Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ard Biesheuvel | 1332 | 99.63% | 2 | 66.67% |
Herbert Xu | 5 | 0.37% | 1 | 33.33% |
Total | 1337 | 3 |
// SPDX-License-Identifier: GPL-2.0 /* * Microchip / Atmel ECC (I2C) driver. * * Copyright (c) 2017, Microchip Technology Inc. * Author: Tudor Ambarus <tudor.ambarus@microchip.com> */ #include <linux/bitrev.h> #include <linux/crc16.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/err.h> #include <linux/errno.h> #include <linux/i2c.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/scatterlist.h> #include <linux/slab.h> #include <linux/workqueue.h> #include "atmel-i2c.h" /** * atmel_i2c_checksum() - Generate 16-bit CRC as required by ATMEL ECC. * CRC16 verification of the count, opcode, param1, param2 and data bytes. * The checksum is saved in little-endian format in the least significant * two bytes of the command. CRC polynomial is 0x8005 and the initial register * value should be zero. * * @cmd : structure used for communicating with the device. */ static void atmel_i2c_checksum(struct atmel_i2c_cmd *cmd) { u8 *data = &cmd->count; size_t len = cmd->count - CRC_SIZE; __le16 *__crc16 = (__le16 *)(data + len); *__crc16 = cpu_to_le16(bitrev16(crc16(0, data, len))); } void atmel_i2c_init_read_cmd(struct atmel_i2c_cmd *cmd) { cmd->word_addr = COMMAND; cmd->opcode = OPCODE_READ; /* * Read the word from Configuration zone that contains the lock bytes * (UserExtra, Selector, LockValue, LockConfig). */ cmd->param1 = CONFIG_ZONE; cmd->param2 = cpu_to_le16(DEVICE_LOCK_ADDR); cmd->count = READ_COUNT; atmel_i2c_checksum(cmd); cmd->msecs = MAX_EXEC_TIME_READ; cmd->rxsize = READ_RSP_SIZE; } EXPORT_SYMBOL(atmel_i2c_init_read_cmd); void atmel_i2c_init_random_cmd(struct atmel_i2c_cmd *cmd) { cmd->word_addr = COMMAND; cmd->opcode = OPCODE_RANDOM; cmd->param1 = 0; cmd->param2 = 0; cmd->count = RANDOM_COUNT; atmel_i2c_checksum(cmd); cmd->msecs = MAX_EXEC_TIME_RANDOM; cmd->rxsize = RANDOM_RSP_SIZE; } EXPORT_SYMBOL(atmel_i2c_init_random_cmd); void atmel_i2c_init_genkey_cmd(struct atmel_i2c_cmd *cmd, u16 keyid) { cmd->word_addr = COMMAND; cmd->count = GENKEY_COUNT; cmd->opcode = OPCODE_GENKEY; cmd->param1 = GENKEY_MODE_PRIVATE; /* a random private key will be generated and stored in slot keyID */ cmd->param2 = cpu_to_le16(keyid); atmel_i2c_checksum(cmd); cmd->msecs = MAX_EXEC_TIME_GENKEY; cmd->rxsize = GENKEY_RSP_SIZE; } EXPORT_SYMBOL(atmel_i2c_init_genkey_cmd); int atmel_i2c_init_ecdh_cmd(struct atmel_i2c_cmd *cmd, struct scatterlist *pubkey) { size_t copied; cmd->word_addr = COMMAND; cmd->count = ECDH_COUNT; cmd->opcode = OPCODE_ECDH; cmd->param1 = ECDH_PREFIX_MODE; /* private key slot */ cmd->param2 = cpu_to_le16(DATA_SLOT_2); /* * The device only supports NIST P256 ECC keys. The public key size will * always be the same. Use a macro for the key size to avoid unnecessary * computations. */ copied = sg_copy_to_buffer(pubkey, sg_nents_for_len(pubkey, ATMEL_ECC_PUBKEY_SIZE), cmd->data, ATMEL_ECC_PUBKEY_SIZE); if (copied != ATMEL_ECC_PUBKEY_SIZE) return -EINVAL; atmel_i2c_checksum(cmd); cmd->msecs = MAX_EXEC_TIME_ECDH; cmd->rxsize = ECDH_RSP_SIZE; return 0; } EXPORT_SYMBOL(atmel_i2c_init_ecdh_cmd); /* * After wake and after execution of a command, there will be error, status, or * result bytes in the device's output register that can be retrieved by the * system. When the length of that group is four bytes, the codes returned are * detailed in error_list. */ static int atmel_i2c_status(struct device *dev, u8 *status) { size_t err_list_len = ARRAY_SIZE(error_list); int i; u8 err_id = status[1]; if (*status != STATUS_SIZE) return 0; if (err_id == STATUS_WAKE_SUCCESSFUL || err_id == STATUS_NOERR) return 0; for (i = 0; i < err_list_len; i++) if (error_list[i].value == err_id) break; /* if err_id is not in the error_list then ignore it */ if (i != err_list_len) { dev_err(dev, "%02x: %s:\n", err_id, error_list[i].error_text); return err_id; } return 0; } static int atmel_i2c_wakeup(struct i2c_client *client) { struct atmel_i2c_client_priv *i2c_priv = i2c_get_clientdata(client); u8 status[STATUS_RSP_SIZE]; int ret; /* * The device ignores any levels or transitions on the SCL pin when the * device is idle, asleep or during waking up. Don't check for error * when waking up the device. */ i2c_master_send(client, i2c_priv->wake_token, i2c_priv->wake_token_sz); /* * Wait to wake the device. Typical execution times for ecdh and genkey * are around tens of milliseconds. Delta is chosen to 50 microseconds. */ usleep_range(TWHI_MIN, TWHI_MAX); ret = i2c_master_recv(client, status, STATUS_SIZE); if (ret < 0) return ret; return atmel_i2c_status(&client->dev, status); } static int atmel_i2c_sleep(struct i2c_client *client) { u8 sleep = SLEEP_TOKEN; return i2c_master_send(client, &sleep, 1); } /* * atmel_i2c_send_receive() - send a command to the device and receive its * response. * @client: i2c client device * @cmd : structure used to communicate with the device * * After the device receives a Wake token, a watchdog counter starts within the * device. After the watchdog timer expires, the device enters sleep mode * regardless of whether some I/O transmission or command execution is in * progress. If a command is attempted when insufficient time remains prior to * watchdog timer execution, the device will return the watchdog timeout error * code without attempting to execute the command. There is no way to reset the * counter other than to put the device into sleep or idle mode and then * wake it up again. */ int atmel_i2c_send_receive(struct i2c_client *client, struct atmel_i2c_cmd *cmd) { struct atmel_i2c_client_priv *i2c_priv = i2c_get_clientdata(client); int ret; mutex_lock(&i2c_priv->lock); ret = atmel_i2c_wakeup(client); if (ret) goto err; /* send the command */ ret = i2c_master_send(client, (u8 *)cmd, cmd->count + WORD_ADDR_SIZE); if (ret < 0) goto err; /* delay the appropriate amount of time for command to execute */ msleep(cmd->msecs); /* receive the response */ ret = i2c_master_recv(client, cmd->data, cmd->rxsize); if (ret < 0) goto err; /* put the device into low-power mode */ ret = atmel_i2c_sleep(client); if (ret < 0) goto err; mutex_unlock(&i2c_priv->lock); return atmel_i2c_status(&client->dev, cmd->data); err: mutex_unlock(&i2c_priv->lock); return ret; } EXPORT_SYMBOL(atmel_i2c_send_receive); static void atmel_i2c_work_handler(struct work_struct *work) { struct atmel_i2c_work_data *work_data = container_of(work, struct atmel_i2c_work_data, work); struct atmel_i2c_cmd *cmd = &work_data->cmd; struct i2c_client *client = work_data->client; int status; status = atmel_i2c_send_receive(client, cmd); work_data->cbk(work_data, work_data->areq, status); } void atmel_i2c_enqueue(struct atmel_i2c_work_data *work_data, void (*cbk)(struct atmel_i2c_work_data *work_data, void *areq, int status), void *areq) { work_data->cbk = (void *)cbk; work_data->areq = areq; INIT_WORK(&work_data->work, atmel_i2c_work_handler); schedule_work(&work_data->work); } EXPORT_SYMBOL(atmel_i2c_enqueue); static inline size_t atmel_i2c_wake_token_sz(u32 bus_clk_rate) { u32 no_of_bits = DIV_ROUND_UP(TWLO_USEC * bus_clk_rate, USEC_PER_SEC); /* return the size of the wake_token in bytes */ return DIV_ROUND_UP(no_of_bits, 8); } static int device_sanity_check(struct i2c_client *client) { struct atmel_i2c_cmd *cmd; int ret; cmd = kmalloc(sizeof(*cmd), GFP_KERNEL); if (!cmd) return -ENOMEM; atmel_i2c_init_read_cmd(cmd); ret = atmel_i2c_send_receive(client, cmd); if (ret) goto free_cmd; /* * It is vital that the Configuration, Data and OTP zones be locked * prior to release into the field of the system containing the device. * Failure to lock these zones may permit modification of any secret * keys and may lead to other security problems. */ if (cmd->data[LOCK_CONFIG_IDX] || cmd->data[LOCK_VALUE_IDX]) { dev_err(&client->dev, "Configuration or Data and OTP zones are unlocked!\n"); ret = -ENOTSUPP; } /* fall through */ free_cmd: kfree(cmd); return ret; } int atmel_i2c_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct atmel_i2c_client_priv *i2c_priv; struct device *dev = &client->dev; int ret; u32 bus_clk_rate; if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { dev_err(dev, "I2C_FUNC_I2C not supported\n"); return -ENODEV; } bus_clk_rate = i2c_acpi_find_bus_speed(&client->adapter->dev); if (!bus_clk_rate) { ret = device_property_read_u32(&client->adapter->dev, "clock-frequency", &bus_clk_rate); if (ret) { dev_err(dev, "failed to read clock-frequency property\n"); return ret; } } if (bus_clk_rate > 1000000L) { dev_err(dev, "%d exceeds maximum supported clock frequency (1MHz)\n", bus_clk_rate); return -EINVAL; } i2c_priv = devm_kmalloc(dev, sizeof(*i2c_priv), GFP_KERNEL); if (!i2c_priv) return -ENOMEM; i2c_priv->client = client; mutex_init(&i2c_priv->lock); /* * WAKE_TOKEN_MAX_SIZE was calculated for the maximum bus_clk_rate - * 1MHz. The previous bus_clk_rate check ensures us that wake_token_sz * will always be smaller than or equal to WAKE_TOKEN_MAX_SIZE. */ i2c_priv->wake_token_sz = atmel_i2c_wake_token_sz(bus_clk_rate); memset(i2c_priv->wake_token, 0, sizeof(i2c_priv->wake_token)); atomic_set(&i2c_priv->tfm_count, 0); i2c_set_clientdata(client, i2c_priv); ret = device_sanity_check(client); if (ret) return ret; return 0; } EXPORT_SYMBOL(atmel_i2c_probe); MODULE_AUTHOR("Tudor Ambarus <tudor.ambarus@microchip.com>"); MODULE_DESCRIPTION("Microchip / Atmel ECC (I2C) driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1