Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Baolin Wang | 4019 | 71.37% | 8 | 32.00% |
Eric Long | 1597 | 28.36% | 14 | 56.00% |
Dan Carpenter | 9 | 0.16% | 1 | 4.00% |
Kees Cook | 5 | 0.09% | 1 | 4.00% |
Vinod Koul | 1 | 0.02% | 1 | 4.00% |
Total | 5631 | 25 |
/* * Copyright (C) 2017 Spreadtrum Communications Inc. * * SPDX-License-Identifier: GPL-2.0 */ #include <linux/clk.h> #include <linux/dma-mapping.h> #include <linux/dma/sprd-dma.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_dma.h> #include <linux/of_device.h> #include <linux/pm_runtime.h> #include <linux/slab.h> #include "virt-dma.h" #define SPRD_DMA_CHN_REG_OFFSET 0x1000 #define SPRD_DMA_CHN_REG_LENGTH 0x40 #define SPRD_DMA_MEMCPY_MIN_SIZE 64 /* DMA global registers definition */ #define SPRD_DMA_GLB_PAUSE 0x0 #define SPRD_DMA_GLB_FRAG_WAIT 0x4 #define SPRD_DMA_GLB_REQ_PEND0_EN 0x8 #define SPRD_DMA_GLB_REQ_PEND1_EN 0xc #define SPRD_DMA_GLB_INT_RAW_STS 0x10 #define SPRD_DMA_GLB_INT_MSK_STS 0x14 #define SPRD_DMA_GLB_REQ_STS 0x18 #define SPRD_DMA_GLB_CHN_EN_STS 0x1c #define SPRD_DMA_GLB_DEBUG_STS 0x20 #define SPRD_DMA_GLB_ARB_SEL_STS 0x24 #define SPRD_DMA_GLB_2STAGE_GRP1 0x28 #define SPRD_DMA_GLB_2STAGE_GRP2 0x2c #define SPRD_DMA_GLB_REQ_UID(uid) (0x4 * ((uid) - 1)) #define SPRD_DMA_GLB_REQ_UID_OFFSET 0x2000 /* DMA channel registers definition */ #define SPRD_DMA_CHN_PAUSE 0x0 #define SPRD_DMA_CHN_REQ 0x4 #define SPRD_DMA_CHN_CFG 0x8 #define SPRD_DMA_CHN_INTC 0xc #define SPRD_DMA_CHN_SRC_ADDR 0x10 #define SPRD_DMA_CHN_DES_ADDR 0x14 #define SPRD_DMA_CHN_FRG_LEN 0x18 #define SPRD_DMA_CHN_BLK_LEN 0x1c #define SPRD_DMA_CHN_TRSC_LEN 0x20 #define SPRD_DMA_CHN_TRSF_STEP 0x24 #define SPRD_DMA_CHN_WARP_PTR 0x28 #define SPRD_DMA_CHN_WARP_TO 0x2c #define SPRD_DMA_CHN_LLIST_PTR 0x30 #define SPRD_DMA_CHN_FRAG_STEP 0x34 #define SPRD_DMA_CHN_SRC_BLK_STEP 0x38 #define SPRD_DMA_CHN_DES_BLK_STEP 0x3c /* SPRD_DMA_GLB_2STAGE_GRP register definition */ #define SPRD_DMA_GLB_2STAGE_EN BIT(24) #define SPRD_DMA_GLB_CHN_INT_MASK GENMASK(23, 20) #define SPRD_DMA_GLB_DEST_INT BIT(22) #define SPRD_DMA_GLB_SRC_INT BIT(20) #define SPRD_DMA_GLB_LIST_DONE_TRG BIT(19) #define SPRD_DMA_GLB_TRANS_DONE_TRG BIT(18) #define SPRD_DMA_GLB_BLOCK_DONE_TRG BIT(17) #define SPRD_DMA_GLB_FRAG_DONE_TRG BIT(16) #define SPRD_DMA_GLB_TRG_OFFSET 16 #define SPRD_DMA_GLB_DEST_CHN_MASK GENMASK(13, 8) #define SPRD_DMA_GLB_DEST_CHN_OFFSET 8 #define SPRD_DMA_GLB_SRC_CHN_MASK GENMASK(5, 0) /* SPRD_DMA_CHN_INTC register definition */ #define SPRD_DMA_INT_MASK GENMASK(4, 0) #define SPRD_DMA_INT_CLR_OFFSET 24 #define SPRD_DMA_FRAG_INT_EN BIT(0) #define SPRD_DMA_BLK_INT_EN BIT(1) #define SPRD_DMA_TRANS_INT_EN BIT(2) #define SPRD_DMA_LIST_INT_EN BIT(3) #define SPRD_DMA_CFG_ERR_INT_EN BIT(4) /* SPRD_DMA_CHN_CFG register definition */ #define SPRD_DMA_CHN_EN BIT(0) #define SPRD_DMA_LINKLIST_EN BIT(4) #define SPRD_DMA_WAIT_BDONE_OFFSET 24 #define SPRD_DMA_DONOT_WAIT_BDONE 1 /* SPRD_DMA_CHN_REQ register definition */ #define SPRD_DMA_REQ_EN BIT(0) /* SPRD_DMA_CHN_PAUSE register definition */ #define SPRD_DMA_PAUSE_EN BIT(0) #define SPRD_DMA_PAUSE_STS BIT(2) #define SPRD_DMA_PAUSE_CNT 0x2000 /* DMA_CHN_WARP_* register definition */ #define SPRD_DMA_HIGH_ADDR_MASK GENMASK(31, 28) #define SPRD_DMA_LOW_ADDR_MASK GENMASK(31, 0) #define SPRD_DMA_HIGH_ADDR_OFFSET 4 /* SPRD_DMA_CHN_INTC register definition */ #define SPRD_DMA_FRAG_INT_STS BIT(16) #define SPRD_DMA_BLK_INT_STS BIT(17) #define SPRD_DMA_TRSC_INT_STS BIT(18) #define SPRD_DMA_LIST_INT_STS BIT(19) #define SPRD_DMA_CFGERR_INT_STS BIT(20) #define SPRD_DMA_CHN_INT_STS \ (SPRD_DMA_FRAG_INT_STS | SPRD_DMA_BLK_INT_STS | \ SPRD_DMA_TRSC_INT_STS | SPRD_DMA_LIST_INT_STS | \ SPRD_DMA_CFGERR_INT_STS) /* SPRD_DMA_CHN_FRG_LEN register definition */ #define SPRD_DMA_SRC_DATAWIDTH_OFFSET 30 #define SPRD_DMA_DES_DATAWIDTH_OFFSET 28 #define SPRD_DMA_SWT_MODE_OFFSET 26 #define SPRD_DMA_REQ_MODE_OFFSET 24 #define SPRD_DMA_REQ_MODE_MASK GENMASK(1, 0) #define SPRD_DMA_FIX_SEL_OFFSET 21 #define SPRD_DMA_FIX_EN_OFFSET 20 #define SPRD_DMA_LLIST_END