Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Greg Kroah-Hartman | 1524 | 53.38% | 1 | 2.86% |
David Mosberger-Tang | 753 | 26.37% | 1 | 2.86% |
Dave Jones | 425 | 14.89% | 20 | 57.14% |
Dave Airlie | 64 | 2.24% | 2 | 5.71% |
Thomas Hellstrom | 37 | 1.30% | 1 | 2.86% |
Scott Thompson | 19 | 0.67% | 1 | 2.86% |
René Herman | 10 | 0.35% | 1 | 2.86% |
Tim Schmielau | 6 | 0.21% | 1 | 2.86% |
Fengguang Wu | 4 | 0.14% | 1 | 2.86% |
Alan Hourihane | 4 | 0.14% | 1 | 2.86% |
David Woodhouse | 3 | 0.11% | 1 | 2.86% |
Andrew Morton | 3 | 0.11% | 1 | 2.86% |
Joe Perches | 1 | 0.04% | 1 | 2.86% |
Ryusuke Konishi | 1 | 0.04% | 1 | 2.86% |
Justin P. Mattock | 1 | 0.04% | 1 | 2.86% |
Total | 2855 | 35 |
/* * For documentation on the i460 AGP interface, see Chapter 7 (AGP Subsystem) of * the "Intel 460GTX Chipset Software Developer's Manual": * http://www.intel.com/design/archives/itanium/downloads/248704.htm */ /* * 460GX support by Chris Ahna <christopher.j.ahna@intel.com> * Clean up & simplification by David Mosberger-Tang <davidm@hpl.hp.com> */ #include <linux/module.h> #include <linux/pci.h> #include <linux/init.h> #include <linux/string.h> #include <linux/slab.h> #include <linux/agp_backend.h> #include <linux/log2.h> #include "agp.h" #define INTEL_I460_BAPBASE 0x98 #define INTEL_I460_GXBCTL 0xa0 #define INTEL_I460_AGPSIZ 0xa2 #define INTEL_I460_ATTBASE 0xfe200000 #define INTEL_I460_GATT_VALID (1UL << 24) #define INTEL_I460_GATT_COHERENT (1UL << 25) /* * The i460 can operate with large (4MB) pages, but there is no sane way to support this * within the current kernel/DRM environment, so we disable the relevant code for now. * See also comments in ia64_alloc_page()... */ #define I460_LARGE_IO_PAGES 0 #if I460_LARGE_IO_PAGES # define I460_IO_PAGE_SHIFT i460.io_page_shift #else # define I460_IO_PAGE_SHIFT 12 #endif #define I460_IOPAGES_PER_KPAGE (PAGE_SIZE >> I460_IO_PAGE_SHIFT) #define I460_KPAGES_PER_IOPAGE (1 << (I460_IO_PAGE_SHIFT - PAGE_SHIFT)) #define I460_SRAM_IO_DISABLE (1 << 4) #define I460_BAPBASE_ENABLE (1 << 3) #define I460_AGPSIZ_MASK 0x7 #define I460_4M_PS (1 << 1) /* Control bits for Out-Of-GART coherency and Burst Write Combining */ #define I460_GXBCTL_OOG (1UL << 0) #define I460_GXBCTL_BWC (1UL << 2) /* * gatt_table entries are 32-bits wide on the i460; the generic code ought to declare the * gatt_table and gatt_table_real pointers a "void *"... */ #define RD_GATT(index) readl((u32 *) i460.gatt + (index)) #define WR_GATT(index, val) writel((val), (u32 *) i460.gatt + (index)) /* * The 460 spec says we have to read the last location written to make sure that all * writes have taken effect */ #define WR_FLUSH_GATT(index) RD_GATT(index) static unsigned long i460_mask_memory (struct agp_bridge_data *bridge, dma_addr_t addr, int type); static struct { void *gatt; /* ioremap'd GATT area */ /* i460 supports multiple GART page sizes, so GART pageshift is dynamic: */ u8 io_page_shift; /* BIOS configures chipset to one of 2 possible apbase values: */ u8 dynamic_apbase; /* structure for tracking partial use of 4MB GART pages: */ struct lp_desc { unsigned long *alloced_map; /* bitmap of kernel-pages in use */ int refcount; /* number of kernel pages using the large page */ u64 paddr; /* physical address of large page */ struct page *page; /* page pointer */ } *lp_desc; } i460; static const struct aper_size_info_8 i460_sizes[3] = { /* * The 32GB aperture is only available with a 4M GART page size. Due to the * dynamic GART page size, we can't figure out page_order or num_entries until * runtime. */ {32768, 0, 0, 4}, {1024, 0, 0, 2}, {256, 0, 0, 1} }; static struct gatt_mask i460_masks[] = { { .mask = INTEL_I460_GATT_VALID | INTEL_I460_GATT_COHERENT, .type = 0 } }; static int i460_fetch_size (void) { int i; u8 temp; struct aper_size_info_8 *values; /* Determine the GART page size */ pci_read_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL, &temp); i460.io_page_shift = (temp & I460_4M_PS) ? 