Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Russell King | 5141 | 62.44% | 24 | 32.00% |
Peter Ujfalusi | 2450 | 29.75% | 34 | 45.33% |
Sebastian Andrzej Siewior | 279 | 3.39% | 1 | 1.33% |
Jon Hunter | 157 | 1.91% | 1 | 1.33% |
Maxime Ripard | 106 | 1.29% | 2 | 2.67% |
Misael Lopez Cruz | 34 | 0.41% | 2 | 2.67% |
Vinod Koul | 26 | 0.32% | 3 | 4.00% |
Janusz Krzysztofik | 20 | 0.24% | 1 | 1.33% |
Wenwen Wang | 7 | 0.09% | 1 | 1.33% |
Hans Verkuil | 4 | 0.05% | 1 | 1.33% |
Kees Cook | 4 | 0.05% | 1 | 1.33% |
Thomas Gleixner | 2 | 0.02% | 1 | 1.33% |
Colin Ian King | 2 | 0.02% | 1 | 1.33% |
Ezequiel García | 1 | 0.01% | 1 | 1.33% |
Tony Lindgren | 1 | 0.01% | 1 | 1.33% |
Total | 8234 | 75 |
// SPDX-License-Identifier: GPL-2.0-only /* * OMAP DMAengine support */ #include <linux/delay.h> #include <linux/dmaengine.h> #include <linux/dma-mapping.h> #include <linux/dmapool.h> #include <linux/err.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/list.h> #include <linux/module.h> #include <linux/omap-dma.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/of_dma.h> #include <linux/of_device.h> #include "../virt-dma.h" #define OMAP_SDMA_REQUESTS 127 #define OMAP_SDMA_CHANNELS 32 struct omap_dmadev { struct dma_device ddev; spinlock_t lock; void __iomem *base; const struct omap_dma_reg *reg_map; struct omap_system_dma_plat_info *plat; bool legacy; bool ll123_supported; struct dma_pool *desc_pool; unsigned dma_requests; spinlock_t irq_lock; uint32_t irq_enable_mask; struct omap_chan **lch_map; }; struct omap_chan { struct virt_dma_chan vc; void __iomem *channel_base; const struct omap_dma_reg *reg_map; uint32_t ccr; struct dma_slave_config cfg; unsigned dma_sig; bool cyclic; bool paused; bool running; int dma_ch; struct omap_desc *desc; unsigned sgidx; }; #define DESC_NXT_SV_REFRESH (0x1 << 24) #define DESC_NXT_SV_REUSE (0x2 << 24) #define DESC_NXT_DV_REFRESH (0x1 << 26) #define DESC_NXT_DV_REUSE (0x2 << 26) #define DESC_NTYPE_TYPE2 (0x2 << 29) /* Type 2 descriptor with Source or Destination address update */ struct omap_type2_desc { uint32_t next_desc; uint32_t en; uint32_t addr; /* src or dst */ uint16_t fn; uint16_t cicr; int16_t cdei; int16_t csei; int32_t cdfi; int32_t csfi; } __packed; struct omap_sg { dma_addr_t addr; uint32_t en; /* number of elements (24-bit) */ uint32_t fn; /* number of frames (16-bit) */ int32_t fi; /* for double indexing */ int16_t ei; /* for double indexing */ /* Linked list */ struct omap_type2_desc *t2_desc; dma_addr_t t2_desc_paddr; }; struct omap_desc { struct virt_dma_desc vd; bool using_ll; enum dma_transfer_direction dir; dma_addr_t dev_addr; int32_t fi; /* for OMAP_DMA_SYNC_PACKET / double indexing */ int16_t ei; /* for double indexing */ uint8_t es; /* CSDP_DATA_TYPE_xxx */ uint32_t ccr; /* CCR value */ uint16_t clnk_ctrl; /* CLNK_CTRL value */ uint16_t cicr; /* CICR value */ uint32_t csdp; /* CSDP value */ unsigned sglen; struct omap_sg sg[0]; }; enum { CAPS_0_SUPPORT_LL123 = BIT(20), /* Linked List type1/2/3 */ CAPS_0_SUPPORT_LL4 = BIT(21), /* Linked List type4 */ CCR_FS = BIT(5), CCR_READ_PRIORITY = BIT(6), CCR_ENABLE = BIT(7), CCR_AUTO_INIT = BIT(8), /* OMAP1 only */ CCR_REPEAT = BIT(9), /* OMAP1 only */ CCR_OMAP31_DISABLE = BIT(10), /* OMAP1 only */ CCR_SUSPEND_SENSITIVE = BIT(8), /* OMAP2+ only */ CCR_RD_ACTIVE = BIT(9), /* OMAP2+ only */ CCR_WR_ACTIVE = BIT(10), /* OMAP2+ only */ CCR_SRC_AMODE_CONSTANT = 0 << 12, CCR_SRC_AMODE_POSTINC = 1 << 12, CCR_SRC_AMODE_SGLIDX = 2 << 12, CCR_SRC_AMODE_DBLIDX = 3 << 12, CCR_DST_AMODE_CONSTANT = 0 << 14, CCR_DST_AMODE_POSTINC = 1 << 14, CCR_DST_AMODE_SGLIDX = 2 << 14, CCR_DST_AMODE_DBLIDX = 3 << 14, CCR_CONSTANT_FILL = BIT(16), CCR_TRANSPARENT_COPY = BIT(17), CCR_BS = BIT(18), CCR_SUPERVISOR = BIT(22), CCR_PREFETCH = BIT(23), CCR_TRIGGER_SRC = BIT(24), CCR_BUFFERING_DISABLE = BIT(25), CCR_WRITE_PRIORITY = BIT(26), CCR_SYNC_ELEMENT = 0, CCR_SYNC_FRAME = CCR_FS, CCR_SYNC_BLOCK = CCR_BS, CCR_SYNC_PACKET = CCR_BS | CCR_FS, CSDP_DATA_TYPE_8 = 0, CSDP_DATA_TYPE_16 = 1, CSDP_DATA_TYPE_32 = 2, CSDP_SRC_PORT_EMIFF = 0 << 2, /* OMAP1 only */ CSDP_SRC_PORT_EMIFS = 1 << 2, /* OMAP1 only */ CSDP_SRC_PORT_OCP_T1 = 2 << 2, /* OMAP1 only */ CSDP_SRC_PORT_TIPB = 3 << 2, /* OMAP1 only */ CSDP_SRC_PORT_OCP_T2 = 4 << 2, /* OMAP1 only */ CSDP_SRC_PORT_MPUI = 5 << 2, /* OMAP1 only */ CSDP_SRC_PACKED = BIT(6), CSDP_SRC_BURST_1 = 0 << 7, CSDP_SRC_BURST_16 = 1 << 7, CSDP_SRC_BURST_32 = 2 << 7, CSDP_SRC_BURST_64 = 3 << 7, CSDP_DST_PORT_EMIFF = 0 << 9, /* OMAP1 only */ CSDP_DST_PORT_EMIFS = 1 << 9, /* OMAP1 only */ CSDP_DST_PORT_OCP_T1 = 2 << 9, /* OMAP1 only */ CSDP_DST_PORT_TIPB = 3 << 9, /* OMAP1 only */ CSDP_DST_PORT_OCP_T2 = 4 << 9, /* OMAP1 only */ CSDP_DST_PORT_MPUI = 5 << 9, /* OMAP1 only */ CSDP_DST_PACKED = BIT(13), CSDP_DST_BURST_1 = 0 << 14, CSDP_DST_BURST_16 = 1 << 14, CSDP_DST_BURST_32 = 2 << 14, CSDP_DST_BURST_64 = 3 << 14, CSDP_WRITE_NON_POSTED = 0 << 16, CSDP_WRITE_POSTED = 1 << 16, CSDP_WRITE_LAST_NON_POSTED = 2 << 16, CICR_TOUT_IE = BIT(0), /* OMAP1 only */ CICR_DROP_IE = BIT(1), CICR_HALF_IE = BIT(2), CICR_FRAME_IE = BIT(3), CICR_LAST_IE = BIT(4), CICR_BLOCK_IE = BIT(5), CICR_PKT_IE = BIT(7), /* OMAP2+ only */ CICR_TRANS_ERR_IE = BIT(8), /* OMAP2+ only */ CICR_SUPERVISOR_ERR_IE = BIT(10), /* OMAP2+ only */ CICR_MISALIGNED_ERR_IE = BIT(11), /* OMAP2+ only */ CICR_DRAIN_IE = BIT(12), /* OMAP2+ only */ CICR_SUPER_BLOCK_IE = BIT(14), /* OMAP2+ only */ CLNK_CTRL_ENABLE_LNK = BIT(15), CDP_DST_VALID_INC = 0 << 0, CDP_DST_VALID_RELOAD = 1 << 0, CDP_DST_VALID_REUSE = 2 << 0, CDP_SRC_VALID_INC = 0 << 2, CDP_SRC_VALID_RELOAD = 1 << 2, CDP_SRC_VALID_REUSE = 2 << 2, CDP_NTYPE_TYPE1 = 1 << 4, CDP_NTYPE_TYPE2 = 2 << 4, CDP_NTYPE_TYPE3 = 3 << 4, CDP_TMODE_NORMAL = 0 << 8, CDP_TMODE_LLIST = 1 << 8, CDP_FAST = BIT(10), }; static const unsigned es_bytes[] = { [CSDP_DATA_TYPE_8] = 1, [CSDP_DATA_TYPE_16] = 2, [CSDP_DATA_TYPE_32] = 4, }; static struct of_dma_filter_info omap_dma_info = { .filter_fn = omap_dma_filter_fn, }; static inline struct omap_dmadev *to_omap_dma_dev(struct dma_device *d) { return container_of(d, struct omap_dmadev, ddev); } static inline struct omap_chan *to_omap_dma_chan(struct dma_chan *c) { return container_of(c, struct omap_chan, vc.chan); } static inline struct omap_desc *to_omap_dma_desc(struct dma_async_tx_descriptor *t) { return container_of(t, struct omap_desc, vd.tx); } static void omap_dma_desc_free(struct virt_dma_desc *vd) { struct omap_desc *d = to_omap_dma_desc(&vd->tx); if (d->using_ll) { struct omap_dmadev *od = to_omap_dma_dev(vd->tx.chan->device); int i; for (i = 0; i < d->sglen; i++) { if (d->sg[i].t2_desc) dma_pool_free(od->desc_pool, d->sg[i].t2_desc, d->sg[i].t2_desc_paddr); } } kfree(d); } static void omap_dma_fill_type2_desc(struct omap_desc *d, int idx, enum dma_transfer_direction dir, bool last) { struct omap_sg *sg = &d->sg[idx]; struct omap_type2_desc *t2_desc = sg->t2_desc; if (idx) d->sg[idx - 1].t2_desc->next_desc = sg->t2_desc_paddr; if (last) t2_desc->next_desc = 0xfffffffc; t2_desc->en = sg->en; t2_desc->addr = sg->addr; t2_desc->fn = sg->fn & 0xffff; t2_desc->cicr = d->cicr; if (!last) t2_desc->cicr &= ~CICR_BLOCK_IE; switch (dir) { case DMA_DEV_TO_MEM: t2_desc->cdei = sg->ei; t2_desc->csei = d->ei; t2_desc->cdfi = sg->fi; t2_desc->csfi = d->fi; t2_desc->en |= DESC_NXT_DV_REFRESH; t2_desc->en |= DESC_NXT_SV_REUSE; break; case DMA_MEM_TO_DEV: t2_desc->cdei = d->ei; t2_desc->csei = sg->ei; t2_desc->cdfi = d->fi; t2_desc->csfi = sg->fi; t2_desc->en |= DESC_NXT_SV_REFRESH; t2_desc->en |= DESC_NXT_DV_REUSE; break; default: return; } t2_desc->en |= DESC_NTYPE_TYPE2; } static void omap_dma_write(uint32_t val, unsigned type, void __iomem *addr) { switch (type) { case OMAP_DMA_REG_16BIT: writew_relaxed(val, addr); break; case OMAP_DMA_REG_2X16BIT: writew_relaxed(val, addr); writew_relaxed(val >> 16, addr + 2); break; case OMAP_DMA_REG_32BIT: writel_relaxed(val, addr); break; default: WARN_ON(1); } } static unsigned omap_dma_read(unsigned type, void __iomem *addr) { unsigned val; switch (type) { case OMAP_DMA_REG_16BIT: val = readw_relaxed(addr); break; case OMAP_DMA_REG_2X16BIT: val = readw_relaxed(addr); val |= readw_relaxed(addr + 2) << 16; break; case OMAP_DMA_REG_32BIT: val = readl_relaxed(addr); break; default: WARN_ON(1); val = 0; } return val; } static void omap_dma_glbl_write(struct omap_dmadev *od, unsigned reg, unsigned val) { const struct omap_dma_reg *r = od->reg_map + reg; WARN_ON(r->stride); omap_dma_write(val, r->type, od->base + r->offset); } static unsigned omap_dma_glbl_read(struct omap_dmadev *od, unsigned reg) { const struct omap_dma_reg *r = od->reg_map + reg; WARN_ON(r->stride); return omap_dma_read(r->type, od->base + r->offset); } static void omap_dma_chan_write(struct omap_chan *c, unsigned reg, unsigned val) { const struct omap_dma_reg *r = c->reg_map + reg; omap_dma_write(val, r->type, c->channel_base + r->offset); } static unsigned omap_dma_chan_read(struct omap_chan *c, unsigned reg) { const struct omap_dma_reg *r = c->reg_map + reg; return omap_dma_read(r->type, c->channel_base + r->offset); } static void omap_dma_clear_csr(struct omap_chan *c) { if (dma_omap1()) omap_dma_chan_read(c, CSR); else omap_dma_chan_write(c, CSR, ~0); } static unsigned omap_dma_get_csr(struct omap_chan *c) { unsigned val = omap_dma_chan_read(c, CSR); if (!dma_omap1()) omap_dma_chan_write(c, CSR, val); return val; } static void omap_dma_assign(struct omap_dmadev *od, struct omap_chan *c, unsigned lch) { c->channel_base = od->base + od->plat->channel_stride * lch; od->lch_map[lch] = c; } static void omap_dma_start(struct omap_chan *c, struct omap_desc *d) { struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device); uint16_t cicr = d->cicr; if (__dma_omap15xx(od->plat->dma_attr)) omap_dma_chan_write(c, CPC, 0); else omap_dma_chan_write(c, CDAC, 0); omap_dma_clear_csr(c); if (d->using_ll) { uint32_t cdp = CDP_TMODE_LLIST | CDP_NTYPE_TYPE2 | CDP_FAST; if (d->dir == DMA_DEV_TO_MEM) cdp |= (CDP_DST_VALID_RELOAD | CDP_SRC_VALID_REUSE); else cdp |= (CDP_DST_VALID_REUSE | CDP_SRC_VALID_RELOAD); omap_dma_chan_write(c, CDP, cdp); omap_dma_chan_write(c, CNDP, d->sg[0].t2_desc_paddr); omap_dma_chan_write(c, CCDN, 0); omap_dma_chan_write(c, CCFN, 0xffff); omap_dma_chan_write(c, CCEN, 0xffffff); cicr &= ~CICR_BLOCK_IE; } else if (od->ll123_supported) { omap_dma_chan_write(c, CDP, 0); } /* Enable interrupts */ omap_dma_chan_write(c, CICR, cicr); /* Enable channel */ omap_dma_chan_write(c, CCR, d->ccr | CCR_ENABLE); c->running = true; } static void omap_dma_drain_chan(struct omap_chan *c) { int i; u32 val; /* Wait for sDMA FIFO to drain */ for (i = 0; ; i++) { val = omap_dma_chan_read(c, CCR); if (!(val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE))) break; if (i > 100) break; udelay(5); } if (val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE)) dev_err(c->vc.chan.device->dev, "DMA drain did not complete on lch %d\n", c->dma_ch); } static int omap_dma_stop(struct omap_chan *c) { struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device); uint32_t val; /* disable irq */ omap_dma_chan_write(c, CICR, 0); omap_dma_clear_csr(c); val = omap_dma_chan_read(c, CCR); if (od->plat->errata & DMA_ERRATA_i541 && val & CCR_TRIGGER_SRC) { uint32_t sysconfig; sysconfig = omap_dma_glbl_read(od, OCP_SYSCONFIG); val = sysconfig & ~DMA_SYSCONFIG_MIDLEMODE_MASK; val |= DMA_SYSCONFIG_MIDLEMODE(DMA_IDLEMODE_NO_IDLE); omap_dma_glbl_write(od, OCP_SYSCONFIG, val); val = omap_dma_chan_read(c, CCR); val &= ~CCR_ENABLE; omap_dma_chan_write(c, CCR, val); if (!(c->ccr & CCR_BUFFERING_DISABLE)) omap_dma_drain_chan(c); omap_dma_glbl_write(od, OCP_SYSCONFIG, sysconfig); } else { if (!(val & CCR_ENABLE)) return -EINVAL; val &= ~CCR_ENABLE; omap_dma_chan_write(c, CCR, val); if (!(c->ccr & CCR_BUFFERING_DISABLE)) omap_dma_drain_chan(c); } mb(); if (!__dma_omap15xx(od->plat->dma_attr) && c->cyclic) { val = omap_dma_chan_read(c, CLNK_CTRL); if (dma_omap1()) val |= 1 << 14; /* set the STOP_LNK bit */ else val &= ~CLNK_CTRL_ENABLE_LNK; omap_dma_chan_write(c, CLNK_CTRL, val); } c->running = false; return 0; } static void omap_dma_start_sg(struct omap_chan *c, struct omap_desc *d) { struct omap_sg *sg = d->sg + c->sgidx; unsigned cxsa, cxei, cxfi; if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM) { cxsa = CDSA; cxei = CDEI; cxfi = CDFI; } else { cxsa = CSSA; cxei = CSEI; cxfi = CSFI; } omap_dma_chan_write(c, cxsa, sg->addr); omap_dma_chan_write(c, cxei, sg->ei); omap_dma_chan_write(c, cxfi, sg->fi); omap_dma_chan_write(c, CEN, sg->en); omap_dma_chan_write(c, CFN, sg->fn); omap_dma_start(c, d); c->sgidx++; } static void omap_dma_start_desc(struct omap_chan *c) { struct virt_dma_desc *vd = vchan_next_desc(&c->vc); struct omap_desc *d; unsigned cxsa, cxei, cxfi; if (!vd) { c->desc = NULL; return; } list_del(&vd->node); c->desc = d = to_omap_dma_desc(&vd->tx); c->sgidx = 0; /* * This provides the necessary barrier to ensure data held in * DMA coherent memory is visible to the DMA engine prior to * the transfer starting. */ mb(); omap_dma_chan_write(c, CCR, d->ccr); if (dma_omap1()) omap_dma_chan_write(c, CCR2, d->ccr >> 16); if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM) { cxsa = CSSA; cxei = CSEI; cxfi = CSFI; } else { cxsa = CDSA; cxei = CDEI; cxfi = CDFI; } omap_dma_chan_write(c, cxsa, d->dev_addr); omap_dma_chan_write(c, cxei, d->ei); omap_dma_chan_write(c, cxfi, d->fi); omap_dma_chan_write(c, CSDP, d->csdp); omap_dma_chan_write(c, CLNK_CTRL, d->clnk_ctrl); omap_dma_start_sg(c, d); } static void omap_dma_callback(int ch, u16 status, void *data) { struct omap_chan *c = data; struct omap_desc *d; unsigned long flags; spin_lock_irqsave(&c->vc.lock, flags); d = c->desc; if (d) { if (c->cyclic) { vchan_cyclic_callback(&d->vd); } else if (d->using_ll || c->sgidx == d->sglen) { omap_dma_start_desc(c); vchan_cookie_complete(&d->vd); } else { omap_dma_start_sg(c, d); } } spin_unlock_irqrestore(&c->vc.lock, flags); } static irqreturn_t omap_dma_irq(int irq, void *devid) { struct omap_dmadev *od = devid; unsigned status, channel; spin_lock(&od->irq_lock); status = omap_dma_glbl_read(od, IRQSTATUS_L1); status &= od->irq_enable_mask; if (status == 0) { spin_unlock(&od->irq_lock); return IRQ_NONE; } while ((channel = ffs(status)) != 0) { unsigned mask, csr; struct omap_chan *c; channel -= 1; mask = BIT(channel); status &= ~mask; c = od->lch_map[channel]; if (c == NULL) { /* This should never happen */ dev_err(od->ddev.dev, "invalid channel %u\n", channel); continue; } csr = omap_dma_get_csr(c); omap_dma_glbl_write(od, IRQSTATUS_L1, mask); omap_dma_callback(channel, csr, c); } spin_unlock(&od->irq_lock); return IRQ_HANDLED; } static int omap_dma_alloc_chan_resources(struct dma_chan *chan) { struct omap_dmadev *od = to_omap_dma_dev(chan->device); struct omap_chan *c = to_omap_dma_chan(chan); struct device *dev = od->ddev.dev; int ret; if (od->legacy) { ret = omap_request_dma(c->dma_sig, "DMA engine", omap_dma_callback, c, &c->dma_ch); } else { ret = omap_request_dma(c->dma_sig, "DMA engine", NULL, NULL, &c->dma_ch); } dev_dbg(dev, "allocating channel %u for %u\n", c->dma_ch, c->dma_sig); if (ret >= 0) { omap_dma_assign(od, c, c->dma_ch); if (!od->legacy) { unsigned val; spin_lock_irq(&od->irq_lock); val = BIT(c->dma_ch); omap_dma_glbl_write(od, IRQSTATUS_L1, val); od->irq_enable_mask |= val; omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask); val = omap_dma_glbl_read(od, IRQENABLE_L0); val &= ~BIT(c->dma_ch); omap_dma_glbl_write(od, IRQENABLE_L0, val); spin_unlock_irq(&od->irq_lock); } } if (dma_omap1()) { if (__dma_omap16xx(od->plat->dma_attr)) { c->ccr = CCR_OMAP31_DISABLE; /* Duplicate what plat-omap/dma.c does */ c->ccr |= c->dma_ch + 1; } else { c->ccr = c->dma_sig & 0x1f; } } else { c->ccr = c->dma_sig & 0x1f; c->ccr |= (c->dma_sig & ~0x1f) << 14; } if (od->plat->errata & DMA_ERRATA_IFRAME_BUFFERING) c->ccr |= CCR_BUFFERING_DISABLE; return ret; } static void omap_dma_free_chan_resources(struct dma_chan *chan) { struct omap_dmadev *od = to_omap_dma_dev(chan->device); struct omap_chan *c = to_omap_dma_chan(chan); if (!od->legacy) { spin_lock_irq(&od->irq_lock); od->irq_enable_mask &= ~BIT(c->dma_ch); omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask); spin_unlock_irq(&od->irq_lock); } c->channel_base = NULL; od->lch_map[c->dma_ch] = NULL; vchan_free_chan_resources(&c->vc); omap_free_dma(c->dma_ch); dev_dbg(od->ddev.dev, "freeing channel %u used for %u\n", c->dma_ch, c->dma_sig); c->dma_sig = 0; } static size_t omap_dma_sg_size(struct omap_sg *sg) { return sg->en * sg->fn; } static size_t omap_dma_desc_size(struct omap_desc *d) { unsigned i; size_t size; for (size = i = 0; i < d->sglen; i++) size += omap_dma_sg_size(&d->sg[i]); return size * es_bytes[d->es]; } static size_t omap_dma_desc_size_pos(struct omap_desc *d, dma_addr_t addr) { unsigned i; size_t size, es_size = es_bytes[d->es]; for (size = i = 0; i < d->sglen; i++) { size_t this_size = omap_dma_sg_size(&d->sg[i]) * es_size; if (size) size += this_size; else if (addr >= d->sg[i].addr && addr < d->sg[i].addr + this_size) size += d->sg[i].addr + this_size - addr; } return size; } /* * OMAP 3.2/3.3 erratum: sometimes 0 is returned if CSAC/CDAC is * read before the DMA controller finished disabling the channel. */ static uint32_t omap_dma_chan_read_3_3(struct omap_chan *c, unsigned reg) { struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device); uint32_t val; val = omap_dma_chan_read(c, reg); if (val == 0 && od->plat->errata & DMA_ERRATA_3_3) val = omap_dma_chan_read(c, reg); return val; } static dma_addr_t omap_dma_get_src_pos(struct omap_chan *c) { struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device); dma_addr_t addr, cdac; if (__dma_omap15xx(od->plat->dma_attr)) { addr = omap_dma_chan_read(c, CPC); } else { addr = omap_dma_chan_read_3_3(c, CSAC); cdac = omap_dma_chan_read_3_3(c, CDAC); /* * CDAC == 0 indicates that the DMA transfer on the channel has * not been started (no data has been transferred so far). * Return the programmed source start address in this case. */ if (cdac == 0) addr = omap_dma_chan_read(c, CSSA); } if (dma_omap1()) addr |= omap_dma_chan_read(c, CSSA) & 0xffff0000; return addr; } static dma_addr_t omap_dma_get_dst_pos(struct omap_chan *c) { struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device); dma_addr_t addr; if (__dma_omap15xx(od->plat->dma_attr)) { addr = omap_dma_chan_read(c, CPC); } else { addr = omap_dma_chan_read_3_3(c, CDAC); /* * CDAC == 0 indicates that the DMA transfer on the channel * has not been started (no data has been transferred so * far). Return the programmed destination start address in * this case. */ if (addr == 0) addr = omap_dma_chan_read(c, CDSA); } if (dma_omap1()) addr |= omap_dma_chan_read(c, CDSA) & 0xffff0000; return addr; } static enum dma_status omap_dma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct omap_chan *c = to_omap_dma_chan(chan); struct virt_dma_desc *vd; enum dma_status ret; unsigned long flags; ret = dma_cookie_status(chan, cookie, txstate); if (!c->paused && c->running) { uint32_t ccr = omap_dma_chan_read(c, CCR); /* * The channel is no longer active, set the return value * accordingly */ if (!