BIT(19) #define SPRD_DMA_FRG_LEN_MASK GENMASK(16, 0) /* SPRD_DMA_CHN_BLK_LEN register definition */ #define SPRD_DMA_BLK_LEN_MASK GENMASK(16, 0) /* SPRD_DMA_CHN_TRSC_LEN register definition */ #define SPRD_DMA_TRSC_LEN_MASK GENMASK(27, 0) /* SPRD_DMA_CHN_TRSF_STEP register definition */ #define SPRD_DMA_DEST_TRSF_STEP_OFFSET 16 #define SPRD_DMA_SRC_TRSF_STEP_OFFSET 0 #define SPRD_DMA_TRSF_STEP_MASK GENMASK(15, 0) /* define DMA channel mode & trigger mode mask */ #define SPRD_DMA_CHN_MODE_MASK GENMASK(7, 0) #define SPRD_DMA_TRG_MODE_MASK GENMASK(7, 0) #define SPRD_DMA_INT_TYPE_MASK GENMASK(7, 0) /* define the DMA transfer step type */ #define SPRD_DMA_NONE_STEP 0 #define SPRD_DMA_BYTE_STEP 1 #define SPRD_DMA_SHORT_STEP 2 #define SPRD_DMA_WORD_STEP 4 #define SPRD_DMA_DWORD_STEP 8 #define SPRD_DMA_SOFTWARE_UID 0 /* dma data width values */ enum sprd_dma_datawidth { SPRD_DMA_DATAWIDTH_1_BYTE, SPRD_DMA_DATAWIDTH_2_BYTES, SPRD_DMA_DATAWIDTH_4_BYTES, SPRD_DMA_DATAWIDTH_8_BYTES, }; /* dma channel hardware configuration */ struct sprd_dma_chn_hw { u32 pause; u32 req; u32 cfg; u32 intc; u32 src_addr; u32 des_addr; u32 frg_len; u32 blk_len; u32 trsc_len; u32 trsf_step; u32 wrap_ptr; u32 wrap_to; u32 llist_ptr; u32 frg_step; u32 src_blk_step; u32 des_blk_step; }; /* dma request description */ struct sprd_dma_desc { struct virt_dma_desc vd; struct sprd_dma_chn_hw chn_hw; enum dma_transfer_direction dir; }; /* dma channel description */ struct sprd_dma_chn { struct virt_dma_chan vc; void __iomem *chn_base; struct sprd_dma_linklist linklist; struct dma_slave_config slave_cfg; u32 chn_num; u32 dev_id; enum sprd_dma_chn_mode chn_mode; enum sprd_dma_trg_mode trg_mode; enum sprd_dma_int_type int_type; struct sprd_dma_desc *cur_desc; }; /* SPRD dma device */ struct sprd_dma_dev { struct dma_device dma_dev; void __iomem *glb_base; struct clk *clk; struct clk *ashb_clk; int irq; u32 total_chns; struct sprd_dma_chn channels[0]; }; static bool sprd_dma_filter_fn(struct dma_chan *chan, void *param); static struct of_dma_filter_info sprd_dma_info = { .filter_fn = sprd_dma_filter_fn, }; static inline struct sprd_dma_chn *to_sprd_dma_chan(struct dma_chan *c) { return container_of(c, struct sprd_dma_chn, vc.chan); } static inline struct sprd_dma_dev *to_sprd_dma_dev(struct dma_chan *c) { struct sprd_dma_chn *schan = to_sprd_dma_chan(c); return container_of(schan, struct sprd_dma_dev, channels[c->chan_id]); } static inline struct sprd_dma_desc *to_sprd_dma_desc(struct virt_dma_desc *vd) { return container_of(vd, struct sprd_dma_desc, vd); } static void sprd_dma_glb_update(struct sprd_dma_dev *sdev, u32 reg, u32 mask, u32 val) { u32 orig = readl(sdev->glb_base + reg); u32 tmp; tmp = (orig & ~mask) | val; writel(tmp, sdev->glb_base + reg); } static void sprd_dma_chn_update(struct sprd_dma_chn *schan, u32 reg, u32 mask, u32 val) { u32 orig = readl(schan->chn_base + reg); u32 tmp; tmp = (orig & ~mask) | val; writel(tmp, schan->chn_base + reg); } static int sprd_dma_enable(struct sprd_dma_dev *sdev) { int ret; ret = clk_prepare_enable(sdev->clk); if (ret) return ret; /* * The ashb_clk is optional and only for AGCP DMA controller, so we * need add one condition to check if the ashb_clk need enable. */ if (!IS_ERR(sdev->ashb_clk)) ret = clk_prepare_enable(sdev->ashb_clk); return ret; } static void sprd_dma_disable(struct sprd_dma_dev *sdev) { clk_disable_unprepare(sdev->clk); /* * Need to check if we need disable the optional ashb_clk for AGCP DMA. */ if (!IS_ERR(sdev->ashb_clk)) clk_disable_unprepare(sdev->ashb_clk); } static void sprd_dma_set_uid(struct sprd_dma_chn *schan) { struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan); u32 dev_id = schan->dev_id; if (dev_id != SPRD_DMA_SOFTWARE_UID) { u32 uid_offset = SPRD_DMA_GLB_REQ_UID_OFFSET + SPRD_DMA_GLB_REQ_UID(dev_id); writel(schan->chn_num + 1, sdev->glb_base + uid_offset); } } static void sprd_dma_unset_uid(struct sprd_dma_chn *schan) { struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan); u32 dev_id = schan->dev_id; if (dev_id != SPRD_DMA_SOFTWARE_UID) { u32 