define SKB_CB(skb)		((struct solos_skb_cb *)skb->cb)

#define PKT_DATA	0
#define PKT_COMMAND	1
#define PKT_POPEN	3
#define PKT_PCLOSE	4
#define PKT_STATUS	5

struct solos_card {
	void __iomem *config_regs;
	void __iomem *buffers;
	int nr_ports;
	int tx_mask;
	struct pci_dev *dev;
	struct atm_dev *atmdev[4];
	struct tasklet_struct tlet;
	spinlock_t tx_lock;
	spinlock_t tx_queue_lock;
	spinlock_t cli_queue_lock;
	spinlock_t param_queue_lock;
	struct list_head param_queue;
	struct sk_buff_head tx_queue[4];
	struct sk_buff_head cli_queue[4];
	struct sk_buff *tx_skb[4];
	struct sk_buff *rx_skb[4];
	unsigned char *dma_bounce;
	wait_queue_head_t param_wq;
	wait_queue_head_t fw_wq;
	int using_dma;
	int dma_alignment;
	int fpga_version;
	int buffer_size;
	int atmel_flash;
};


struct solos_param {
	struct list_head list;
	pid_t pid;
	int port;
	struct sk_buff *response;
};

#define SOLOS_CHAN(atmdev) ((int)(unsigned long)(atmdev)->phy_data)

MODULE_AUTHOR("Traverse Technologies <support@traverse.com.au>");
MODULE_DESCRIPTION("Solos PCI driver");
MODULE_VERSION(VERSION);
MODULE_LICENSE("GPL");
MODULE_FIRMWARE("solos-FPGA.bin");
MODULE_FIRMWARE("solos-Firmware.bin");
MODULE_FIRMWARE("solos-db-FPGA.bin");
MODULE_PARM_DESC(reset, "Reset Solos chips on startup");
MODULE_PARM_DESC(atmdebug, "Print ATM data");
MODULE_PARM_DESC(firmware_upgrade, "Initiate Solos firmware upgrade");
MODULE_PARM_DESC(fpga_upgrade, "Initiate FPGA upgrade");
MODULE_PARM_DESC(db_firmware_upgrade, "Initiate daughter board Solos firmware upgrade");
MODULE_PARM_DESC(db_fpga_upgrade, "Initiate daughter board FPGA upgrade");
module_param(reset, int, 0444);
module_param(atmdebug, int, 0644);
module_param(firmware_upgrade, int, 0444);
module_param(fpga_upgrade, int, 0444);
module_param(db_firmware_upgrade, int, 0444);
module_param(db_fpga_upgrade, int, 0444);

static void fpga_queue(struct solos_card *card, int port, struct sk_buff *skb,
		       struct atm_vcc *vcc);
static uint32_t fpga_tx(struct solos_card *);
static irqreturn_t solos_irq(int irq, void *dev_id);
static struct atm_vcc* find_vcc(struct atm_dev *dev, short vpi, int vci);
static int atm_init(struct solos_card *, struct device *);
static void atm_remove(struct solos_card *);
static int send_command(struct solos_card *card, int dev, const char *buf, size_t size);
static void solos_bh(unsigned long);
static int print_buffer(struct sk_buff *buf);

static inline void solos_pop(struct atm_vcc *vcc, struct sk_buff *skb)
{
        if (vcc->pop)
                vcc->pop(vcc, skb);
        else
                dev_kfree_skb_any(skb);
}

static ssize_t solos_param_show(struct device *dev, struct device_attribute *attr,
				char *buf)
{
	struct atm_dev *atmdev = container_of(dev, struct atm_dev, class_dev);
	struct solos_card *card = atmdev->dev_data;
	struct solos_param prm;
	struct sk_buff *skb;
	struct pkt_hdr *header;
	int buflen;

	buflen = strlen(attr->attr.name) + 10;

	skb = alloc_skb(sizeof(*header) + buflen, GFP_KERNEL);
	if (!skb) {
		dev_warn(&card->dev->dev, "Failed to allocate sk_buff in solos_param_show()\n");
		return -ENOMEM;
	}

	header = skb_put(skb, sizeof(*header));

	buflen = snprintf((void *)&header[1], buflen - 1,
			  "L%05d\n%s\n", current->pid, attr->attr.name);
	skb_put(skb, buflen);

	header->size = cpu_to_le16(buflen);
	header->vpi = cpu_to_le16(0);
	header->vci = cpu_to_le16(0);
	header->type = cpu_to_le16(PKT_COMMAND);

	prm.pid = current->pid;
	prm.response = NULL;
	prm.port = SOLOS_CHAN(atmdev);

	spin_lock_irq(&card->param_queue_lock);
	list_add(&prm.list, &card->param_queue);
	spin_unlock_irq(&card->param_queue_lock);

	fpga_queue(card, prm.port, skb, NULL);

	wait_event_timeout(card->param_wq, prm.response, 5 * HZ);

	spin_lock_irq(&card->param_queue_lock);
	list_del(&prm.list);
	spin_unlock_irq(&card->param_queue_lock);

	if (!prm.response)
		return -EIO;

	buflen = prm.response->len;
	memcpy(buf, prm.response->data, buflen);
	kfree_skb(prm.response);

	return buflen;
}

static ssize_t solos_param_store(struct device *dev, struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct atm_dev *atmdev = container_of(dev, struct atm_dev, class_dev);
	struct solos_card *card = atmdev->dev_data;
	struct solos_param prm;
	struct sk_buff *skb;
	struct pkt_hdr *header;
	int buflen;
	ssize_t ret;

	buflen = strlen(attr->attr.name) + 11 + count;

	skb = alloc_skb(sizeof(*header) + buflen, GFP_KERNEL);
	if (!skb) {
		dev_warn(&card->dev->dev, "Failed to allocate sk_buff in solos_param_store()\n");
		return -ENOMEM;
	}

	header = skb_put(skb, sizeof(*header));

	buflen = snprintf((void *)&header[1], buflen - 1,
			  "L%05d\n%s\n%s\n", current->pid, attr->attr.name, buf);

	skb_put(skb, buflen);
	header->size = cpu_to_le16(buflen);
	header->vpi = cpu_to_le16(0);
	header->vci = cpu_to_le16(0);
	header->type = cpu_to_le16(PKT_COMMAND);

	prm.pid = current->pid;
	prm.response = NULL;
	prm.port = SOLOS_CHAN(atmdev);

	spin_lock_irq(&card->param_queue_lock);
	list_add(&prm.list, &card->param_queue);
	spin_unlock_irq(&card->param_queue_lock);

	fpga_queue(card, prm.port, skb, NULL);

	wait_event_timeout(card->param_wq, prm.response, 5 * HZ);

	spin_lock_irq(&card->param_queue_lock);
	list_del(&prm.list);
	spin_unlock_irq(&card->param_queue_lock);

	skb = prm.response;

	if (!skb)
		return -EIO;

	buflen = skb->len;