(ccr & CCR_ENABLE)) ret = DMA_COMPLETE; } if (ret == DMA_COMPLETE || !txstate) return ret; spin_lock_irqsave(&c->vc.lock, flags); vd = vchan_find_desc(&c->vc, cookie); if (vd) { txstate->residue = omap_dma_desc_size(to_omap_dma_desc(&vd->tx)); } else if (c->desc && c->desc->vd.tx.cookie == cookie) { struct omap_desc *d = c->desc; dma_addr_t pos; if (d->dir == DMA_MEM_TO_DEV) pos = omap_dma_get_src_pos(c); else if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM) pos = omap_dma_get_dst_pos(c); else pos = 0; txstate->residue = omap_dma_desc_size_pos(d, pos); } else { txstate->residue = 0; } if (ret == DMA_IN_PROGRESS && c->paused) ret = DMA_PAUSED; spin_unlock_irqrestore(&c->vc.lock, flags); return ret; } static void omap_dma_issue_pending(struct dma_chan *chan) { struct omap_chan *c = to_omap_dma_chan(chan); unsigned long flags; spin_lock_irqsave(&c->vc.lock, flags); if (vchan_issue_pending(&c->vc) && !c->desc) omap_dma_start_desc(c); spin_unlock_irqrestore(&c->vc.lock, flags); } static struct dma_async_tx_descriptor *omap_dma_prep_slave_sg( struct dma_chan *chan, struct scatterlist *sgl, unsigned sglen, enum dma_transfer_direction dir, unsigned long tx_flags, void *context) { struct omap_dmadev *od = to_omap_dma_dev(chan->device); struct omap_chan *c = to_omap_dma_chan(chan); enum dma_slave_buswidth dev_width; struct scatterlist *sgent; struct omap_desc *d; dma_addr_t dev_addr; unsigned i, es, en, frame_bytes; bool ll_failed = false; u32 burst; u32 port_window, port_window_bytes; if (dir == DMA_DEV_TO_MEM) { dev_addr = c->cfg.src_addr; dev_width = c->cfg.src_addr_width; burst = c->cfg.src_maxburst; port_window = c->cfg.src_port_window_size; } else if (dir == DMA_MEM_TO_DEV) { dev_addr = c->cfg.dst_addr; dev_width = c->cfg.dst_addr_width; burst = c->cfg.dst_maxburst; port_window = c->cfg.dst_port_window_size; } else { dev_err(chan->device->dev, "%s: bad direction?\n", __func__); return NULL; } /* Bus width translates to the element size (ES) */ switch (dev_width) { case DMA_SLAVE_BUSWIDTH_1_BYTE: es = CSDP_DATA_TYPE_8; break; case DMA_SLAVE_BUSWIDTH_2_BYTES: es = CSDP_DATA_TYPE_16; break; case DMA_SLAVE_BUSWIDTH_4_BYTES: es = CSDP_DATA_TYPE_32; break; default: /* not reached */ return NULL; } /* Now allocate and setup the descriptor. */ d = kzalloc(struct_size(d, sg, sglen), GFP_ATOMIC); if (!d) return NULL; d->dir = dir; d->dev_addr = dev_addr; d->es = es; /* When the port_window is used, one frame must cover the window */ if (port_window) { burst = port_window; port_window_bytes = port_window * es_bytes[es]; d->ei = 1; /* * One frame covers the port_window and by configure * the source frame index to be -1 * (port_window - 1) * we instruct the sDMA that after a frame is processed * it should move back to the start of the window. */ d->fi = -(port_window_bytes - 1); } d->ccr = c->ccr | CCR_SYNC_FRAME; if (dir == DMA_DEV_TO_MEM) { d->csdp = CSDP_DST_BURST_64 | CSDP_DST_PACKED; d->ccr |= CCR_DST_AMODE_POSTINC; if (port_window) { d->ccr |= CCR_SRC_AMODE_DBLIDX; if (port_window_bytes >= 64) d->csdp |= CSDP_SRC_BURST_64; else if (port_window_bytes >= 32) d->csdp |= CSDP_SRC_BURST_32; else if (port_window_bytes >= 16) d->csdp |= CSDP_SRC_BURST_16; } else { d->ccr |= CCR_SRC_AMODE_CONSTANT; } } else { d->csdp = CSDP_SRC_BURST_64 | CSDP_SRC_PACKED; d->ccr |= CCR_SRC_AMODE_POSTINC; if (port_window) { d->ccr |= CCR_DST_AMODE_DBLIDX; if (port_window_bytes >= 64) d->csdp |= CSDP_DST_BURST_64; else if (port_window_bytes >= 32) d->csdp |= CSDP_DST_BURST_32; else if (port_window_bytes >= 16) d->csdp |= CSDP_DST_BURST_16; } else { d->ccr |= CCR_DST_AMODE_CONSTANT; } } d->cicr = CICR_DROP_IE | CICR_BLOCK_IE; d->csdp |= es; if (dma_omap1()) { d->cicr |= CICR_TOUT_IE; if (dir == DMA_DEV_TO_MEM) d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_TIPB; else d->csdp |= CSDP_DST_PORT_TIPB | CSDP_SRC_PORT_EMIFF; } else { if (dir == DMA_DEV_TO_MEM) d->ccr |= CCR_TRIGGER_SRC; d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE; if (port_window) d->csdp |= CSDP_WRITE_LAST_NON_POSTED; } if (od->plat->errata & DMA_ERRATA_PARALLEL_CHANNELS) d->clnk_ctrl = c->dma_ch; /* * Build our scatterlist entries: each contains the address, * the number of elements (EN) in each frame, and the number of * frames (FN). Number of bytes for this entry = ES * EN * FN. * * Burst size translates to number of elements with frame sync. * Note: DMA engine defines burst to be the number of dev-width * transfers. */ en = burst; frame_bytes = es_bytes[es] * en; if (sglen >= 2) d->using_ll = od->ll123_supported; for_each_sg(sgl, sgent, sglen, i) { struct omap_sg *osg = &d->sg[i]; osg->addr = sg_dma_address(sgent); osg->en = en; osg->fn = sg_dma_len(sgent) / frame_bytes; if (d->using_ll) { osg->t2_desc = dma_pool_alloc(od->desc_pool, GFP_ATOMIC, &osg->t2_desc_paddr); if (!osg->t2_desc) { dev_err(chan->device->dev, "t2_desc[%d] allocation failed\n", i); ll_failed = true; d->using_ll = false; continue; } omap_dma_fill_type2_desc(d, i, dir, (i == sglen - 1)); } } d->sglen = sglen; /* Release the dma_pool entries if one allocation failed */ if (ll_failed) { for (i = 0; i < d->sglen; i++) { struct omap_sg *osg = &d->sg[i]; if (osg->t2_desc) { dma_pool_free(od->desc_pool, osg->t2_desc, osg->t2_desc_paddr); osg->t2_desc = NULL; } } } return vchan_tx_prep(&c->vc, &d->vd, tx_flags); } static struct dma_async_tx_descriptor *omap_dma_prep_dma_cyclic( struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction dir, unsigned long flags) { struct omap_dmadev *od = to_omap_dma_dev(chan->device); struct omap_chan *c = to_omap_dma_chan(chan); enum dma_slave_buswidth dev_width; struct omap_desc *d; dma_addr_t dev_addr; unsigned es; u32 burst; if (dir == DMA_DEV_TO_MEM) { dev_addr = c->cfg.src_addr; dev_width = c->cfg.src_addr_width; burst = c->cfg.src_maxburst; } else if (dir == DMA_MEM_TO_DEV) { dev_addr = c->cfg.dst_addr; dev_width = c->cfg.dst_addr_width; burst = c->cfg.dst_maxburst; } else { dev_err(chan->device->dev, "%s: bad direction?