uid_offset = SPRD_DMA_GLB_REQ_UID_OFFSET + SPRD_DMA_GLB_REQ_UID(dev_id); writel(0, sdev->glb_base + uid_offset); } } static void sprd_dma_clear_int(struct sprd_dma_chn *schan) { sprd_dma_chn_update(schan, SPRD_DMA_CHN_INTC, SPRD_DMA_INT_MASK << SPRD_DMA_INT_CLR_OFFSET, SPRD_DMA_INT_MASK << SPRD_DMA_INT_CLR_OFFSET); } static void sprd_dma_enable_chn(struct sprd_dma_chn *schan) { sprd_dma_chn_update(schan, SPRD_DMA_CHN_CFG, SPRD_DMA_CHN_EN, SPRD_DMA_CHN_EN); } static void sprd_dma_disable_chn(struct sprd_dma_chn *schan) { sprd_dma_chn_update(schan, SPRD_DMA_CHN_CFG, SPRD_DMA_CHN_EN, 0); } static void sprd_dma_soft_request(struct sprd_dma_chn *schan) { sprd_dma_chn_update(schan, SPRD_DMA_CHN_REQ, SPRD_DMA_REQ_EN, SPRD_DMA_REQ_EN); } static void sprd_dma_pause_resume(struct sprd_dma_chn *schan, bool enable) { struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan); u32 pause, timeout = SPRD_DMA_PAUSE_CNT; if (enable) { sprd_dma_chn_update(schan, SPRD_DMA_CHN_PAUSE, SPRD_DMA_PAUSE_EN, SPRD_DMA_PAUSE_EN); do { pause = readl(schan->chn_base + SPRD_DMA_CHN_PAUSE); if (pause & SPRD_DMA_PAUSE_STS) break; cpu_relax(); } while (--timeout > 0); if (!timeout) dev_warn(sdev->dma_dev.dev, "pause dma controller timeout\n"); } else { sprd_dma_chn_update(schan, SPRD_DMA_CHN_PAUSE, SPRD_DMA_PAUSE_EN, 0); } } static void sprd_dma_stop_and_disable(struct sprd_dma_chn *schan) { u32 cfg = readl(schan->chn_base + SPRD_DMA_CHN_CFG); if (!(cfg & SPRD_DMA_CHN_EN)) return; sprd_dma_pause_resume(schan, true); sprd_dma_disable_chn(schan); } static unsigned long sprd_dma_get_src_addr(struct sprd_dma_chn *schan) { unsigned long addr, addr_high; addr = readl(schan->chn_base + SPRD_DMA_CHN_SRC_ADDR); addr_high = readl(schan->chn_base + SPRD_DMA_CHN_WARP_PTR) & SPRD_DMA_HIGH_ADDR_MASK; return addr | (addr_high << SPRD_DMA_HIGH_ADDR_OFFSET); } static unsigned long sprd_dma_get_dst_addr(struct sprd_dma_chn *schan) { unsigned long addr, addr_high; addr = readl(schan->chn_base + SPRD_DMA_CHN_DES_ADDR); addr_high = readl(schan->chn_base + SPRD_DMA_CHN_WARP_TO) & SPRD_DMA_HIGH_ADDR_MASK; return addr | (addr_high << SPRD_DMA_HIGH_ADDR_OFFSET); } static enum sprd_dma_int_type sprd_dma_get_int_type(struct sprd_dma_chn *schan) { struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan); u32 intc_sts = readl(schan->chn_base + SPRD_DMA_CHN_INTC) & SPRD_DMA_CHN_INT_STS; switch (intc_sts) { case SPRD_DMA_CFGERR_INT_STS: return SPRD_DMA_CFGERR_INT; case SPRD_DMA_LIST_INT_STS: return SPRD_DMA_LIST_INT; case SPRD_DMA_TRSC_INT_STS: return SPRD_DMA_TRANS_INT; case SPRD_DMA_BLK_INT_STS: return SPRD_DMA_BLK_INT; case SPRD_DMA_FRAG_INT_STS: return SPRD_DMA_FRAG_INT; default: dev_warn(sdev->dma_dev.dev, "incorrect dma interrupt type\n"); return SPRD_DMA_NO_INT; } } static enum sprd_dma_req_mode sprd_dma_get_req_type(struct sprd_dma_chn *schan) { u32 frag_reg = readl(schan->chn_base + SPRD_DMA_CHN_FRG_LEN); return (frag_reg >> SPRD_DMA_REQ_MODE_OFFSET) & SPRD_DMA_REQ_MODE_MASK; } static int sprd_dma_set_2stage_config(struct sprd_dma_chn *schan) { struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan); u32 val, chn = schan->chn_num + 1; switch (schan->chn_mode) { case SPRD_DMA_SRC_CHN0: val = chn & SPRD_DMA_GLB_SRC_CHN_MASK; val |= BIT(schan->trg_mode - 1) << SPRD_DMA_GLB_TRG_OFFSET; val |= SPRD_DMA_GLB_2STAGE_EN; if (schan->int_type != SPRD_DMA_NO_INT) val |= SPRD_DMA_GLB_SRC_INT; sprd_dma_glb_update(sdev, SPRD_DMA_GLB_2STAGE_GRP1, val, val); break; case SPRD_DMA_SRC_CHN1: val = chn & SPRD_DMA_GLB_SRC_CHN_MASK; val |= BIT(schan->trg_mode - 1) << SPRD_DMA_GLB_TRG_OFFSET; val |= SPRD_DMA_GLB_2STAGE_EN; if (schan->int_type != SPRD_DMA_NO_INT) val |= SPRD_DMA_GLB_SRC_INT; sprd_dma_glb_update(sdev, SPRD_DMA_GLB_2STAGE_GRP2, val, val); break; case SPRD_DMA_DST_CHN0: val = (chn << SPRD_DMA_GLB_DEST_CHN_OFFSET) & SPRD_DMA_GLB_DEST_CHN_MASK; val |= SPRD_DMA_GLB_2STAGE_EN; if (schan->int_type != SPRD_DMA_NO_INT) val |= SPRD_DMA_GLB_DEST_INT; sprd_dma_glb_update(sdev, SPRD_DMA_GLB_2STAGE_GRP1, val, val); break; case SPRD_DMA_DST_CHN1: val = (chn << SPRD_DMA_GLB_DEST_CHN_OFFSET) & SPRD_DMA_GLB_DEST_CHN_MASK; val |= SPRD_DMA_GLB_2STAGE_EN; if (schan->int_type != SPRD_DMA_NO_INT) val |= SPRD_DMA_GLB_DEST_INT; sprd_dma_glb_update(sdev, SPRD_DMA_GLB_2STAGE_GRP2, val, val); break; default: dev_err(sdev->dma_dev.dev, "invalid channel mode setting %d\n", schan->chn_mode); return -EINVAL; } return 0; } static void sprd_dma_set_chn_config(struct sprd_dma_chn *schan, struct sprd_dma_desc *sdesc) { struct sprd_dma_chn_hw *cfg = &sdesc->chn_hw; writel(cfg->pause, schan->chn_base + SPRD_DMA_CHN_PAUSE); writel(cfg->cfg, schan->chn_base + SPRD_DMA_CHN_CFG); writel(cfg->intc, schan->chn_base + SPRD_DMA_CHN_INTC); writel(cfg->src_addr, schan->chn_base + SPRD_DMA_CHN_SRC_ADDR); writel(cfg->des_addr, schan->chn_base + SPRD_DMA_CHN_DES_ADDR); writel(cfg->frg_len, schan->chn_base + SPRD_DMA_CHN_FRG_LEN); writel(cfg->blk_len, schan->chn_base + SPRD_DMA_CHN_BLK_LEN); writel(cfg->trsc_len, schan->chn_base + SPRD_DMA_CHN_TRSC_LEN); writel(cfg->trsf_step, schan->chn_base + SPRD_DMA_CHN_TRSF_STEP); writel(cfg->wrap_ptr, schan->chn_base + SPRD_DMA_CHN_WARP_PTR); writel(cfg->wrap_to, schan->chn_base + SPRD_DMA_CHN_WARP_TO); writel(cfg->llist_ptr, schan->chn_base + SPRD_DMA_CHN_LLIST_PTR); writel(cfg->frg_step, schan->chn_base + SPRD_DMA_CHN_FRAG_STEP); writel(cfg->src_blk_step, schan->chn_base + SPRD_DMA_CHN_SRC_BLK_STEP); writel(cfg->des_blk_step, schan->chn_base + SPRD_DMA_CHN_DES_BLK_STEP); writel(cfg->req, schan->chn_base + SPRD_DMA_CHN_REQ); } static void sprd_dma_start(struct sprd_dma_chn *schan) { struct virt_dma_desc *vd = vchan_next_desc(&schan->vc); if (!vd) return; list_del(&vd->node); schan->cur_desc = to_sprd_dma_desc(vd); /* * Set 2-stage configuration if the channel starts one 2-stage * transfer. */ if (schan->chn_mode && sprd_dma_set_2stage_config(schan)) return; /* * Copy the DMA configuration from DMA descriptor to this hardware * channel. */ sprd_dma_set_chn_config(schan, schan->cur_desc); sprd_dma_set_uid(schan); sprd_dma_enable_chn(schan); if (schan->dev_id == SPRD_DMA_SOFTWARE_UID && schan->chn_mode != SPRD_DMA_DST_CHN0 && schan->chn_mode != SPRD_DMA_DST_CHN1) sprd_dma_soft_request(schan); } static void sprd_dma_stop(struct sprd_dma_chn *schan) { sprd_dma_stop_and_disable(schan); sprd_dma_unset_uid(schan); sprd_dma_clear_int(schan); schan->cur_desc = NULL; } static bool sprd_dma_check_trans_done(struct sprd_dma_desc *sdesc, enum sprd_dma_int_type int_type, enum sprd_dma_req_mode req_mode) { if (int_type == SPRD_DMA_NO_INT) return false; if (int_type >= req_mode + 1) return true; else return false; } static irqreturn_t dma_irq_handle(int irq, void *dev_id) { struct sprd_dma_dev *sdev = (struct sprd_dma_dev *)dev_id; u32 irq_status = readl(sdev->glb_base + SPRD_DMA_GLB_INT_MSK_STS); struct sprd_dma_chn *schan; struct sprd_dma_desc *sdesc; enum sprd_dma_req_mode req_type; enum sprd_dma_int_type int_type; bool trans_done = false, cyclic = false; u32 i; while (irq_status) { i = __ffs(irq_status); irq_status &= (irq_status - 1); schan = &sdev->channels[i]; spin_lock(&schan->vc.lock); sdesc = schan->cur_desc; if (!sdesc) { spin_unlock(&schan->vc.lock); return IRQ_HANDLED; } int_type = sprd_dma_get_int_type(schan); req_type = sprd_dma_get_req_type(schan); sprd_dma_clear_int(schan); /* cyclic mode schedule callback */ cyclic = schan->linklist.phy_addr ? true : false; if (cyclic == true) { vchan_cyclic_callback(&sdesc->vd); } else { /* Check if the dma request descriptor is done. */ trans_done = sprd_dma_check_trans_done(sdesc, int_type, req_type); if (trans_done == true) { vchan_cookie_complete(&sdesc->vd); schan->cur_desc = NULL; sprd_dma_start(schan); } } spin_unlock(&schan->vc.lock); } return IRQ_HANDLED; } static int sprd_dma_alloc_chan_resources(struct dma_chan *chan) { return pm_runtime_get_sync(chan->device->dev); } static void sprd_dma_free_chan_resources(struct dma_chan *chan) { struct sprd_dma_chn *schan = to_sprd_dma_chan(chan); unsigned long