	/* Sometimes it has a newline, sometimes it doesn't. */
	if (skb->data[buflen - 1] == '\n')
		buflen--;

	if (buflen == 2 && !strncmp(skb->data, "OK", 2))
		ret = count;
	else if (buflen == 5 && !strncmp(skb->data, "ERROR", 5))
		ret = -EIO;
	else {
		/* We know we have enough space allocated for this; we allocated 
		   it ourselves */
		skb->data[buflen] = 0;
	
		dev_warn(&card->dev->dev, "Unexpected parameter response: '%s'\n",
			 skb->data);
		ret = -EIO;
	}
	kfree_skb(skb);

	return ret;
}

static char *next_string(struct sk_buff *skb)
{
	int i = 0;
	char *this = skb->data;
	
	for (i = 0; i < skb->len; i++) {
		if (this[i] == '\n') {
			this[i] = 0;
			skb_pull(skb, i + 1);
			return this;
		}
		if (!isprint(this[i]))
			return NULL;
	}
	return NULL;
}

/*
 * Status packet has fields separated by \n, starting with a version number
 * for the information therein. Fields are....
 *
 *     packet version
 *     RxBitRate	(version >= 1)
 *     TxBitRate	(version >= 1)
 *     State		(version >= 1)
 *     LocalSNRMargin	(version >= 1)
 *     LocalLineAttn	(version >= 1)
 */       
static int process_status(struct solos_card *card, int port, struct sk_buff *skb)
{
	char *str, *state_str, *snr, *attn;
	int ver, rate_up, rate_down, err;

	if (!card->atmdev[port])
		return -ENODEV;

	str = next_string(skb);
	if (!str)
		return -EIO;

	err = kstrtoint(str, 10, &ver);
	if (err) {
		dev_warn(&card->dev->dev, "Unexpected status interrupt version\n");
		return err;
	}
	if (ver < 1) {
		dev_warn(&card->dev->dev, "Unexpected status interrupt version %d\n",
			 ver);
		return -EIO;
	}

	str = next_string(skb);
	if (!str)
		return -EIO;
	if (!strcmp(str, "ERROR")) {
		dev_dbg(&card->dev->dev, "Status packet indicated Solos error on port %d (starting up?)\n",
			 port);
		return 0;
	}

	err = kstrtoint(str, 10, &rate_down);
	if (err)
		return err;

	str = next_string(skb);
	if (!str)
		return -EIO;
	err = kstrtoint(str, 10, &rate_up);
	if (err)
		return err;

	state_str = next_string(skb);
	if (!state_str)
		return -EIO;

	/* Anything but 'Showtime' is down */
	if (strcmp(state_str, "Showtime")) {
		atm_dev_signal_change(card->atmdev[port], ATM_PHY_SIG_LOST);
		dev_info(&card->dev->dev, "Port %d: %s\n", port, state_str);
		return 0;
	}

	snr = next_string(skb);
	if (!snr)
		return -EIO;
	attn = next_string(skb);
	if (!attn)
		return -EIO;

	dev_info(&card->dev->dev, "Port %d: %s @%d/%d kb/s%s%s%s%s\n",
		 port, state_str, rate_down/1000, rate_up/1000,
		 snr[0]?", SNR ":"", snr, attn[0]?", Attn ":"", attn);
	
	card->atmdev[port]->link_rate = rate_down / 424;
	atm_dev_signal_change(card->atmdev[port], ATM_PHY_SIG_FOUND);

	return 0;
}

static int process_command(struct solos_card *card, int port, struct sk_buff *skb)
{
	struct solos_param *prm;
	unsigned long flags;
	int cmdpid;
	int found = 0, err;

	if (skb->len < 7)
		return 0;

	if (skb->data[0] != 'L'    || !isdigit(skb->data[1]) ||
	    !isdigit(skb->data[2]) || !isdigit(skb->data[3]) ||
	    !isdigit(skb->data[4]) || !isdigit(skb->data[5]) ||
	    skb->data[6] != '\n')
		return 0;

	err = kstrtoint(&skb->data[1], 10, &cmdpid);
	if (err)
		return err;

	spin_lock_irqsave(&card->param_queue_lock, flags);
	list_for_each_entry(prm, &card->param_queue, list) {
		if (prm->port == port && prm->pid == cmdpid) {
			prm->response = skb;
			skb_pull(skb, 7);
			wake_up(&card->param_wq);
			found = 1;
			break;
		}
	}
	spin_unlock_irqrestore(&card->param_queue_lock, flags);
	return found;
}

static ssize_t console_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct atm_dev *atmdev = container_of(dev, struct atm_dev, class_dev);
	struct solos_card *card = atmdev->dev_data;
	struct sk_buff *skb;
	unsigned int len;

	spin_lock(&card->cli_queue_lock);
	skb = skb_dequeue(&card->cli_queue[SOLOS_CHAN(atmdev)]);
	spin_unlock(&card->cli_queue_lock);
	if(skb == NULL)
		return sprintf(buf, "No data.\n");

	len = skb->len;
	memcpy(buf, skb->data, len);

	kfree_skb(skb);
	return len;
}

static int send_command(struct solos_card *card, int dev, const char *buf, size_t size)
{
	struct sk_buff *skb;
	struct pkt_hdr *header;