\n", __func__); return NULL; } /* Bus width translates to the element size (ES) */ switch (dev_width) { case DMA_SLAVE_BUSWIDTH_1_BYTE: es = CSDP_DATA_TYPE_8; break; case DMA_SLAVE_BUSWIDTH_2_BYTES: es = CSDP_DATA_TYPE_16; break; case DMA_SLAVE_BUSWIDTH_4_BYTES: es = CSDP_DATA_TYPE_32; break; default: /* not reached */ return NULL; } /* Now allocate and setup the descriptor. */ d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC); if (!d) return NULL; d->dir = dir; d->dev_addr = dev_addr; d->fi = burst; d->es = es; d->sg[0].addr = buf_addr; d->sg[0].en = period_len / es_bytes[es]; d->sg[0].fn = buf_len / period_len; d->sglen = 1; d->ccr = c->ccr; if (dir == DMA_DEV_TO_MEM) d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_CONSTANT; else d->ccr |= CCR_DST_AMODE_CONSTANT | CCR_SRC_AMODE_POSTINC; d->cicr = CICR_DROP_IE; if (flags & DMA_PREP_INTERRUPT) d->cicr |= CICR_FRAME_IE; d->csdp = es; if (dma_omap1()) { d->cicr |= CICR_TOUT_IE; if (dir == DMA_DEV_TO_MEM) d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_MPUI; else d->csdp |= CSDP_DST_PORT_MPUI | CSDP_SRC_PORT_EMIFF; } else { if (burst) d->ccr |= CCR_SYNC_PACKET; else d->ccr |= CCR_SYNC_ELEMENT; if (dir == DMA_DEV_TO_MEM) { d->ccr |= CCR_TRIGGER_SRC; d->csdp |= CSDP_DST_PACKED; } else { d->csdp |= CSDP_SRC_PACKED; } d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE; d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64; } if (__dma_omap15xx(od->plat->dma_attr)) d->ccr |= CCR_AUTO_INIT | CCR_REPEAT; else d->clnk_ctrl = c->dma_ch | CLNK_CTRL_ENABLE_LNK; c->cyclic = true; return vchan_tx_prep(&c->vc, &d->vd, flags); } static struct dma_async_tx_descriptor *omap_dma_prep_dma_memcpy( struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, size_t len, unsigned long tx_flags) { struct omap_chan *c = to_omap_dma_chan(chan); struct omap_desc *d; uint8_t data_type; d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC); if (!d) return NULL; data_type = __ffs((src | dest | len)); if (data_type > CSDP_DATA_TYPE_32) data_type = CSDP_DATA_TYPE_32; d->dir = DMA_MEM_TO_MEM; d->dev_addr = src; d->fi = 0; d->es = data_type; d->sg[0].en = len / BIT(data_type); d->sg[0].fn = 1; d->sg[0].addr = dest; d->sglen = 1; d->ccr = c->ccr; d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_POSTINC; d->cicr = CICR_DROP_IE | CICR_FRAME_IE; d->csdp = data_type; if (dma_omap1()) { d->cicr |= CICR_TOUT_IE; d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_EMIFF; } else { d->csdp |= CSDP_DST_PACKED | CSDP_SRC_PACKED; d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE; d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64; } return vchan_tx_prep(&c->vc, &d->vd, tx_flags); } static struct dma_async_tx_descriptor *omap_dma_prep_dma_interleaved( struct dma_chan *chan, struct dma_interleaved_template *xt, unsigned long flags) { struct omap_chan *c = to_omap_dma_chan(chan); struct omap_desc *d; struct omap_sg *sg; uint8_t data_type; size_t src_icg, dst_icg; /* Slave mode is not supported */ if (is_slave_direction(xt->dir)) return NULL; if (xt->frame_size != 1 || xt->numf == 0) return NULL; d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC); if (!d) return NULL; data_type = __ffs((xt->src_start | xt->dst_start | xt->sgl[0].size)); if (data_type > CSDP_DATA_TYPE_32) data_type = CSDP_DATA_TYPE_32; sg = &d->sg[0]; d->dir = DMA_MEM_TO_MEM; d->dev_addr = xt->src_start; d->es = data_type; sg->en = xt->sgl[0].size / BIT(data_type); sg->fn = xt->numf; sg->addr = xt->dst_start; d->sglen = 1; d->ccr = c->ccr; src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]); dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]); if (src_icg) { d->ccr |= CCR_SRC_AMODE_DBLIDX; d->ei = 1; d->fi = src_icg + 1; } else if (xt->src_inc) { d->ccr |= CCR_SRC_AMODE_POSTINC; d->fi = 0; } else { dev_err(chan->device->dev, "%s: SRC constant addressing is not supported\n", __func__); kfree(d); return NULL; } if (dst_icg) { d->ccr |= CCR_DST_AMODE_DBLIDX; sg->ei = 1; sg->fi = dst_icg + 1; } else if (xt->dst_inc) { d->ccr |= CCR_DST_AMODE_POSTINC; sg->fi = 0; } else { dev_err(chan->device->dev, "%s: DST constant addressing is not supported\n", __func__); kfree(d); return NULL; } d->cicr = CICR_DROP_IE | CICR_FRAME_IE; d->csdp = data_type; if (dma_omap1()) { d->cicr |= CICR_TOUT_IE; d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_EMIFF; } else { d->csdp |= CSDP_DST_PACKED | CSDP_SRC_PACKED; d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE; d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64; } return vchan_tx_prep(&c->vc, &d->vd, flags); } static int omap_dma_slave_config(struct dma_chan *chan, struct dma_slave_config *cfg) { struct omap_chan *c = to_omap_dma_chan(chan); if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES || cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES) return -EINVAL; if (cfg->src_maxburst > chan->device->max_burst || cfg->dst_maxburst > chan->device->max_burst) return -EINVAL; memcpy(&c->cfg, cfg, sizeof(c->cfg)); return 0; } static int omap_dma_terminate_all(struct dma_chan *chan) { struct omap_chan *c = to_omap_dma_chan(chan); unsigned long flags; LIST_HEAD(head); spin_lock_irqsave(&c->vc.lock, flags); /* * Stop DMA activity: we assume the callback will not be called * after omap_dma_stop() returns (even if it does, it will see * c->desc is NULL and exit.) */ if (c->desc) { vchan_terminate_vdesc(&c->desc->vd); c->desc = NULL; /* Avoid stopping the dma twice */ if (!c->paused) omap_dma_stop(c); } c->cyclic = false; c->paused = false; vchan_get_all_descriptors(&c->vc, &head); spin_unlock_irqrestore(&c->vc.lock, flags); vchan_dma_desc_free_list(&c->vc, &head); return 0; } static void omap_dma_synchronize(struct dma_chan *chan) { struct omap_chan *c = to_omap_dma_chan(chan); vchan_synchronize(&c->vc); } static int omap_dma_pause(struct dma_chan *chan) { struct omap_chan *c = to_omap_dma_chan(chan); struct omap_dmadev *od = to_omap_dma_dev(chan->device); unsigned long flags; int ret = -EINVAL; bool can_pause = false; spin_lock_irqsave(&od->irq_lock, flags); if (!c->desc) goto out; if (c->cyclic) can_pause = true; /* * We do not allow DMA_MEM_TO_DEV transfers to be paused. * From the AM572x TRM, 16.1.4.18 Disabling a Channel During Transfer: * "When a channel is disabled during a transfer, the channel undergoes * an abort, unless it is hardware-source-synchronized …". * A source-synchronised channel is one where the fetching of data is * under control of the device. In other words, a device-to-memory * transfer. So, a destination-synchronised channel (which would be a * memory-to-device transfer) undergoes an abort if the the CCR_ENABLE * bit is cleared. * From 16.1.4.20.4.6.2 Abort: "If an abort trigger occurs, the channel * aborts immediately after completion of current read/write * transactions and then the FIFO is cleaned up." The term "cleaned up" * is not defined. TI recommends to check that RD_ACTIVE and WR_ACTIVE * are both clear _before_ disabling the channel, otherwise data loss * will occur. * The problem is that if the channel is active, then device activity * can result in DMA activity starting between reading those as both * clear and the write to DMA_CCR to clear the enable bit hitting the * hardware. If the DMA hardware can't drain the data in its FIFO to the * destination, then data loss "might" occur (say if we write to an UART * and the UART is not accepting any further data). */ else if (c->desc->dir == DMA_DEV_TO_MEM) can_pause = true; if (can_pause && !c->paused) { ret = omap_dma_stop(c); if (!ret) c->paused = true; } out: spin_unlock_irqrestore(&od->irq_lock, flags); return ret; } static int omap_dma_resume(struct dma_chan *chan) { struct omap_chan *c = to_omap_dma_chan(chan); struct omap_dmadev *od = to_omap_dma_dev(chan->device); unsigned long flags; int ret = -EINVAL; spin_lock_irqsave(&od->irq_lock, flags); if (c->paused && c->desc) { mb(); /* Restore channel link register */ omap_dma_chan_write(c, CLNK_CTRL, c->desc->clnk_ctrl); omap_dma_start(c, c->desc); c->paused = false; ret = 0; } spin_unlock_irqrestore(&od->irq_lock, flags); return ret; } static int omap_dma_chan_init(struct omap_dmadev *od) { struct omap_chan *c; c = kzalloc(sizeof(*c), GFP_KERNEL); if (!c) return -ENOMEM; c->reg_map = od->reg_map; c->vc.desc_free = omap_dma_desc_free; vchan_init(&c->vc, &od->ddev); return 0; } static void omap_dma_free(struct omap_dmadev *od) { while (!list_empty(&od->ddev.channels)) { struct omap_chan *c = list_first_entry(&od->ddev.channels, struct omap_chan, vc.chan.device_node); list_del(&c->vc.chan.device_node); tasklet_kill(&c->vc.task); kfree(c); } } #define OMAP_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) static int omap_dma_probe(struct platform_device *pdev) { struct omap_dmadev *od; struct resource *res; int rc, i, irq; u32 lch_count; od = devm_kzalloc(&pdev->dev, sizeof(*od), GFP_KERNEL); if (!od) return -ENOMEM; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); od->base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(od->base)) return PTR_ERR(od->base); od->plat = omap_get_plat_info(); if (!od->plat) return -EPROBE_DEFER; od->reg_map = od->plat->reg_map; dma_cap_set(DMA_SLAVE, od->ddev.cap_mask); dma_cap_set(DMA_CYCLIC, od->ddev.cap_mask); dma_cap_set(DMA_MEMCPY, od->ddev.cap_mask); dma_cap_set(DMA_INTERLEAVE, od->ddev.cap_mask); od->ddev.device_alloc_chan_resources = omap_dma_alloc_chan_resources; od->ddev.device_free_chan_resources = omap_dma_free_chan_resources; od->ddev.device_tx_status = omap_dma_tx_status; od->ddev.device_issue_pending = omap_dma_issue_pending; od->ddev.device_prep_slave_sg = omap_dma_prep_slave_sg; od->ddev.device_prep_dma_cyclic = omap_dma_prep_dma_cyclic; od->ddev.device_prep_dma_memcpy = omap_dma_prep_dma_memcpy; od->ddev.device_prep_interleaved_dma = omap_dma_prep_dma_interleaved; od->ddev.device_config = omap_dma_slave_config; od->ddev.device_pause = omap_dma_pause; od->ddev.device_resume = omap_dma_resume; od->ddev.device_terminate_all = omap_dma_terminate_all; od->ddev.device_synchronize = omap_dma_synchronize; od->ddev.src_addr_widths = OMAP_DMA_BUSWIDTHS; od->ddev.dst_addr_widths = OMAP_DMA_BUSWIDTHS; od->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); if (__dma_omap15xx(od->plat->dma_attr)) od->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR; else od->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; od->ddev.max_burst = SZ_16M - 1; /* CCEN: 24bit unsigned */ od->ddev.dev = &pdev->dev; INIT_LIST_HEAD(&od->ddev.channels); spin_lock_init(&od->lock); spin_lock_init(&od->irq_lock); /* Number of DMA requests */ od->dma_requests = OMAP_SDMA_REQUESTS; if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node, "dma-requests", &od->dma_requests)) { dev_info(&pdev->dev, "Missing dma-requests property, using %u.\n", OMAP_SDMA_REQUESTS); } /* Number of available logical channels */ if (!pdev->dev.of_node) { lch_count = od->plat->dma_attr->lch_count; if (unlikely(!lch_count)) lch_count = OMAP_SDMA_CHANNELS; } else if (of_property_read_u32(pdev->dev.of_node, "dma-channels", &lch_count)) { dev_info(&pdev->dev, "Missing dma-channels property, using %u.\n", OMAP_SDMA_CHANNELS); lch_count = OMAP_SDMA_CHANNELS; } od->lch_map = devm_kcalloc(&pdev->dev, lch_count, sizeof(*od->lch_map), GFP_KERNEL); if (!od->lch_map) return -ENOMEM; for (i = 0; i < od->dma_requests; i++) { rc = omap_dma_chan_init(od); if (rc) { omap_dma_free(od); return rc; } } irq = platform_get_irq(pdev, 1); if (irq <= 0) { dev_info(&pdev->dev, "failed to get L1 IRQ: %d\n", irq); od->legacy = true; } else { /* Disable all interrupts */ od->irq_enable_mask = 0; omap_dma_glbl_write(od, IRQENABLE_L1, 0); rc = devm_request_irq(&pdev->dev, irq, omap_dma_irq, IRQF_SHARED, "omap-dma-engine", od); if (rc) { omap_dma_free(od); return rc; } } if (omap_dma_glbl_read(od, CAPS_0) & CAPS_0_SUPPORT_LL123) od->ll123_supported = true; od->ddev.filter.map = od->plat->slave_map; od->ddev.filter.mapcnt = od->plat->slavecnt; od->ddev.filter.fn = omap_dma_filter_fn; if (od->ll123_supported) { od->desc_pool = dma_pool_create(dev_name(&pdev->dev), &pdev->dev, sizeof(struct omap_type2_desc), 4, 0); if (!od->desc_pool) { dev_err(&pdev->dev, "unable to allocate descriptor pool\n"); od->ll123_supported = false; } } rc = dma_async_device_register(&od->ddev); if (rc) { pr_warn("OMAP-DMA: failed to register slave DMA engine device: %d\n", rc); omap_dma_free(od); return rc; } platform_set_drvdata(pdev, od); if (pdev->dev.of_node) { omap_dma_info.dma_cap = od->ddev.cap_mask; /* Device-tree DMA controller registration */ rc = of_dma_controller_register(pdev->dev.of_node, of_dma_simple_xlate, &omap_dma_info); if (rc) { pr_warn("OMAP-DMA: failed to register DMA controller\n"); dma_async_device_unregister(&od->ddev); omap_dma_free(od); } } dev_info(&pdev->dev, "OMAP DMA engine driver%s\n", od->ll123_supported ? " (LinkedList1/2/3 supported)" : ""); return rc; } static int omap_dma_remove(struct platform_device *pdev) { struct omap_dmadev *od = platform_get_drvdata(pdev); int irq; if (pdev->dev.of_node) of_dma_controller_free(pdev->dev.of_node); irq = platform_get_irq(pdev, 1); devm_free_irq(&pdev->dev, irq, od); dma_async_device_unregister(&od->ddev); if (!od->legacy) { /* Disable all interrupts */ omap_dma_glbl_write(od, IRQENABLE_L0, 0); } if (od->ll123_supported) dma_pool_destroy(od->desc_pool); omap_dma_free(od); return 0; } static const struct of_device_id omap_dma_match[] = { { .compatible = "ti,omap2420-sdma", }, { .compatible = "ti,omap2430-sdma", }, { .compatible = "ti,omap3430-sdma", }, { .compatible = "ti,omap3630-sdma", }, { .compatible = "ti,omap4430-sdma", }, {}, }; MODULE_DEVICE_TABLE(of, omap_dma_match); static struct platform_driver omap_dma_driver = { .probe = omap_dma_probe, .remove = omap_dma_remove, .driver = { .name = "omap-dma-engine", .of_match_table = of_match_ptr(omap_dma_match), }, }; bool omap_dma_filter_fn(struct dma_chan *chan, void *param) { if (chan->device->dev->driver == &omap_dma_driver.driver) { struct omap_dmadev *od = to_omap_dma_dev(chan->device); struct omap_chan *c = to_omap_dma_chan(chan); unsigned req = *(unsigned *)param; if (req <= od->dma_requests) { c->dma_sig = req; return true; } } return false; } EXPORT_SYMBOL_GPL(omap_dma_filter_fn); static int omap_dma_init(void) { return platform_driver_register(&omap_dma_driver); } subsys_initcall(omap_dma_init); static void __exit omap_dma_exit(void) { platform_driver_unregister(&omap_dma_driver); } module_exit(omap_dma_exit); MODULE_AUTHOR("Russell King"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1