flags; spin_lock_irqsave(&schan->vc.lock, flags); sprd_dma_stop(schan); spin_unlock_irqrestore(&schan->vc.lock, flags); vchan_free_chan_resources(&schan->vc); pm_runtime_put(chan->device->dev); } static enum dma_status sprd_dma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct sprd_dma_chn *schan = to_sprd_dma_chan(chan); struct virt_dma_desc *vd; unsigned long flags; enum dma_status ret; u32 pos; ret = dma_cookie_status(chan, cookie, txstate); if (ret == DMA_COMPLETE || !txstate) return ret; spin_lock_irqsave(&schan->vc.lock, flags); vd = vchan_find_desc(&schan->vc, cookie); if (vd) { struct sprd_dma_desc *sdesc = to_sprd_dma_desc(vd); struct sprd_dma_chn_hw *hw = &sdesc->chn_hw; if (hw->trsc_len > 0) pos = hw->trsc_len; else if (hw->blk_len > 0) pos = hw->blk_len; else if (hw->frg_len > 0) pos = hw->frg_len; else pos = 0; } else if (schan->cur_desc && schan->cur_desc->vd.tx.cookie == cookie) { struct sprd_dma_desc *sdesc = schan->cur_desc; if (sdesc->dir == DMA_DEV_TO_MEM) pos = sprd_dma_get_dst_addr(schan); else pos = sprd_dma_get_src_addr(schan); } else { pos = 0; } spin_unlock_irqrestore(&schan->vc.lock, flags); dma_set_residue(txstate, pos); return ret; } static void sprd_dma_issue_pending(struct dma_chan *chan) { struct sprd_dma_chn *schan = to_sprd_dma_chan(chan); unsigned long flags; spin_lock_irqsave(&schan->vc.lock, flags); if (vchan_issue_pending(&schan->vc) && !schan->cur_desc) sprd_dma_start(schan); spin_unlock_irqrestore(&schan->vc.lock, flags); } static int sprd_dma_get_datawidth(enum dma_slave_buswidth buswidth) { switch (buswidth) { case DMA_SLAVE_BUSWIDTH_1_BYTE: case DMA_SLAVE_BUSWIDTH_2_BYTES: case DMA_SLAVE_BUSWIDTH_4_BYTES: case DMA_SLAVE_BUSWIDTH_8_BYTES: return ffs(buswidth) - 1; default: return -EINVAL; } } static int sprd_dma_get_step(enum dma_slave_buswidth buswidth) { switch (buswidth) { case DMA_SLAVE_BUSWIDTH_1_BYTE: case DMA_SLAVE_BUSWIDTH_2_BYTES: case DMA_SLAVE_BUSWIDTH_4_BYTES: case DMA_SLAVE_BUSWIDTH_8_BYTES: return buswidth; default: return -EINVAL; } } static int sprd_dma_fill_desc(struct dma_chan *chan, struct sprd_dma_chn_hw *hw, unsigned int sglen, int sg_index, dma_addr_t src, dma_addr_t dst, u32 len, enum dma_transfer_direction dir, unsigned long flags, struct dma_slave_config *slave_cfg) { struct sprd_dma_dev *sdev = to_sprd_dma_dev(chan); struct sprd_dma_chn *schan = to_sprd_dma_chan(chan); enum sprd_dma_chn_mode chn_mode = schan->chn_mode; u32 req_mode = (flags >> SPRD_DMA_REQ_SHIFT) & SPRD_DMA_REQ_MODE_MASK; u32 int_mode = flags & SPRD_DMA_INT_MASK; int src_datawidth, dst_datawidth, src_step, dst_step; u32 temp, fix_mode = 0, fix_en = 0; if (dir == DMA_MEM_TO_DEV) { src_step = sprd_dma_get_step(slave_cfg->src_addr_width); if (src_step < 0) { dev_err(sdev->dma_dev.dev, "invalid source step\n"); return src_step; } /* * For 2-stage transfer, destination channel step can not be 0, * since destination device is AON IRAM. */ if (chn_mode == SPRD_DMA_DST_CHN0 || chn_mode == SPRD_DMA_DST_CHN1) dst_step = src_step; else dst_step = SPRD_DMA_NONE_STEP; } else { dst_step = sprd_dma_get_step(slave_cfg->dst_addr_width); if (dst_step < 0) { dev_err(sdev->dma_dev.dev, "invalid destination step\n"); return dst_step; } src_step = SPRD_DMA_NONE_STEP; } src_datawidth = sprd_dma_get_datawidth(slave_cfg->src_addr_width); if (src_datawidth < 0) { dev_err(sdev->dma_dev.dev, "invalid source datawidth\n"); return src_datawidth; } dst_datawidth = sprd_dma_get_datawidth(slave_cfg->dst_addr_width); if (dst_datawidth < 0) { dev_err(sdev->dma_dev.dev, "invalid destination datawidth\n"); return dst_datawidth; } if (slave_cfg->slave_id) schan->dev_id = slave_cfg->slave_id; hw->cfg = SPRD_DMA_DONOT_WAIT_BDONE << SPRD_DMA_WAIT_BDONE_OFFSET; /* * wrap_ptr and wrap_to will save the high 4 bits source address and * destination address. */ hw->wrap_ptr = (src >> SPRD_DMA_HIGH_ADDR_OFFSET) & SPRD_DMA_HIGH_ADDR_MASK; hw->wrap_to = (dst >> SPRD_DMA_HIGH_ADDR_OFFSET) & SPRD_DMA_HIGH_ADDR_MASK; hw->src_addr = src & SPRD_DMA_LOW_ADDR_MASK; hw->des_addr = dst & SPRD_DMA_LOW_ADDR_MASK; /* * If the src step and dst step both are 0 or both are not 0, that means * we can