	if (size > (BUF_SIZE - sizeof(*header))) {
		dev_dbg(&card->dev->dev, "Command is too big.  Dropping request\n");
		return 0;
	}
	skb = alloc_skb(size + sizeof(*header), GFP_ATOMIC);
	if (!skb) {
		dev_warn(&card->dev->dev, "Failed to allocate sk_buff in send_command()\n");
		return 0;
	}

	header = skb_put(skb, sizeof(*header));

	header->size = cpu_to_le16(size);
	header->vpi = cpu_to_le16(0);
	header->vci = cpu_to_le16(0);
	header->type = cpu_to_le16(PKT_COMMAND);

	skb_put_data(skb, buf, size);

	fpga_queue(card, dev, skb, NULL);

	return 0;
}

static ssize_t console_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct atm_dev *atmdev = container_of(dev, struct atm_dev, class_dev);
	struct solos_card *card = atmdev->dev_data;
	int err;

	err = send_command(card, SOLOS_CHAN(atmdev), buf, count);

	return err?:count;
}

struct geos_gpio_attr {
	struct device_attribute attr;
	int offset;
};

#define SOLOS_GPIO_ATTR(_name, _mode, _show, _store, _offset)	\
	struct geos_gpio_attr gpio_attr_##_name = {		\
		.attr = __ATTR(_name, _mode, _show, _store),	\
		.offset = _offset }

static ssize_t geos_gpio_store(struct device *dev, struct device_attribute *attr,
			       const char *buf, size_t count)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct geos_gpio_attr *gattr = container_of(attr, struct geos_gpio_attr, attr);
	struct solos_card *card = pci_get_drvdata(pdev);
	uint32_t data32;

	if (count != 1 && (count != 2 || buf[1] != '\n'))
		return -EINVAL;

	spin_lock_irq(&card->param_queue_lock);
	data32 = ioread32(card->config_regs + GPIO_STATUS);
	if (buf[0] == '1') {
		data32 |= 1 << gattr->offset;
		iowrite32(data32, card->config_regs + GPIO_STATUS);
	} else if (buf[0] == '0') {
		data32 &= ~(1 << gattr->offset);
		iowrite32(data32, card->config_regs + GPIO_STATUS);
	} else {
		count = -EINVAL;
	}
	spin_unlock_irq(&card->param_queue_lock);
	return count;
}

static ssize_t geos_gpio_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct geos_gpio_attr *gattr = container_of(attr, struct geos_gpio_attr, attr);
	struct solos_card *card = pci_get_drvdata(pdev);
	uint32_t data32;

	data32 = ioread32(card->config_regs + GPIO_STATUS);
	data32 = (data32 >> gattr->offset) & 1;

	return sprintf(buf, "%d\n", data32);
}

static ssize_t hardware_show(struct device *dev, struct device_attribute *attr,
			     char *buf)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct geos_gpio_attr *gattr = container_of(attr, struct geos_gpio_attr, attr);
	struct solos_card *card = pci_get_drvdata(pdev);
	uint32_t data32;

	data32 = ioread32(card->config_regs + GPIO_STATUS);
	switch (gattr->offset) {
	case 0:
		/* HardwareVersion */
		data32 = data32 & 0x1F;
		break;
	case 1:
		/* HardwareVariant */
		data32 = (data32 >> 5) & 0x0F;
		break;
	}
	return sprintf(buf, "%d\n", data32);
}

static DEVICE_ATTR_RW(console);


#define SOLOS_ATTR_RO(x) static DEVICE_ATTR(x, 0444, solos_param_show, NULL);
#define SOLOS_ATTR_RW(x) static DEVICE_ATTR(x, 0644, solos_param_show, solos_param_store);

#include "solos-attrlist.c"

static SOLOS_GPIO_ATTR(GPIO1, 0644, geos_gpio_show, geos_gpio_store, 9);
static SOLOS_GPIO_ATTR(GPIO2, 0644, geos_gpio_show, geos_gpio_store, 10);
static SOLOS_GPIO_ATTR(GPIO3, 0644, geos_gpio_show, geos_gpio_store, 11);
static SOLOS_GPIO_ATTR(GPIO4, 0644, geos_gpio_show, geos_gpio_store, 12);
static SOLOS_GPIO_ATTR(GPIO5, 0644, geos_gpio_show, geos_gpio_store, 13);
static SOLOS_GPIO_ATTR(PushButton, 0444, geos_gpio_show, NULL, 14);
static SOLOS_GPIO_ATTR(HardwareVersion, 0444, hardware_show, NULL, 0);
static SOLOS_GPIO_ATTR(HardwareVariant, 0444, hardware_show, NULL, 1);
#undef SOLOS_ATTR_RO
#undef SOLOS_ATTR_RW

#define SOLOS_ATTR_RO(x) &dev_attr_##x.attr,
#define SOLOS_ATTR_RW(x) &dev_attr_##x.attr,

static struct attribute *solos_attrs[] = {
#include "solos-attrlist.c"
	NULL
};

static const struct attribute_group solos_attr_group = {
	.attrs = solos_attrs,
	.name = "parameters",
};

static struct attribute *gpio_attrs[] = {
	&gpio_attr_GPIO1.attr.attr,
	&gpio_attr_GPIO2.attr.attr,
	&gpio_attr_GPIO3.attr.attr,
	&gpio_attr_GPIO4.attr.attr,
	&gpio_attr_GPIO5.attr.attr,
	&gpio_attr_PushButton.attr.attr,
	&gpio_attr_HardwareVersion.attr.attr,
	&gpio_attr_HardwareVariant.attr.attr,
	NULL
};

static const struct attribute_group gpio_attr_group = {
	.attrs = gpio_attrs,
	.name = "gpio",
};

static int flash_upgrade(struct solos_card *card, int chip)
{
	const struct firmware *fw;
	const char *fw_name;
	int blocksize = 0;
	int numblocks = 0;
	int offset;