22 : 12; pr_debug("i460_fetch_size: io_page_shift=%d\n", i460.io_page_shift); if (i460.io_page_shift != I460_IO_PAGE_SHIFT) { printk(KERN_ERR PFX "I/O (GART) page-size %luKB doesn't match expected " "size %luKB\n", 1UL << (i460.io_page_shift - 10), 1UL << (I460_IO_PAGE_SHIFT)); return 0; } values = A_SIZE_8(agp_bridge->driver->aperture_sizes); pci_read_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ, &temp); /* Exit now if the IO drivers for the GART SRAMS are turned off */ if (temp & I460_SRAM_IO_DISABLE) { printk(KERN_ERR PFX "GART SRAMS disabled on 460GX chipset\n"); printk(KERN_ERR PFX "AGPGART operation not possible\n"); return 0; } /* Make sure we don't try to create an 2 ^ 23 entry GATT */ if ((i460.io_page_shift == 0) && ((temp & I460_AGPSIZ_MASK) == 4)) { printk(KERN_ERR PFX "We can't have a 32GB aperture with 4KB GART pages\n"); return 0; } /* Determine the proper APBASE register */ if (temp & I460_BAPBASE_ENABLE) i460.dynamic_apbase = INTEL_I460_BAPBASE; else i460.dynamic_apbase = AGP_APBASE; for (i = 0; i < agp_bridge->driver->num_aperture_sizes; i++) { /* * Dynamically calculate the proper num_entries and page_order values for * the define aperture sizes. Take care not to shift off the end of * values[i].size. */ values[i].num_entries = (values[i].size << 8) >> (I460_IO_PAGE_SHIFT - 12); values[i].page_order = ilog2((sizeof(u32)*values[i].num_entries) >> PAGE_SHIFT); } for (i = 0; i < agp_bridge->driver->num_aperture_sizes; i++) { /* Neglect control bits when matching up size_value */ if ((temp & I460_AGPSIZ_MASK) == values[i].size_value) { agp_bridge->previous_size = agp_bridge->current_size = (void *) (values + i); agp_bridge->aperture_size_idx = i; return values[i].size; } } return 0; } /* There isn't anything to do here since 460 has no GART TLB. */ static void i460_tlb_flush (struct agp_memory *mem) { return; } /* * This utility function is needed to prevent corruption of the control bits * which are stored along with the aperture size in 460's AGPSIZ register */ static void i460_write_agpsiz (u8 size_value) { u8 temp; pci_read_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ, &temp); pci_write_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ, ((temp & ~I460_AGPSIZ_MASK) | size_value)); } static void i460_cleanup (void) { struct aper_size_info_8 *previous_size; previous_size = A_SIZE_8(agp_bridge->previous_size); i460_write_agpsiz(previous_size->size_value); if (I460_IO_PAGE_SHIFT > PAGE_SHIFT) kfree(i460.lp_desc); } static int i460_configure (void) { union { u32 small[2]; u64 large; } temp; size_t size; u8 scratch; struct aper_size_info_8 *current_size; temp.large = 0; current_size = A_SIZE_8(agp_bridge->current_size); i460_write_agpsiz(current_size->size_value); /* * Do the necessary rigmarole to read all eight bytes of APBASE. * This has to be done since the AGP aperture can be above 4GB on * 460 based systems. */ pci_read_config_dword(agp_bridge->dev, i460.dynamic_apbase, &(temp.small[0])); pci_read_config_dword(agp_bridge->dev, i460.dynamic_apbase + 4, &(temp.small[1])); /* Clear BAR control bits */ agp_bridge->gart_bus_addr = temp.large & ~((1UL << 3) - 1); pci_read_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL, &scratch); pci_write_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL, (scratch & 0x02) | I460_GXBCTL_OOG | I460_GXBCTL_BWC); /* * Initialize partial allocation trackers if a GART page is bigger than a kernel * page. */ if (I460_IO_PAGE_SHIFT > PAGE_SHIFT) { size = current_size->num_entries * sizeof(i460.lp_desc[0]); i460.lp_desc = kzalloc(size, GFP_KERNEL); if (!i460.lp_desc) return -ENOMEM; } return 0; } static int i460_create_gatt_table (struct agp_bridge_data *bridge) { int page_order, num_entries, i; void *temp; /* * Load up the fixed address of the GART SRAMS which hold our GATT table. */ temp = agp_bridge->current_size; page_order = A_SIZE_8(temp)->page_order; num_entries = A_SIZE_8(temp)->num_entries; i460.gatt = ioremap(INTEL_I460_ATTBASE, PAGE_SIZE << page_order); if (!i460.gatt) { printk(KERN_ERR PFX "ioremap failed\n"); return -ENOMEM; } /* These are no good, the should be removed from the agp_bridge strucure... */ agp_bridge->gatt_table_real = NULL; agp_bridge->gatt_table = NULL; agp_bridge->gatt_bus_addr = 0; for (i = 0; i < num_entries; ++i) WR_GATT(i, 0); WR_FLUSH_GATT(i - 1); return 0; } static int i460_free_gatt_table (struct agp_bridge_data *bridge) { int num_entries, i; void *temp; temp = agp_bridge->current_size; num_entries = A_SIZE_8(temp)->num_entries; for (i = 0; i < num_entries; ++i) WR_GATT(i, 0); WR_FLUSH_GATT(num_entries - 1); iounmap(i460.gatt); return 0; } /* * The following functions are called when the I/O (GART) page size is smaller than * PAGE_SIZE. */ static int i460_insert_memory_small_io_page (struct agp_memory *mem, off_t pg_start, int type) { unsigned long paddr, io_pg_start, io_page_size; int i, j, k, num_entries; void *temp; pr_debug("i460_insert_memory_small_io_page(mem=%p, pg_start=%ld, type=%d, paddr0=0x%lx)\n", mem, pg_start, type, page_to_phys(mem->pages[0])); if (type >= AGP_USER_TYPES || mem->type >= AGP_USER_TYPES) return -EINVAL; io_pg_start = I460_IOPAGES_PER_KPAGE * pg_start; temp = agp_bridge->current_size; num_entries = A_SIZE_8(temp)->num_entries; if ((io_pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count) > num_entries) { printk(KERN_ERR PFX "Looks like we're out of AGP memory\n"); return -EINVAL; } j = io_pg_start; while (j < (io_pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count)) { if (!PGE_EMPTY(agp_bridge, RD_GATT(j))) { pr_debug("i460_insert_memory_small_io_page: GATT[%d]=0x%x is busy\n", j, RD_GATT(j)); return -EBUSY; } j++; } io_page_size = 1UL << I460_IO_PAGE_SHIFT; for (i = 0, j = io_pg_start; i < mem->page_count; i++) { paddr = page_to_phys(mem->pages[i]); for (k = 0; k < I460_IOPAGES_PER_KPAGE; k++, j++, paddr += io_page_size) WR_GATT(j, i460_mask_memory(agp_bridge, paddr, mem->type)); } WR_FLUSH_GATT(j - 1); return 0; } static int i460_remove_memory_small_io_page(struct agp_memory *mem, off_t pg_start, int type) { int i; pr_debug("i460_remove_memory_small_io_page(mem=%p, pg_start=%ld, type=%d)\n", mem, pg_start, type); pg_start = I460_IOPAGES_PER_KPAGE * pg_start; for (i = pg_start; i < (pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count); i++) WR_GATT(i, 0); WR_FLUSH_GATT(i - 1); return 0; } #if I460_LARGE_IO_PAGES /* * These functions are called when the I/O (GART) page size exceeds PAGE_SIZE. * * This situation is interesting since AGP memory allocations that are smaller than a * single GART page are possible. The i460.lp_desc array tracks partial allocation of the * large GART pages to work around this issue. * * i460.lp_desc[pg_num].refcount tracks the number of kernel pages in use within GART page * pg_num. i460.lp_desc[pg_num].paddr is the physical address of the large page and * i460.lp_desc[pg_num].alloced_map is a bitmap of kernel pages that are in use (allocated). */ static int i460_alloc_large_page (struct lp_desc *lp) { unsigned long order = I460_IO_PAGE_SHIFT - PAGE_SHIFT; size_t map_size; lp->page = alloc_pages(GFP_KERNEL, order); if (!lp->page) { printk(KERN_ERR PFX "Couldn't alloc 4M GART page...\n"); return -ENOMEM; } map_size = ((I460_KPAGES_PER_IOPAGE + BITS_PER_LONG - 1) & -BITS_PER_LONG)/8; lp->alloced_map = kzalloc(map_size, GFP_KERNEL); if (!lp->alloced_map) { __free_pages(lp->page, order); printk(KERN_ERR PFX "Out of memory, we're in trouble...