not enable the fix mode. If one is 0 and another one is not, * we can enable the fix mode. */ if ((src_step != 0 && dst_step != 0) || (src_step | dst_step) == 0) { fix_en = 0; } else { fix_en = 1; if (src_step) fix_mode = 1; else fix_mode = 0; } hw->intc = int_mode | SPRD_DMA_CFG_ERR_INT_EN; temp = src_datawidth << SPRD_DMA_SRC_DATAWIDTH_OFFSET; temp |= dst_datawidth << SPRD_DMA_DES_DATAWIDTH_OFFSET; temp |= req_mode << SPRD_DMA_REQ_MODE_OFFSET; temp |= fix_mode << SPRD_DMA_FIX_SEL_OFFSET; temp |= fix_en << SPRD_DMA_FIX_EN_OFFSET; temp |= slave_cfg->src_maxburst & SPRD_DMA_FRG_LEN_MASK; hw->frg_len = temp; hw->blk_len = slave_cfg->src_maxburst & SPRD_DMA_BLK_LEN_MASK; hw->trsc_len = len & SPRD_DMA_TRSC_LEN_MASK; temp = (dst_step & SPRD_DMA_TRSF_STEP_MASK) << SPRD_DMA_DEST_TRSF_STEP_OFFSET; temp |= (src_step & SPRD_DMA_TRSF_STEP_MASK) << SPRD_DMA_SRC_TRSF_STEP_OFFSET; hw->trsf_step = temp; /* link-list configuration */ if (schan->linklist.phy_addr) { hw->cfg |= SPRD_DMA_LINKLIST_EN; /* link-list index */ temp = sglen ? (sg_index + 1) % sglen : 0; /* Next link-list configuration's physical address offset */ temp = temp * sizeof(*hw) + SPRD_DMA_CHN_SRC_ADDR; /* * Set the link-list pointer point to next link-list * configuration's physical address. */ hw->llist_ptr = schan->linklist.phy_addr + temp; } else { hw->llist_ptr = 0; } hw->frg_step = 0; hw->src_blk_step = 0; hw->des_blk_step = 0; return 0; } static int sprd_dma_fill_linklist_desc(struct dma_chan *chan, unsigned int sglen, int sg_index, dma_addr_t src, dma_addr_t dst, u32 len, enum dma_transfer_direction dir, unsigned long flags, struct dma_slave_config *slave_cfg) { struct sprd_dma_chn *schan = to_sprd_dma_chan(chan); struct sprd_dma_chn_hw *hw; if (!schan->linklist.virt_addr) return -EINVAL; hw = (struct sprd_dma_chn_hw *)(schan->linklist.virt_addr + sg_index * sizeof(*hw)); return sprd_dma_fill_desc(chan, hw, sglen, sg_index, src, dst, len, dir, flags, slave_cfg); } static struct dma_async_tx_descriptor * sprd_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, size_t len, unsigned long flags) { struct sprd_dma_chn *schan = to_sprd_dma_chan(chan); struct sprd_dma_desc *sdesc; struct sprd_dma_chn_hw *hw; enum sprd_dma_datawidth datawidth; u32 step, temp; sdesc = kzalloc(sizeof(*sdesc), GFP_NOWAIT); if (!sdesc) return NULL; hw = &sdesc->chn_hw; hw->cfg = SPRD_DMA_DONOT_WAIT_BDONE << SPRD_DMA_WAIT_BDONE_OFFSET; hw->intc = SPRD_DMA_TRANS_INT | SPRD_DMA_CFG_ERR_INT_EN; hw->src_addr = src & SPRD_DMA_LOW_ADDR_MASK; hw->des_addr = dest & SPRD_DMA_LOW_ADDR_MASK; hw->wrap_ptr = (src >> SPRD_DMA_HIGH_ADDR_OFFSET) & SPRD_DMA_HIGH_ADDR_MASK; hw->wrap_to = (dest >> SPRD_DMA_HIGH_ADDR_OFFSET) & SPRD_DMA_HIGH_ADDR_MASK; if (IS_ALIGNED(len, 8)) { datawidth = SPRD_DMA_DATAWIDTH_8_BYTES; step = SPRD_DMA_DWORD_STEP; } else if (IS_ALIGNED(len, 4)) { datawidth = SPRD_DMA_DATAWIDTH_4_BYTES; step = SPRD_DMA_WORD_STEP; } else if (IS_ALIGNED(len, 2)) { datawidth = SPRD_DMA_DATAWIDTH_2_BYTES; step = SPRD_DMA_SHORT_STEP; } else { datawidth = SPRD_DMA_DATAWIDTH_1_BYTE; step = SPRD_DMA_BYTE_STEP; } temp = datawidth << SPRD_DMA_SRC_DATAWIDTH_OFFSET; temp |= datawidth << SPRD_DMA_DES_DATAWIDTH_OFFSET; temp |= SPRD_DMA_TRANS_REQ << SPRD_DMA_REQ_MODE_OFFSET; temp |= len & SPRD_DMA_FRG_LEN_MASK; hw->frg_len = temp; hw->blk_len = len & SPRD_DMA_BLK_LEN_MASK; hw->trsc_len = len & SPRD_DMA_TRSC_LEN_MASK; temp = (step & SPRD_DMA_TRSF_STEP_MASK) << SPRD_DMA_DEST_TRSF_STEP_OFFSET; temp |= (step & SPRD_DMA_TRSF_STEP_MASK) << SPRD_DMA_SRC_TRSF_STEP_OFFSET; hw->trsf_step = temp; return vchan_tx_prep(&schan->vc, &sdesc->vd, flags); } static struct dma_async_tx_descriptor * sprd_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, unsigned int sglen, enum dma_transfer_direction dir, unsigned long flags, void *context) { struct sprd_dma_chn *schan = to_sprd_dma_chan(chan); struct dma_slave_config *slave_cfg = &schan->slave_cfg; dma_addr_t src = 0, dst = 0; dma_addr_t start_src = 0, start_dst = 0; struct sprd_dma_desc *sdesc; struct scatterlist *sg; u32 len = 0; int ret, i; if (!is_slave_direction(dir)) return NULL; if (context) { struct sprd_dma_linklist *ll_cfg = (struct sprd_dma_linklist *)context; schan->linklist.phy_addr = ll_cfg->phy_addr; schan->linklist.virt_addr = ll_cfg->virt_addr; } else { schan->linklist.phy_addr = 0; schan->linklist.virt_addr = 0; } /* * Set channel mode, interrupt mode and trigger mode for 2-stage * transfer. */ schan->chn_mode = (flags >> SPRD_DMA_CHN_MODE_SHIFT) & SPRD_DMA_CHN_MODE_MASK; schan->trg_mode = (flags >> SPRD_DMA_TRG_MODE_SHIFT) & SPRD_DMA_TRG_MODE_MASK; schan->int_type = flags & SPRD_DMA_INT_TYPE_MASK; sdesc = kzalloc(sizeof(*sdesc), GFP_NOWAIT); if (!sdesc) return NULL; sdesc->dir = dir; for_each_sg(sgl, sg, sglen, i) { len = sg_dma_len(sg); if (dir == DMA_MEM_TO_DEV) { src = sg_dma_address(sg); dst = slave_cfg->dst_addr; } else { src = slave_cfg->src_addr; dst = sg_dma_address(sg); } if (!i) { start_src = src; start_dst = dst; } /* * The link-list mode needs at least 2 link-list * configurations. If there is only one sg, it doesn't * need to fill the link-list configuration. */ if (sglen < 2) break; ret = sprd_dma_fill_linklist_desc(chan, sglen, i, src, dst, len, dir, flags, slave_cfg); if (ret) { kfree(sdesc); return NULL; } } ret = sprd_dma_fill_desc(chan, &sdesc->chn_hw, 0, 0, start_src, start_dst, len, dir, flags, slave_cfg); if (ret) { kfree(sdesc); return NULL; } return vchan_tx_prep(&schan->vc, &sdesc->vd, flags); } static int sprd_dma_slave_config(struct dma_chan *chan, struct dma_slave_config *config) { struct sprd_dma_chn *schan = to_sprd_dma_chan(chan); struct dma_slave_config *slave_cfg = &schan->slave_cfg; memcpy(slave_cfg, config, sizeof(*config)); return 0; } static int sprd_dma_pause(struct dma_chan *chan) { struct sprd_dma_chn *schan = to_sprd_dma_chan(chan); unsigned long flags; spin_lock_irqsave(&schan->vc.lock, flags); sprd_dma_pause_resume(schan, true); spin_unlock_irqrestore(&schan->vc.lock, flags); return 0; } static int sprd_dma_resume(struct dma_chan *chan) { struct sprd_dma_chn *schan = to_sprd_dma_chan(chan); unsigned long flags; spin_lock_irqsave(&schan->vc.lock, flags); sprd_dma_pause_resume(schan, false); spin_unlock_irqrestore(&schan->vc.lock, flags); return 0; } static int sprd_dma_terminate_all(struct dma_chan *chan) { struct sprd_dma_chn *schan = to_sprd_dma_chan(chan); unsigned long flags; LIST_HEAD(head); spin_lock_irqsave(&schan->vc.lock, flags); sprd_dma_stop(schan); vchan_get_all_descriptors(&schan->vc, &head); spin_unlock_irqrestore(&schan->vc.lock, flags); vchan_dma_desc_free_list(&schan->vc, &head); return 0; } static void sprd_dma_free_desc(struct virt_dma_desc *vd) { struct sprd_dma_desc *sdesc = to_sprd_dma_desc(vd); kfree(sdesc); } static bool sprd_dma_filter_fn(struct dma_chan *chan, void *param) { struct sprd_dma_chn *schan = to_sprd_dma_chan(chan); u32 slave_id = *(u32 *)param; schan->dev_id = slave_id; return true; } static int sprd_dma_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct sprd_dma_dev *sdev; struct sprd_dma_chn *dma_chn; struct resource *res; u32 chn_count; int ret, i; ret = device_property_read_u32(&pdev->dev, "#dma-channels", &chn_count); if (ret) { dev_err(&pdev->dev, "get dma channels count failed\n"); return ret; } sdev = devm_kzalloc(&pdev->dev, struct_size(sdev, channels, chn_count), GFP_KERNEL); if (!sdev) return -ENOMEM; sdev->clk = devm_clk_get(&pdev->dev, "enable"); if (IS_ERR(sdev->clk)) { dev_err(&pdev->dev, "get enable clock failed\n"); return PTR_ERR(sdev->clk); } /* ashb clock is optional for AGCP DMA */ sdev->ashb_clk = devm_clk_get(&pdev->dev, "ashb_eb"); if (IS_ERR(sdev->ashb_clk)) dev_warn(&pdev->dev, "no optional ashb eb clock\n"); /* * We have three DMA controllers: AP DMA, AON DMA and AGCP DMA. For AGCP * DMA controller, it can or do not request the irq, which will save * system power without resuming system by DMA interrupts if AGCP DMA * does not request the irq. Thus the DMA interrupts property should * be optional. */ sdev->irq = platform_get_irq(pdev, 0); if (sdev->irq > 0) { ret = devm_request_irq(&pdev->dev, sdev->irq, dma_irq_handle, 