	switch (chip) {
	case 0:
		fw_name = "solos-FPGA.bin";
		if (card->atmel_flash)
			blocksize = ATMEL_FPGA_BLOCK;
		else
			blocksize = SPI_FLASH_BLOCK;
		break;
	case 1:
		fw_name = "solos-Firmware.bin";
		if (card->atmel_flash)
			blocksize = ATMEL_SOLOS_BLOCK;
		else
			blocksize = SPI_FLASH_BLOCK;
		break;
	case 2:
		if (card->fpga_version > LEGACY_BUFFERS){
			fw_name = "solos-db-FPGA.bin";
			if (card->atmel_flash)
				blocksize = ATMEL_FPGA_BLOCK;
			else
				blocksize = SPI_FLASH_BLOCK;
		} else {
			dev_info(&card->dev->dev, "FPGA version doesn't support"
					" daughter board upgrades\n");
			return -EPERM;
		}
		break;
	case 3:
		if (card->fpga_version > LEGACY_BUFFERS){
			fw_name = "solos-Firmware.bin";
			if (card->atmel_flash)
				blocksize = ATMEL_SOLOS_BLOCK;
			else
				blocksize = SPI_FLASH_BLOCK;
		} else {
			dev_info(&card->dev->dev, "FPGA version doesn't support"
					" daughter board upgrades\n");
			return -EPERM;
		}
		break;
	default:
		return -ENODEV;
	}

	if (request_firmware(&fw, fw_name, &card->dev->dev))
		return -ENOENT;

	dev_info(&card->dev->dev, "Flash upgrade starting\n");

	/* New FPGAs require driver version before permitting flash upgrades */
	iowrite32(DRIVER_VERSION, card->config_regs + DRIVER_VER);

	numblocks = fw->size / blocksize;
	dev_info(&card->dev->dev, "Firmware size: %zd\n", fw->size);
	dev_info(&card->dev->dev, "Number of blocks: %d\n", numblocks);
	
	dev_info(&card->dev->dev, "Changing FPGA to Update mode\n");
	iowrite32(1, card->config_regs + FPGA_MODE);
	(void) ioread32(card->config_regs + FPGA_MODE); 

	/* Set mode to Chip Erase */
	if(chip == 0 || chip == 2)
		dev_info(&card->dev->dev, "Set FPGA Flash mode to FPGA Chip Erase\n");
	if(chip == 1 || chip == 3)
		dev_info(&card->dev->dev, "Set FPGA Flash mode to Solos Chip Erase\n");
	iowrite32((chip * 2), card->config_regs + FLASH_MODE);


	iowrite32(1, card->config_regs + WRITE_FLASH);
	wait_event(card->fw_wq, !ioread32(card->config_regs + FLASH_BUSY));

	for (offset = 0; offset < fw->size; offset += blocksize) {
		int i;

		/* Clear write flag */
		iowrite32(0, card->config_regs + WRITE_FLASH);

		/* Set mode to Block Write */
		/* dev_info(&card->dev->dev, "Set FPGA Flash mode to Block Write\n"); */
		iowrite32(((chip * 2) + 1), card->config_regs + FLASH_MODE);

		/* Copy block to buffer, swapping each 16 bits for Atmel flash */
		for(i = 0; i < blocksize; i += 4) {
			uint32_t word;
			if (card->atmel_flash)
				word = swahb32p((uint32_t *)(fw->data + offset + i));
			else
				word = *(uint32_t *)(fw->data + offset + i);
			if(card->fpga_version > LEGACY_BUFFERS)
				iowrite32(word, FLASH_BUF + i);
			else
				iowrite32(word, RX_BUF(card, 3) + i);
		}

		/* Specify block number and then trigger flash write */
		iowrite32(offset / blocksize, card->config_regs + FLASH_BLOCK);
		iowrite32(1, card->config_regs + WRITE_FLASH);
		wait_event(card->fw_wq, !ioread32(card->config_regs + FLASH_BUSY));
	}

	release_firmware(fw);
	iowrite32(0, card->config_regs + WRITE_FLASH);
	iowrite32(0, card->config_regs + FPGA_MODE);
	iowrite32(0, card->config_regs + FLASH_MODE);
	dev_info(&card->dev->dev, "Returning FPGA to Data mode\n");
	return 0;
}

static irqreturn_t solos_irq(int irq, void *dev_id)
{
	struct solos_card *card = dev_id;
	int handled = 1;

	iowrite32(0, card->config_regs + IRQ_CLEAR);

	/* If we're up and running, just kick the tasklet to process TX/RX */
	if (card->atmdev[0])
		tasklet_schedule(&card->tlet);
	else
		wake_up(&card->fw_wq);

	return IRQ_RETVAL(handled);
}

static void solos_bh(unsigned long card_arg)
{
	struct solos_card *card = (void *)card_arg;
	uint32_t card_flags;
	uint32_t rx_done = 0;
	int port;

	/*
	 * Since fpga_tx() is going to need to read the flags under its lock,
	 * it can return them to us so that we don't have to hit PCI MMIO
	 * again for the same information
	 */
	card_flags = fpga_tx(card);

	for (port = 0; port < card->nr_ports; port++) {
		if (card_flags & (0x10 << port)) {
			struct pkt_hdr _hdr, *header;
			struct sk_buff *skb;
			struct atm_vcc *vcc;
			int size;

			if (card->using_dma) {
				skb = card->rx_skb[port];
				card->rx_skb[port] = NULL;

				dma_unmap_single(&card->dev->dev, SKB_CB(skb)->dma_addr,
						 RX_DMA_SIZE, DMA_FROM_DEVICE);

				header = (void *)skb->data;
				size = le16_to_cpu(header->size);
				skb_put(skb, size + sizeof(*header));
				skb_pull(skb, sizeof(*header));
			} else {
				header = &_hdr;

				rx_done |= 0x10 << port;

				memcpy_fromio(header, RX_BUF(card, port), sizeof(*header));

				size = le16_to_cpu(header->size);
				if (size > (card->buffer_size - sizeof(*header))){
					dev_warn(&card->dev->dev, "Invalid buffer size\n");
					continue;
				}