\n"); return -ENOMEM; } lp->paddr = page_to_phys(lp->page); lp->refcount = 0; atomic_add(I460_KPAGES_PER_IOPAGE, &agp_bridge->current_memory_agp); return 0; } static void i460_free_large_page (struct lp_desc *lp) { kfree(lp->alloced_map); lp->alloced_map = NULL; __free_pages(lp->page, I460_IO_PAGE_SHIFT - PAGE_SHIFT); atomic_sub(I460_KPAGES_PER_IOPAGE, &agp_bridge->current_memory_agp); } static int i460_insert_memory_large_io_page (struct agp_memory *mem, off_t pg_start, int type) { int i, start_offset, end_offset, idx, pg, num_entries; struct lp_desc *start, *end, *lp; void *temp; if (type >= AGP_USER_TYPES || mem->type >= AGP_USER_TYPES) return -EINVAL; temp = agp_bridge->current_size; num_entries = A_SIZE_8(temp)->num_entries; /* Figure out what pg_start means in terms of our large GART pages */ start = &i460.lp_desc[pg_start / I460_KPAGES_PER_IOPAGE]; end = &i460.lp_desc[(pg_start + mem->page_count - 1) / I460_KPAGES_PER_IOPAGE]; start_offset = pg_start % I460_KPAGES_PER_IOPAGE; end_offset = (pg_start + mem->page_count - 1) % I460_KPAGES_PER_IOPAGE; if (end > i460.lp_desc + num_entries) { printk(KERN_ERR PFX "Looks like we're out of AGP memory\n"); return -EINVAL; } /* Check if the requested region of the aperture is free */ for (lp = start; lp <= end; ++lp) { if (!lp->alloced_map) continue; /* OK, the entire large page is available... */ for (idx = ((lp == start) ? start_offset : 0); idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE); idx++) { if (test_bit(idx, lp->alloced_map)) return -EBUSY; } } for (lp = start, i = 0; lp <= end; ++lp) { if (!lp->alloced_map) { /* Allocate new GART pages... */ if (i460_alloc_large_page(lp) < 0) return -ENOMEM; pg = lp - i460.lp_desc; WR_GATT(pg, i460_mask_memory(agp_bridge, lp->paddr, 0)); WR_FLUSH_GATT(pg); } for (idx = ((lp == start) ? start_offset : 0); idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE); idx++, i++) { mem->pages[i] = lp->page; __set_bit(idx, lp->alloced_map); ++lp->refcount; } } return 0; } static int i460_remove_memory_large_io_page (struct agp_memory *mem, off_t pg_start, int type) { int i, pg, start_offset, end_offset, idx, num_entries; struct lp_desc *start, *end, *lp; void *temp; temp = agp_bridge->current_size; num_entries = A_SIZE_8(temp)->num_entries; /* Figure out what pg_start means in terms of our large GART pages */ start = &i460.lp_desc[pg_start / I460_KPAGES_PER_IOPAGE]; end = &i460.lp_desc[(pg_start + mem->page_count - 1) / I460_KPAGES_PER_IOPAGE]; start_offset = pg_start % I460_KPAGES_PER_IOPAGE; end_offset = (pg_start + mem->page_count - 1) % I460_KPAGES_PER_IOPAGE; for (i = 0, lp = start; lp <= end; ++lp) { for (idx = ((lp == start) ? start_offset : 0); idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE); idx++, i++) { mem->pages[i] = NULL; __clear_bit(idx, lp->alloced_map); --lp->refcount; } /* Free GART pages if they are unused */ if (lp->refcount == 0) { pg = lp - i460.lp_desc; WR_GATT(pg, 0); WR_FLUSH_GATT(pg); i460_free_large_page(lp); } } return 0; } /* Wrapper routines to call the approriate {small_io_page,large_io_page} function */ static int i460_insert_memory (struct agp_memory *mem, off_t pg_start, int type) { if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT) return i460_insert_memory_small_io_page(mem, pg_start, type); else return i460_insert_memory_large_io_page(mem, pg_start, type); } static int i460_remove_memory (struct agp_memory *mem, off_t pg_start, int type) { if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT) return i460_remove_memory_small_io_page(mem, pg_start, type); else return i460_remove_memory_large_io_page(mem, pg_start, type); } /* * If the I/O (GART) page size is bigger than the kernel page