0, "sprd_dma", (void *)sdev); if (ret < 0) { dev_err(&pdev->dev, "request dma irq failed\n"); return ret; } } else { dev_warn(&pdev->dev, "no interrupts for the dma controller\n"); } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); sdev->glb_base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(sdev->glb_base)) return PTR_ERR(sdev->glb_base); dma_cap_set(DMA_MEMCPY, sdev->dma_dev.cap_mask); sdev->total_chns = chn_count; sdev->dma_dev.chancnt = chn_count; INIT_LIST_HEAD(&sdev->dma_dev.channels); INIT_LIST_HEAD(&sdev->dma_dev.global_node); sdev->dma_dev.dev = &pdev->dev; sdev->dma_dev.device_alloc_chan_resources = sprd_dma_alloc_chan_resources; sdev->dma_dev.device_free_chan_resources = sprd_dma_free_chan_resources; sdev->dma_dev.device_tx_status = sprd_dma_tx_status; sdev->dma_dev.device_issue_pending = sprd_dma_issue_pending; sdev->dma_dev.device_prep_dma_memcpy = sprd_dma_prep_dma_memcpy; sdev->dma_dev.device_prep_slave_sg = sprd_dma_prep_slave_sg; sdev->dma_dev.device_config = sprd_dma_slave_config; sdev->dma_dev.device_pause = sprd_dma_pause; sdev->dma_dev.device_resume = sprd_dma_resume; sdev->dma_dev.device_terminate_all = sprd_dma_terminate_all; for (i = 0; i < chn_count; i++) { dma_chn = &sdev->channels[i]; dma_chn->chn_num = i; dma_chn->cur_desc = NULL; /* get each channel's registers base address. */ dma_chn->chn_base = sdev->glb_base + SPRD_DMA_CHN_REG_OFFSET + SPRD_DMA_CHN_REG_LENGTH * i; dma_chn->vc.desc_free = sprd_dma_free_desc; vchan_init(&dma_chn->vc, &sdev->dma_dev); } platform_set_drvdata(pdev, sdev); ret = sprd_dma_enable(sdev); if (ret) return ret; pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); ret = pm_runtime_get_sync(&pdev->dev); if (ret < 0) goto err_rpm; ret = dma_async_device_register(&sdev->dma_dev); if (ret < 0) { dev_err(&pdev->dev, "register dma device failed:%d\n", ret); goto err_register; } sprd_dma_info.dma_cap = sdev->dma_dev.cap_mask; ret = of_dma_controller_register(np, of_dma_simple_xlate, &sprd_dma_info); if (ret) goto err_of_register; pm_runtime_put(&pdev->dev); return 0; err_of_register: dma_async_device_unregister(&sdev->dma_dev); err_register: pm_runtime_put_noidle(&pdev->dev); pm_runtime_disable(&pdev->dev); err_rpm: sprd_dma_disable(sdev); return ret; } static int sprd_dma_remove(struct platform_device *pdev) { struct sprd_dma_dev *sdev = platform_get_drvdata(pdev); struct sprd_dma_chn *c, *cn; int ret; ret = pm_runtime_get_sync(&pdev->dev); if (ret < 0) return ret; /* explicitly free the irq */ if (sdev->irq > 0) devm_free_irq(&pdev->dev, sdev->irq, sdev); list_for_each_entry_safe(c, cn, &sdev->dma_dev.channels, vc.chan.device_node) { list_del(&c->vc.chan.device_node); tasklet_kill(&c->vc.task); } of_dma_controller_free(pdev->dev.of_node); dma_async_device_unregister(&sdev->dma_dev); sprd_dma_disable(sdev); pm_runtime_put_noidle(&pdev->dev); pm_runtime_disable(&pdev->dev); return 0; } static const struct of_device_id sprd_dma_match[] = { { .compatible = "sprd,sc9860-dma", }, {}, }; static int __maybe_unused sprd_dma_runtime_suspend(struct device *dev) { struct sprd_dma_dev *sdev = dev_get_drvdata(dev); sprd_dma_disable(sdev); return 0; } static int __maybe_unused sprd_dma_runtime_resume(struct device *dev) { struct sprd_dma_dev *sdev = dev_get_drvdata(dev); int ret; ret = sprd_dma_enable(sdev); if (ret) dev_err(sdev->dma_dev.dev, "enable dma failed\n"); return ret; } static const struct dev_pm_ops sprd_dma_pm_ops = { SET_RUNTIME_PM_OPS(sprd_dma_runtime_suspend, sprd_dma_runtime_resume, NULL) }; static struct platform_driver sprd_dma_driver = { .probe = sprd_dma_probe, .remove = sprd_dma_remove, .driver = { .name = "sprd-dma", .of_match_table = sprd_dma_match, .pm = &sprd_dma_pm_ops, }, }; module_platform_driver(sprd_dma_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("DMA driver for Spreadtrum"); MODULE_AUTHOR("Baolin Wang <baolin.wang@spreadtrum.com>"); MODULE_AUTHOR("Eric Long <eric.long@spreadtrum.com>"); MODULE_ALIAS("platform:sprd-dma");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1