				/* Use netdev_alloc_skb() because it adds NET_SKB_PAD of
				 * headroom, and ensures we can route packets back out an
				 * Ethernet interface (for example) without having to
				 * reallocate. Adding NET_IP_ALIGN also ensures that both
				 * PPPoATM and PPPoEoBR2684 packets end up aligned. */
				skb = netdev_alloc_skb_ip_align(NULL, size + 1);
				if (!skb) {
					if (net_ratelimit())
						dev_warn(&card->dev->dev, "Failed to allocate sk_buff for RX\n");
					continue;
				}

				memcpy_fromio(skb_put(skb, size),
					      RX_BUF(card, port) + sizeof(*header),
					      size);
			}
			if (atmdebug) {
				dev_info(&card->dev->dev, "Received: port %d\n", port);
				dev_info(&card->dev->dev, "size: %d VPI: %d VCI: %d\n",
					 size, le16_to_cpu(header->vpi),
					 le16_to_cpu(header->vci));
				print_buffer(skb);
			}

			switch (le16_to_cpu(header->type)) {
			case PKT_DATA:
				vcc = find_vcc(card->atmdev[port], le16_to_cpu(header->vpi),
					       le16_to_cpu(header->vci));
				if (!vcc) {
					if (net_ratelimit())
						dev_warn(&card->dev->dev, "Received packet for unknown VPI.VCI %d.%d on port %d\n",
							 le16_to_cpu(header->vpi), le16_to_cpu(header->vci),
							 port);
					dev_kfree_skb_any(skb);
					break;
				}
				atm_charge(vcc, skb->truesize);
				vcc->push(vcc, skb);
				atomic_inc(&vcc->stats->rx);
				break;

			case PKT_STATUS:
				if (process_status(card, port, skb) &&
				    net_ratelimit()) {
					dev_warn(&card->dev->dev, "Bad status packet of %d bytes on port %d:\n", skb->len, port);
					print_buffer(skb);
				}
				dev_kfree_skb_any(skb);
				break;

			case PKT_COMMAND:
			default: /* FIXME: Not really, surely? */
				if (process_command(card, port, skb))
					break;
				spin_lock(&card->cli_queue_lock);
				if (skb_queue_len(&card->cli_queue[port]) > 10) {
					if (net_ratelimit())
						dev_warn(&card->dev->dev, "Dropping console response on port %d\n",
							 port);
					dev_kfree_skb_any(skb);
				} else
					skb_queue_tail(&card->cli_queue[port], skb);
				spin_unlock(&card->cli_queue_lock);
				break;
			}
		}
		/* Allocate RX skbs for any ports which need them */
		if (card->using_dma && card->atmdev[port] &&
		    !card->rx_skb[port]) {
			/* Unlike the MMIO case (qv) we can't add NET_IP_ALIGN
			 * here; the FPGA can only DMA to addresses which are
			 * aligned to 4 bytes. */
			struct sk_buff *skb = dev_alloc_skb(RX_DMA_SIZE);
			if (skb) {
				SKB_CB(skb)->dma_addr =
					dma_map_single(&card->dev->dev, skb->data,
						       RX_DMA_SIZE, DMA_FROM_DEVICE);
				iowrite32(SKB_CB(skb)->dma_addr,
					  card->config_regs + RX_DMA_ADDR(port));
				card->rx_skb[port] = skb;
			} else {
				if (net_ratelimit())
					dev_warn(&card->dev->dev, "Failed to allocate RX skb");

				/* We'll have to try again later */
				tasklet_schedule(&card->tlet);
			}
		}
	}
	if (rx_done)
		iowrite32(rx_done, card->config_regs + FLAGS_ADDR);

	return;
}

static struct atm_vcc *find_vcc(struct atm_dev *dev, short vpi, int vci)
{
	struct hlist_head *head;
	struct atm_vcc *vcc = NULL;
	struct sock *s;

	read_lock(&vcc_sklist_lock);
	head = &vcc_hash[vci & (VCC_HTABLE_SIZE -1)];
	sk_for_each(s, head) {
		vcc = atm_sk(s);
		if (vcc->dev == dev && vcc->vci == vci &&
		    vcc->vpi == vpi && vcc->qos.rxtp.traffic_class != ATM_NONE &&
		    test_bit(ATM_VF_READY, &vcc->flags))
			goto out;
	}
	vcc = NULL;
 out:
	read_unlock(&vcc_sklist_lock);
	return vcc;
}

static int popen(struct atm_vcc *vcc)
{
	struct solos_card *card = vcc->dev->dev_data;
	struct sk_buff *skb;
	struct pkt_hdr *header;

	if (vcc->qos.aal != ATM_AAL5) {
		dev_warn(&card->dev->dev, "Unsupported ATM type %d\n",
			 vcc->qos.aal);
		return -EINVAL;
	}

	skb = alloc_skb(sizeof(*header), GFP_KERNEL);
	if (!skb) {
		if (net_ratelimit())
			dev_warn(&card->dev->dev, "Failed to allocate sk_buff in popen()\n");
		return -ENOMEM;
	}
	header = skb_put(skb, sizeof(*header));

	header->size = cpu_to_le16(0);
	header->vpi = cpu_to_le16(vcc->vpi);
	header->vci = cpu_to_le16(vcc->vci);
	header->type = cpu_to_le16(PKT_POPEN);

	fpga_queue(card, SOLOS_CHAN(vcc->dev), skb, NULL);

	set_bit(ATM_VF_ADDR, &vcc->flags);
	set_bit(ATM_VF_READY, &vcc->flags);

	return 0;
}

static void pclose(struct atm_vcc *vcc)
{
	struct solos_card *card = vcc->dev->dev_data;
	unsigned char port = SOLOS_CHAN(vcc->dev);
	struct sk_buff *skb, *tmpskb;
	struct pkt_hdr *header;

