Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Hitoshi Mitake | 1764 | 88.60% | 1 | 6.25% |
Mauro Carvalho Chehab | 171 | 8.59% | 9 | 56.25% |
Joe Perches | 41 | 2.06% | 1 | 6.25% |
Jingoo Han | 7 | 0.35% | 2 | 12.50% |
Jason Baron | 6 | 0.30% | 1 | 6.25% |
Christoph Hellwig | 1 | 0.05% | 1 | 6.25% |
Lu Zhihe | 1 | 0.05% | 1 | 6.25% |
Total | 1991 | 16 |
/* * Intel X38 Memory Controller kernel module * Copyright (C) 2008 Cluster Computing, Inc. * * This file may be distributed under the terms of the * GNU General Public License. * * This file is based on i3200_edac.c * */ #include <linux/module.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/pci_ids.h> #include <linux/edac.h> #include <linux/io-64-nonatomic-lo-hi.h> #include "edac_module.h" #define EDAC_MOD_STR "x38_edac" #define PCI_DEVICE_ID_INTEL_X38_HB 0x29e0 #define X38_RANKS 8 #define X38_RANKS_PER_CHANNEL 4 #define X38_CHANNELS 2 /* Intel X38 register addresses - device 0 function 0 - DRAM Controller */ #define X38_MCHBAR_LOW 0x48 /* MCH Memory Mapped Register BAR */ #define X38_MCHBAR_HIGH 0x4c #define X38_MCHBAR_MASK 0xfffffc000ULL /* bits 35:14 */ #define X38_MMR_WINDOW_SIZE 16384 #define X38_TOM 0xa0 /* Top of Memory (16b) * * 15:10 reserved * 9:0 total populated physical memory */ #define X38_TOM_MASK 0x3ff /* bits 9:0 */ #define X38_TOM_SHIFT 26 /* 64MiB grain */ #define X38_ERRSTS 0xc8 /* Error Status Register (16b) * * 15 reserved * 14 Isochronous TBWRR Run Behind FIFO Full * (ITCV) * 13 Isochronous TBWRR Run Behind FIFO Put * (ITSTV) * 12 reserved * 11 MCH Thermal Sensor Event * for SMI/SCI/SERR (GTSE) * 10 reserved * 9 LOCK to non-DRAM Memory Flag (LCKF) * 8 reserved * 7 DRAM Throttle Flag (DTF) * 6:2 reserved * 1 Multi-bit DRAM ECC Error Flag (DMERR) * 0 Single-bit DRAM ECC Error Flag (DSERR) */ #define X38_ERRSTS_UE 0x0002 #define X38_ERRSTS_CE 0x0001 #define X38_ERRSTS_BITS (X38_ERRSTS_UE | X38_ERRSTS_CE) /* Intel MMIO register space - device 0 function 0 - MMR space */ #define X38_C0DRB 0x200 /* Channel 0 DRAM Rank Boundary (16b x 4) * * 15:10 reserved * 9:0 Channel 0 DRAM Rank Boundary Address */ #define X38_C1DRB 0x600 /* Channel 1 DRAM Rank Boundary (16b x 4) */ #define X38_DRB_MASK 0x3ff /* bits 9:0 */ #define X38_DRB_SHIFT 26 /* 64MiB grain */ #define X38_C0ECCERRLOG 0x280 /* Channel 0 ECC Error Log (64b) * * 63:48 Error Column Address (ERRCOL) * 47:32 Error Row Address (ERRROW) * 31:29 Error Bank Address (ERRBANK) * 28:27 Error Rank Address (ERRRANK) * 26:24 reserved * 23:16 Error Syndrome (ERRSYND) * 15: 2 reserved * 1 Multiple Bit Error Status (MERRSTS) * 0 Correctable Error Status (CERRSTS) */ #define X38_C1ECCERRLOG 0x680 /* Channel 1 ECC Error Log (64b) */ #define X38_ECCERRLOG_CE 0x1 #define X38_ECCERRLOG_UE 0x2 #define X38_ECCERRLOG_RANK_BITS 0x18000000 #define X38_ECCERRLOG_SYNDROME_BITS 0xff0000 #define X38_CAPID0 0xe0 /* see P.94 of spec for details */ static int x38_channel_num; static int how_many_channel(struct pci_dev *pdev) { unsigned char capid0_8b; /* 8th byte of CAPID0 */ pci_read_config_byte(pdev, X38_CAPID0 + 8, &capid0_8b); if (capid0_8b & 0x20) { /* check DCD: Dual Channel Disable */ edac_dbg(0, "In single channel mode\n"); x38_channel_num = 1; } else { edac_dbg(0, "In dual channel mode\n"); x38_channel_num = 2; } return x38_channel_num; } static unsigned long eccerrlog_syndrome(u64 log) { return (log & X38_ECCERRLOG_SYNDROME_BITS) >> 16; } static int eccerrlog_row(int channel, u64 log) { return ((log & X38_ECCERRLOG_RANK_BITS) >> 27) | (channel * X38_RANKS_PER_CHANNEL); } enum x38_chips { X38 = 0, }; struct x38_dev_info { const char *ctl_name; }; struct x38_error_info { u16 errsts; u16 errsts2; u64 eccerrlog[X38_CHANNELS]; }; static const struct x38_dev_info x38_devs[] = { [X38] = { .ctl_name = "x38"}, }; static struct pci_dev *mci_pdev; static int x38_registered = 1; static void x38_clear_error_info(struct mem_ctl_info *mci) { struct pci_dev *pdev; pdev = to_pci_dev(mci->pdev); /* * Clear any error bits. * (Yes, we really clear bits by writing 1 to them.) */ pci_write_bits16(pdev, X38_ERRSTS, X38_ERRSTS_BITS, X38_ERRSTS_BITS); } static void x38_get_and_clear_error_info(struct mem_ctl_info *mci, struct x38_error_info *info) { struct pci_dev *pdev; void __iomem *window = mci->pvt_info; pdev = to_pci_dev(mci->pdev); /* * This is a mess because there is no atomic way to read all the * registers at once and the registers can transition from CE being * overwritten by UE. */ pci_read_config_word(pdev, X38_ERRSTS, &info->errsts); if (!(info->errsts & X38_ERRSTS_BITS)) return; info->eccerrlog[0] = lo_hi_readq(window + X38_C0ECCERRLOG); if (x38_channel_num == 2) info->eccerrlog[1] = lo_hi_readq(window + X38_C1ECCERRLOG); pci_read_config_word(pdev, X38_ERRSTS, &info->errsts2); /* * If the error is the same for both reads then the first set * of reads is valid. If there is a change then there is a CE * with no info and the second set of reads is valid and * should be UE info. */ if ((info->errsts ^ info->errsts2) & X38_ERRSTS_BITS) { info->eccerrlog[0] = lo_hi_readq(window + X38_C0ECCERRLOG); if (x38_channel_num == 2) info->eccerrlog[1] = lo_hi_readq(window + X38_C1ECCERRLOG); } x38_clear_error_info(mci); } static void x38_process_error_info(struct mem_ctl_info *mci, struct x38_error_info *info) { int channel; u64 log; if (!(info->errsts & X38_ERRSTS_BITS)) return; if ((info->errsts ^ info->errsts2) & X38_ERRSTS_BITS) { edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0, -1, -1, -1, "UE overwrote CE", ""); info->errsts = info->errsts2; } for (channel = 0; channel < x38_channel_num; channel++) { log = info->eccerrlog[channel]; if (log & X38_ECCERRLOG_UE) { edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0, eccerrlog_row(channel, log), -1, -1, "x38 UE", ""); } else if (log & X38_ECCERRLOG_CE) { edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, eccerrlog_syndrome(log), eccerrlog_row(channel, log), -1, -1, "x38 CE", ""); } } } static void x38_check(struct mem_ctl_info *mci) { struct x38_error_info info; edac_dbg(1, "MC%d\n", mci->mc_idx); x38_get_and_clear_error_info(mci, &info); x38_process_error_info(mci, &info); } static void __iomem *x38_map_mchbar(struct pci_dev *pdev) { union { u64 mchbar; struct { u32 mchbar_low; u32 mchbar_high; }; } u; void __iomem *window; pci_read_config_dword(pdev, X38_MCHBAR_LOW, &u.mchbar_low); pci_write_config_dword(pdev, X38_MCHBAR_LOW, u.mchbar_low | 0x1); pci_read_config_dword(pdev, X38_MCHBAR_HIGH, &u.mchbar_high); u.mchbar &= X38_MCHBAR_MASK; if (u.mchbar != (resource_size_t)u.mchbar) { printk(KERN_ERR "x38: mmio space beyond accessible range (0x%llx)\n", (unsigned long long)u.mchbar); return NULL; } window = ioremap_nocache(u.mchbar, X38_MMR_WINDOW_SIZE); if (!window) printk(KERN_ERR "x38: cannot map mmio space at 0x%llx\n", (unsigned long long)u.mchbar); return window; } static void x38_get_drbs(void __iomem *window, u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL]) { int i; for (i = 0; i < X38_RANKS_PER_CHANNEL; i++) { drbs[0][i] = readw(window + X38_C0DRB + 2*i) & X38_DRB_MASK; drbs[1][i] = readw(window + X38_C1DRB + 2*i) & X38_DRB_MASK; } } static bool x38_is_stacked(struct pci_dev *pdev, u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL]) { u16 tom; pci_read_config_word(pdev, X38_TOM, &tom); tom &= X38_TOM_MASK; return drbs[X38_CHANNELS - 1][X38_RANKS_PER_CHANNEL - 1] == tom; } static unsigned long drb_to_nr_pages( u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL], bool stacked, int channel, int rank) { int n; n = drbs[channel][rank]; if (rank > 0) n -= drbs[channel][rank - 1]; if (stacked && (channel == 1) && drbs[channel][rank] == drbs[channel][X38_RANKS_PER_CHANNEL - 1]) { n -= drbs[0][X38_RANKS_PER_CHANNEL - 1]; } n <<= (X38_DRB_SHIFT - PAGE_SHIFT); return n; } static int x38_probe1(struct pci_dev *pdev, int dev_idx) { int