size, we don't want to * allocate memory until we know where it is to be bound in the aperture (a * multi-kernel-page alloc might fit inside of an already allocated GART page). * * Let's just hope nobody counts on the allocated AGP memory being there before bind time * (I don't think current drivers do)... */ static struct page *i460_alloc_page (struct agp_bridge_data *bridge) { void *page; if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT) { page = agp_generic_alloc_page(agp_bridge); } else /* Returning NULL would cause problems */ /* AK: really dubious code. */ page = (void *)~0UL; return page; } static void i460_destroy_page (struct page *page, int flags) { if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT) { agp_generic_destroy_page(page, flags); } } #endif /* I460_LARGE_IO_PAGES */ static unsigned long i460_mask_memory (struct agp_bridge_data *bridge, dma_addr_t addr, int type) { /* Make sure the returned address is a valid GATT entry */ return bridge->driver->masks[0].mask | (((addr & ~((1 << I460_IO_PAGE_SHIFT) - 1)) & 0xfffff000) >> 12); } const struct agp_bridge_driver intel_i460_driver = { .owner = THIS_MODULE, .aperture_sizes = i460_sizes, .size_type = U8_APER_SIZE, .num_aperture_sizes = 3, .configure = i460_configure, .fetch_size = i460_fetch_size, .cleanup = i460_cleanup, .tlb_flush = i460_tlb_flush, .mask_memory = i460_mask_memory, .masks = i460_masks, .agp_enable = agp_generic_enable, .cache_flush = global_cache_flush, .create_gatt_table = i460_create_gatt_table, .free_gatt_table = i460_free_gatt_table, #if I460_LARGE_IO_PAGES .insert_memory = i460_insert_memory, .remove_memory = i460_remove_memory, .agp_alloc_page = i460_alloc_page, .agp_destroy_page = i460_destroy_page, #else .insert_memory = i460_insert_memory_small_io_page, .remove_memory = i460_remove_memory_small_io_page, .agp_alloc_page = agp_generic_alloc_page, .agp_alloc_pages = agp_generic_alloc_pages, .agp_destroy_page = agp_generic_destroy_page, .agp_destroy_pages = agp_generic_destroy_pages, #endif .alloc_by_type = agp_generic_alloc_by_type, .free_by_type = agp_generic_free_by_type, .agp_type_to_mask_type = agp_generic_type_to_mask_type, .cant_use_aperture = true, }; static int agp_intel_i460_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct agp_bridge_data *bridge; u8 cap_ptr; cap_ptr = pci_find_capability(pdev, PCI_CAP_ID_AGP); if (!cap_ptr) return -ENODEV; bridge = agp_alloc_bridge(); if (!bridge) return -ENOMEM; bridge->driver = &intel_i460_driver; bridge->dev = pdev; bridge->capndx = cap_ptr; printk(KERN_INFO PFX "Detected Intel 460GX chipset\n"); pci_set_drvdata(pdev, bridge); return agp_add_bridge(bridge); } static void agp_intel_i460_remove(struct pci_dev *pdev) { struct agp_bridge_data *bridge = pci_get_drvdata(pdev); agp_remove_bridge(bridge); agp_put_bridge(bridge); } static struct pci_device_id agp_intel_i460_pci_table[] = { { .class = (PCI_CLASS_BRIDGE_HOST << 8), .class_mask = ~0, .vendor = PCI_VENDOR_ID_INTEL, .device = PCI_DEVICE_ID_INTEL_84460GX, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, }, { } }; MODULE_DEVICE_TABLE(pci, agp_intel_i460_pci_table); static struct pci_driver agp_intel_i460_pci_driver = { .name = "agpgart-intel-i460", .id_table = agp_intel_i460_pci_table, .probe = agp_intel_i460_probe, .remove = agp_intel_i460_remove, }; static int __init agp_intel_i460_init(void) { if (agp_off) return -EINVAL; return pci_register_driver(&agp_intel_i460_pci_driver); } static void __exit agp_intel_i460_cleanup(void) { pci_unregister_driver(&agp_intel_i460_pci_driver); } module_init(agp_intel_i460_init); module_exit(agp_intel_i460_cleanup); MODULE_AUTHOR("Chris Ahna <Christopher.J.Ahna@intel.com>"); MODULE_LICENSE("GPL and additional rights");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1