	/* Remove any yet-to-be-transmitted packets from the pending queue */
	spin_lock(&card->tx_queue_lock);
	skb_queue_walk_safe(&card->tx_queue[port], skb, tmpskb) {
		if (SKB_CB(skb)->vcc == vcc) {
			skb_unlink(skb, &card->tx_queue[port]);
			solos_pop(vcc, skb);
		}
	}
	spin_unlock(&card->tx_queue_lock);

	skb = alloc_skb(sizeof(*header), GFP_KERNEL);
	if (!skb) {
		dev_warn(&card->dev->dev, "Failed to allocate sk_buff in pclose()\n");
		return;
	}
	header = skb_put(skb, sizeof(*header));

	header->size = cpu_to_le16(0);
	header->vpi = cpu_to_le16(vcc->vpi);
	header->vci = cpu_to_le16(vcc->vci);
	header->type = cpu_to_le16(PKT_PCLOSE);

	skb_get(skb);
	fpga_queue(card, port, skb, NULL);

	if (!wait_event_timeout(card->param_wq, !skb_shared(skb), 5 * HZ))
		dev_warn(&card->dev->dev,
			 "Timeout waiting for VCC close on port %d\n", port);

	dev_kfree_skb(skb);

	/* Hold up vcc_destroy_socket() (our caller) until solos_bh() in the
	   tasklet has finished processing any incoming packets (and, more to
	   the point, using the vcc pointer). */
	tasklet_unlock_wait(&card->tlet);

	clear_bit(ATM_VF_ADDR, &vcc->flags);

	return;
}

static int print_buffer(struct sk_buff *buf)
{
	int len,i;
	char msg[500];
	char item[10];

	len = buf->len;
	for (i = 0; i < len; i++){
		if(i % 8 == 0)
			sprintf(msg, "%02X: ", i);

		sprintf(item,"%02X ",*(buf->data + i));
		strcat(msg, item);
		if(i % 8 == 7) {
			sprintf(item, "\n");
			strcat(msg, item);
			printk(KERN_DEBUG "%s", msg);
		}
	}
	if (i % 8 != 0) {
		sprintf(item, "\n");
		strcat(msg, item);
		printk(KERN_DEBUG "%s", msg);
	}
	printk(KERN_DEBUG "\n");

	return 0;
}

static void fpga_queue(struct solos_card *card, int port, struct sk_buff *skb,
		       struct atm_vcc *vcc)
{
	int old_len;
	unsigned long flags;

	SKB_CB(skb)->vcc = vcc;

	spin_lock_irqsave(&card->tx_queue_lock, flags);
	old_len = skb_queue_len(&card->tx_queue[port]);
	skb_queue_tail(&card->tx_queue[port], skb);
	if (!old_len)
		card->tx_mask |= (1 << port);
	spin_unlock_irqrestore(&card->tx_queue_lock, flags);

	/* Theoretically we could just schedule the tasklet here, but
	   that introduces latency we don't want -- it's noticeable */
	if (!old_len)
		fpga_tx(card);
}

static uint32_t fpga_tx(struct solos_card *card)
{
	uint32_t tx_pending, card_flags;
	uint32_t tx_started = 0;
	struct sk_buff *skb;
	struct atm_vcc *vcc;
	unsigned char port;
	unsigned long flags;

	spin_lock_irqsave(&card->tx_lock, flags);
	
	card_flags = ioread32(card->config_regs + FLAGS_ADDR);
	/*
	 * The queue lock is required for _writing_ to tx_mask, but we're
	 * OK to read it here without locking. The only potential update
	 * that we could race with is in fpga_queue() where it sets a bit
	 * for a new port... but it's going to call this function again if
	 * it's doing that, anyway.
	 */
	tx_pending = card->tx_mask & ~card_flags;

	for (port = 0; tx_pending; tx_pending >>= 1, port++) {
		if (tx_pending & 1) {
			struct sk_buff *oldskb = card->tx_skb[port];
			if (oldskb) {
				dma_unmap_single(&card->dev->dev, SKB_CB(oldskb)->dma_addr,
						 oldskb->len, DMA_TO_DEVICE);
				card->tx_skb[port] = NULL;
			}
			spin_lock(&card->tx_queue_lock);
			skb = skb_dequeue(&card->tx_queue[port]);
			if (!skb)
				card->tx_mask &= ~(1 << port);
			spin_unlock(&card->tx_queue_lock);

			if (skb && !card->using_dma) {
				memcpy_toio(TX_BUF(card, port), skb->data, skb->len);
				tx_started |= 1 << port;
				oldskb = skb; /* We're done with this skb already */
			} else if (skb && card->using_dma) {
				unsigned char *data = skb->data;
				if ((unsigned long)data & card->dma_alignment) {
					data = card->dma_bounce + (BUF_SIZE * port);
					memcpy(data, skb->data, skb->len);
				}
				SKB_CB(skb)->dma_addr = dma_map_single(&card->dev->dev, data,
								       skb->len, DMA_TO_DEVICE);
				card->tx_skb[port] = skb;
				iowrite32(SKB_CB(skb)->dma_addr,
					  card->config_regs + TX_DMA_ADDR(port));
			}

			if (!oldskb)
				continue;

			/* Clean up and free oldskb now it's gone */
			if (atmdebug) {
				struct pkt_hdr *header = (void *)oldskb->data;
				int size = le16_to_cpu(header->size);

				skb_pull(oldskb, sizeof(*header));
				dev_info(&card->dev->dev, "Transmitted: port %d\n",
					 port);
				dev_info(&card->dev->dev, "size: %d VPI: %d VCI: %d\n",
					 size, le16_to_cpu(header->vpi),
					 le16_to_cpu(header->vci));
				print_buffer(oldskb);
			}

			vcc = SKB_CB(oldskb)->vcc;

			if (vcc) {
				atomic_inc(&vcc->stats->tx);
				solos_pop(vcc, oldskb);
			} else {
				dev_kfree_skb_irq(oldskb);
				wake_up(&card->param_wq);
			}
		}
	}
	/* For non-DMA TX, write the 'TX start' bit for all four ports simultaneously */
	if (tx_started)
		iowrite32(tx_started, card->config_regs + FLAGS_ADDR);

	spin_unlock_irqrestore(&card->tx_lock, flags);
	return card_flags;
}

static int psend(struct atm_vcc *vcc, struct sk_buff *skb)
{
	struct solos_card *card = vcc->dev->dev_data;
	struct pkt_hdr *header;
	int pktlen;

	pktlen = skb->len;
	if (pktlen > (BUF_SIZE - sizeof(*header))) {
		dev_warn(&card->dev->dev, "Length of PDU is too large. Dropping PDU.\n");
		solos_pop(vcc, skb);
		return 0;
	}

	if (!skb_clone_writable(skb, sizeof(*header))) {
		int expand_by = 0;
		int ret;

		if (skb_headroom(skb) < sizeof(*header))
			expand_by = sizeof(*header) - skb_headroom(skb);

		ret = pskb_expand_head(skb, expand_by, 0, GFP_ATOMIC);
		if (ret) {
			dev_warn(&card->dev->dev, "pskb_expand_head failed.\n");
			solos_pop(vcc, skb);
			return ret;
		}
	}

	header = skb_push(skb, sizeof(*header));