rc; int i, j; struct mem_ctl_info *mci = NULL; struct edac_mc_layer layers[2]; u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL]; bool stacked; void __iomem *window; edac_dbg(0, "MC:\n"); window = x38_map_mchbar(pdev); if (!window) return -ENODEV; x38_get_drbs(window, drbs); how_many_channel(pdev); /* FIXME: unconventional pvt_info usage */ layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; layers[0].size = X38_RANKS; layers[0].is_virt_csrow = true; layers[1].type = EDAC_MC_LAYER_CHANNEL; layers[1].size = x38_channel_num; layers[1].is_virt_csrow = false; mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 0); if (!mci) return -ENOMEM; edac_dbg(3, "MC: init mci\n"); mci->pdev = &pdev->dev; mci->mtype_cap = MEM_FLAG_DDR2; mci->edac_ctl_cap = EDAC_FLAG_SECDED; mci->edac_cap = EDAC_FLAG_SECDED; mci->mod_name = EDAC_MOD_STR; mci->ctl_name = x38_devs[dev_idx].ctl_name; mci->dev_name = pci_name(pdev); mci->edac_check = x38_check; mci->ctl_page_to_phys = NULL; mci->pvt_info = window; stacked = x38_is_stacked(pdev, drbs); /* * The dram rank boundary (DRB) reg values are boundary addresses * for each DRAM rank with a granularity of 64MB. DRB regs are * cumulative; the last one will contain the total memory * contained in all ranks. */ for (i = 0; i < mci->nr_csrows; i++) { unsigned long nr_pages; struct csrow_info *csrow = mci->csrows[i]; nr_pages = drb_to_nr_pages(drbs, stacked, i / X38_RANKS_PER_CHANNEL, i % X38_RANKS_PER_CHANNEL); if (nr_pages == 0) continue; for (j = 0; j < x38_channel_num; j++) { struct dimm_info *dimm = csrow->channels[j]->dimm; dimm->nr_pages = nr_pages / x38_channel_num; dimm->grain = nr_pages << PAGE_SHIFT; dimm->mtype = MEM_DDR2; dimm->dtype = DEV_UNKNOWN; dimm->edac_mode = EDAC_UNKNOWN; } } x38_clear_error_info(mci); rc = -ENODEV; if (edac_mc_add_mc(mci)) { edac_dbg(3, "MC: failed edac_mc_add_mc()\n"); goto fail; } /* get this far and it's successful */ edac_dbg(3, "MC: success\n"); return 0; fail: iounmap(window); if (mci) edac_mc_free(mci); return rc; } static int x38_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { int rc; edac_dbg(0, "MC:\n"); if (pci_enable_device(pdev) < 0) return -EIO; rc = x38_probe1(pdev, ent->driver_data); if (!mci_pdev) mci_pdev = pci_dev_get(pdev); return rc; } static void x38_remove_one(struct pci_dev *pdev) { struct mem_ctl_info *mci; edac_dbg(0, "\n"); mci = edac_mc_del_mc(&pdev->dev); if (!mci) return; iounmap(mci->pvt_info); edac_mc_free(mci); } static const struct pci_device_id x38_pci_tbl[] = { { PCI_VEND_DEV(INTEL, X38_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0, X38}, { 0, } /* 0 terminated list. */ }; MODULE_DEVICE_TABLE(pci, x38_pci_tbl); static struct pci_driver x38_driver = { .name = EDAC_MOD_STR, .probe = x38_init_one, .remove = x38_remove_one, .id_table = x38_pci_tbl, }; static int __init x38_init(void) { int pci_rc; edac_dbg(3, "MC:\n"); /* Ensure that the OPSTATE is set correctly for POLL or NMI */ opstate_init(); pci_rc = pci_register_driver(&x38_driver); if (pci_rc < 0) goto fail0; if (!mci_pdev) { x38_registered = 0; mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X38_HB, NULL); if (!mci_pdev) { edac_dbg(0, "x38 pci_get_device fail\n"); pci_rc = -ENODEV; goto fail1; } pci_rc = x38_init_one(mci_pdev, x38_pci_tbl); if (pci_rc < 0) { edac_dbg(0, "x38 init fail\n"); pci_rc = -ENODEV; goto fail1; } } return 0; fail1: pci_unregister_driver(&x38_driver); fail0: pci_dev_put(mci_pdev); return pci_rc; } static void __exit x38_exit(void) { edac_dbg(3, "MC:\n"); pci_unregister_driver(&x38_driver); if (!x38_registered) { x38_remove_one(mci_pdev); pci_dev_put(mci_pdev); } } module_init(x38_init); module_exit(x38_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Cluster Computing, Inc. Hitoshi Mitake"); MODULE_DESCRIPTION("MC support for Intel X38 memory hub controllers"); module_param(edac_op_state, int, 0444); MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1