	/* This does _not_ include the size of the header */
	header->size = cpu_to_le16(pktlen);
	header->vpi = cpu_to_le16(vcc->vpi);
	header->vci = cpu_to_le16(vcc->vci);
	header->type = cpu_to_le16(PKT_DATA);

	fpga_queue(card, SOLOS_CHAN(vcc->dev), skb, vcc);

	return 0;
}

static const struct atmdev_ops fpga_ops = {
	.open =		popen,
	.close =	pclose,
	.ioctl =	NULL,
	.getsockopt =	NULL,
	.setsockopt =	NULL,
	.send =		psend,
	.send_oam =	NULL,
	.phy_put =	NULL,
	.phy_get =	NULL,
	.change_qos =	NULL,
	.proc_read =	NULL,
	.owner =	THIS_MODULE
};

static int fpga_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
	int err;
	uint16_t fpga_ver;
	uint8_t major_ver, minor_ver;
	uint32_t data32;
	struct solos_card *card;

	card = kzalloc(sizeof(*card), GFP_KERNEL);
	if (!card)
		return -ENOMEM;

	card->dev = dev;
	init_waitqueue_head(&card->fw_wq);
	init_waitqueue_head(&card->param_wq);

	err = pci_enable_device(dev);
	if (err) {
		dev_warn(&dev->dev,  "Failed to enable PCI device\n");
		goto out;
	}

	err = dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32));
	if (err) {
		dev_warn(&dev->dev, "Failed to set 32-bit DMA mask\n");
		goto out;
	}

	err = pci_request_regions(dev, "solos");
	if (err) {
		dev_warn(&dev->dev, "Failed to request regions\n");
		goto out;
	}

	card->config_regs = pci_iomap(dev, 0, CONFIG_RAM_SIZE);
	if (!card->config_regs) {
		dev_warn(&dev->dev, "Failed to ioremap config registers\n");
		err = -ENOMEM;
		goto out_release_regions;
	}
	card->buffers = pci_iomap(dev, 1, DATA_RAM_SIZE);
	if (!card->buffers) {
		dev_warn(&dev->dev, "Failed to ioremap data buffers\n");
		err = -ENOMEM;
		goto out_unmap_config;
	}

	if (reset) {
		iowrite32(1, card->config_regs + FPGA_MODE);
		ioread32(card->config_regs + FPGA_MODE);

		iowrite32(0, card->config_regs + FPGA_MODE);
		ioread32(card->config_regs + FPGA_MODE);
	}

	data32 = ioread32(card->config_regs + FPGA_VER);
	fpga_ver = (data32 & 0x0000FFFF);
	major_ver = ((data32 & 0xFF000000) >> 24);
	minor_ver = ((data32 & 0x00FF0000) >> 16);
	card->fpga_version = FPGA_VERSION(major_ver,minor_ver);
	if (card->fpga_version > LEGACY_BUFFERS)
		card->buffer_size = BUF_SIZE;
	else
		card->buffer_size = OLD_BUF_SIZE;
	dev_info(&dev->dev, "Solos FPGA Version %d.%02d svn-%d\n",
		 major_ver, minor_ver, fpga_ver);

	if (fpga_ver < 37 && (fpga_upgrade || firmware_upgrade ||
			      db_fpga_upgrade || db_firmware_upgrade)) {
		dev_warn(&dev->dev,
			 "FPGA too old; cannot upgrade flash. Use JTAG.\n");
		fpga_upgrade = firmware_upgrade = 0;
		db_fpga_upgrade = db_firmware_upgrade = 0;
	}

	/* Stopped using Atmel flash after 0.03-38 */
	if (fpga_ver < 39)
		card->atmel_flash = 1;
	else
		card->atmel_flash = 0;

	data32 = ioread32(card->config_regs + PORTS);
	card->nr_ports = (data32 & 0x000000FF);

	if (card->fpga_version >= DMA_SUPPORTED) {
		pci_set_master(dev);
		card->using_dma = 1;
		if (1) { /* All known FPGA versions so far */
			card->dma_alignment = 3;
			card->dma_bounce = kmalloc_array(card->nr_ports,
							 BUF_SIZE, GFP_KERNEL);
			if (!card->dma_bounce) {
				dev_warn(&card->dev->dev, "Failed to allocate DMA bounce buffers\n");
				err = -ENOMEM;
				/* Fallback to MMIO doesn't work */
				goto out_unmap_both;
			}
		}
	} else {
		card->using_dma = 0;
		/* Set RX empty flag for all ports */
		iowrite32(0xF0, card->config_regs + FLAGS_ADDR);
	}

	pci_set_drvdata(dev, card);

	tasklet_init(&card->tlet, solos_bh, (unsigned long)card);
	spin_lock_init(&card->tx_lock);
	spin_lock_init(&card->tx_queue_lock);
	spin_lock_init(&card->cli_queue_lock);
	spin_lock_init(&card->param_queue_lock);
	INIT_LIST_HEAD(&card->param_queue);

	err = request_irq(dev->irq, solos_irq, IRQF_SHARED,
			  "solos-pci", card);
	if (err) {
		dev_dbg(&card->dev->dev, "Failed to request interrupt IRQ: %d\n", dev->irq);
		goto out_unmap_both;
	}

	iowrite32(1, card->config_regs + IRQ_EN_ADDR);

	if (fpga_upgrade)
		flash_upgrade(card, 0);

	if (firmware_upgrade)
		flash_upgrade(card, 1);

	if (db_fpga_upgrade)
		flash_upgrade(card, 2);

	if (db_firmware_upgrade)
		flash_upgrade(card, 3);

	err = atm_init(card, &dev->dev);
	if (err)
		goto out_free_irq;

	if (card->fpga_version >= DMA_SUPPORTED &&
	    sysfs_create_group(&card->dev->dev.kobj, &gpio_attr_group))
		dev_err(&card->dev->dev, "Could not register parameter group for GPIOs\n");

	return 0;

 out_free_irq:
	iowrite32(0, card->config_regs + IRQ_EN_ADDR);
	free_irq(dev->irq, card);
	tasklet_kill(&card->tlet);
	
 out_unmap_both:
	kfree(card->dma_bounce);
	pci_iounmap(dev, card->buffers);
 out_unmap_config:
	pci_iounmap(dev, card->config_regs);
 out_release_regions:
	pci_release_regions(dev);
 out:
	kfree(card);
	return err;
}

static int atm_init(struct solos_card *card, struct device *parent)
{
	int i;

	for (i = 0; i < card->nr_ports; i++) {
		struct sk_buff *skb;
		struct pkt_hdr *header;

		skb_queue_head_init(&card->tx_queue[i]);
		skb_queue_head_init(&card->cli_queue[i]);

		card->atmdev[i] = atm_dev_register("solos-pci", parent, &fpga_ops, -1, NULL);
		if (!card->atmdev[i]) {
			dev_err(&card->dev->dev, "Could not register ATM device %d\n", i);
			atm_remove(card);
			return -ENODEV;
		}
		if (device_create_file(&card->atmdev[i]->class_dev, &dev_attr_console))
			dev_err(&card->dev->dev, "Could not register console for ATM device %d\n", i);
		if (sysfs_create_group(&card->atmdev[i]->class_dev.kobj, &solos_attr_group))
			dev_err(&card->dev->dev, "Could not register parameter group for ATM device %d\n", i);

		dev_info(&card->dev->dev, "Registered ATM device %d\n", card->atmdev[i]->number);

		card->atmdev[i]->ci_range.vpi_bits = 8;
		card->atmdev[i]->ci_range.vci_bits = 16;
		card->atmdev[i]->dev_data = card;
		card->atmdev[i]->phy_data = (void *)(unsigned long)i;
		atm_dev_signal_change(card->atmdev[i], ATM_PHY_SIG_FOUND);

		skb = alloc_skb(sizeof(*header), GFP_KERNEL);
		if (!skb) {
			dev_warn(&card->dev->dev, "Failed to allocate sk_buff in atm_init()\n");
			continue;
		}

		header = skb_put(skb, sizeof(*header));

		header->size = cpu_to_le16(0);
		header->vpi = cpu_to_le16(0);
		header->vci = cpu_to_le16(0);
		header->type = cpu_to_le16(PKT_STATUS);

		fpga_queue(card, i, skb, NULL);
	}
	return 0;
}

static void atm_remove(struct solos_card *card)
{
	int i;

	for (i = 0; i < card->nr_ports; i++) {
		if (card->atmdev[i]) {
			struct sk_buff *skb;

			dev_info(&card->dev->dev, "Unregistering ATM device %d\n", card->atmdev[i]->number);

			sysfs_remove_group(&card->atmdev[i]->class_dev.kobj, &solos_attr_group);
			atm_dev_deregister(card->atmdev[i]);

			skb = card->rx_skb[i];
			if (skb) {
				dma_unmap_single(&card->dev->dev, SKB_CB(skb)->dma_addr,
						 RX_DMA_SIZE, DMA_FROM_DEVICE);
				dev_kfree_skb(skb);
			}
			skb = card->tx_skb[i];
			if (skb) {
				dma_unmap_single(&card->dev->dev, SKB_CB(skb)->dma_addr,
						 skb->len, DMA_TO_DEVICE);
				dev_kfree_skb(skb);
			}
			while ((skb = skb_dequeue(&card->tx_queue[i])))
				dev_kfree_skb(skb);
 
		}
	}
}

static void fpga_remove(struct pci_dev *dev)
{
	struct solos_card *card = pci_get_drvdata(dev);
	
	/* Disable IRQs */
	iowrite32(0, card->config_regs + IRQ_EN_ADDR);

	/* Reset FPGA */
	iowrite32(1, card->config_regs + FPGA_MODE);
	(void)ioread32(card->config_regs + FPGA_MODE); 

	if (card->fpga_version >= DMA_SUPPORTED)
		sysfs_remove_group(&card->dev->dev.kobj, &gpio_attr_group);

	atm_remove(card);

	free_irq(dev->irq, card);
	tasklet_kill(&card->tlet);

	kfree(card->dma_bounce);

	/* Release device from reset */
	iowrite32(0, card->config_regs + FPGA_MODE);
	(void)ioread32(card->config_regs + FPGA_MODE); 

	pci_iounmap(dev, card->buffers);
	pci_iounmap(dev, card->config_regs);

	pci_release_regions(dev);
	pci_disable_device(dev);

	kfree(card);
}

static const struct pci_device_id fpga_pci_tbl[] = {
	{ 0x10ee, 0x0300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
	{ 0, }
};

MODULE_DEVICE_TABLE(pci,fpga_pci_tbl);

static struct pci_driver fpga_driver = {
	.name =		"solos",
	.id_table =	fpga_pci_tbl,
	.probe =	fpga_probe,
	.remove =	fpga_remove,
};


static int __init solos_pci_init(void)
{
	BUILD_BUG_ON(sizeof(struct solos_skb_cb) > sizeof(((struct sk_buff *)0)->cb));

	printk(KERN_INFO "Solos PCI Driver Version %s\n", VERSION);
	return pci_register_driver(&fpga_driver);
}

static void __exit solos_pci_exit(void)
{
	pci_unregister_driver(&fpga_driver);
	printk(KERN_INFO "Solos PCI Driver %s Unloaded\n", VERSION);
}

module_init(solos_pci_init);
module_exit(solos_pci_exit);