Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Roy Franz | 1969 | 54.59% | 15 | 37.50% |
Jeffrey Hugo | 457 | 12.67% | 2 | 5.00% |
Lukas Wunner | 442 | 12.25% | 2 | 5.00% |
H. Peter Anvin | 288 | 7.98% | 1 | 2.50% |
Ard Biesheuvel | 205 | 5.68% | 10 | 25.00% |
Matt Fleming | 172 | 4.77% | 5 | 12.50% |
Hans de Goede | 29 | 0.80% | 1 | 2.50% |
Matthew Garrett | 22 | 0.61% | 1 | 2.50% |
Baoquan He | 12 | 0.33% | 1 | 2.50% |
Yinghai Lu | 9 | 0.25% | 1 | 2.50% |
Leif Lindholm | 2 | 0.06% | 1 | 2.50% |
Total | 3607 | 40 |
// SPDX-License-Identifier: GPL-2.0 /* * Helper functions used by the EFI stub on multiple * architectures. This should be #included by the EFI stub * implementation files. * * Copyright 2011 Intel Corporation; author Matt Fleming */ #include <linux/efi.h> #include <asm/efi.h> #include "efistub.h" /* * Some firmware implementations have problems reading files in one go. * A read chunk size of 1MB seems to work for most platforms. * * Unfortunately, reading files in chunks triggers *other* bugs on some * platforms, so we provide a way to disable this workaround, which can * be done by passing "efi=nochunk" on the EFI boot stub command line. * * If you experience issues with initrd images being corrupt it's worth * trying efi=nochunk, but chunking is enabled by default because there * are far more machines that require the workaround than those that * break with it enabled. */ #define EFI_READ_CHUNK_SIZE (1024 * 1024) static unsigned long __chunk_size = EFI_READ_CHUNK_SIZE; static int __section(.data) __nokaslr; static int __section(.data) __quiet; static int __section(.data) __novamap; int __pure nokaslr(void) { return __nokaslr; } int __pure is_quiet(void) { return __quiet; } int __pure novamap(void) { return __novamap; } #define EFI_MMAP_NR_SLACK_SLOTS 8 struct file_info { efi_file_handle_t *handle; u64 size; }; void efi_printk(efi_system_table_t *sys_table_arg, char *str) { char *s8; for (s8 = str; *s8; s8++) { efi_char16_t ch[2] = { 0 }; ch[0] = *s8; if (*s8 == '\n') { efi_char16_t nl[2] = { '\r', 0 }; efi_char16_printk(sys_table_arg, nl); } efi_char16_printk(sys_table_arg, ch); } } static inline bool mmap_has_headroom(unsigned long buff_size, unsigned long map_size, unsigned long desc_size) { unsigned long slack = buff_size - map_size; return slack / desc_size >= EFI_MMAP_NR_SLACK_SLOTS; } efi_status_t efi_get_memory_map(efi_system_table_t *sys_table_arg, struct efi_boot_memmap *map) { efi_memory_desc_t *m = NULL; efi_status_t status; unsigned long key; u32 desc_version; *map->desc_size = sizeof(*m); *map->map_size = *map->desc_size * 32; *map->buff_size = *map->map_size; again: status = efi_call_early(allocate_pool, EFI_LOADER_DATA, *map->map_size, (void **)&m); if (status != EFI_SUCCESS) goto fail; *map->desc_size = 0; key = 0; status = efi_call_early(get_memory_map, map->map_size, m, &key, map->desc_size, &desc_version); if (status == EFI_BUFFER_TOO_SMALL || !mmap_has_headroom(*map->buff_size, *map->map_size, *map->desc_size)) { efi_call_early(free_pool, m); /* * Make sure there is some entries of headroom so that the * buffer can be reused for a new map after allocations are * no longer permitted. Its unlikely that the map will grow to * exceed this headroom once we are ready to trigger * ExitBootServices() */ *map->map_size += *map->desc_size * EFI_MMAP_NR_SLACK_SLOTS; *map->buff_size = *map->map_size; goto again; } if (status != EFI_SUCCESS) efi_call_early(free_pool, m); if (map->key_ptr && status == EFI_SUCCESS) *map->key_ptr = key; if (map->desc_ver && status == EFI_SUCCESS) *map->desc_ver = desc_version; fail: *map->map = m; return status; } unsigned long get_dram_base(efi_system_table_t *sys_table_arg) { efi_status_t status; unsigned long map_size, buff_size; unsigned long membase = EFI_ERROR; struct efi_memory_map map; efi_memory_desc_t *md; struct efi_boot_memmap boot_map; boot_map.map = (efi_memory_desc_t **)&map.map; boot_map.map_size = &map_size; boot_map.desc_size = &map.desc_size; boot_map.desc_ver = NULL; boot_map.key_ptr = NULL; boot_map.buff_size = &buff_size; status = efi_get_memory_map(sys_table_arg, &boot_map); if (status != EFI_SUCCESS) return membase; map.map_end = map.map + map_size; for_each_efi_memory_desc_in_map(&map, md) { if (md->attribute & EFI_MEMORY_WB) { if (membase > md->phys_addr) membase = md->phys_addr; } } efi_call_early(free_pool, map.map); return membase; } /* * Allocate at the highest possible address that is not above 'max'. */ efi_status_t efi_high_alloc(efi_system_table_t *sys_table_arg, unsigned long size, unsigned long align, unsigned long *addr, unsigned long max) { unsigned long map_size, desc_size, buff_size; efi_memory_desc_t *map; efi_status_t status; unsigned long nr_pages; u64 max_addr = 0; int i; struct efi_boot_memmap boot_map; boot_map.map = ↦ boot_map.map_size = &map_size; boot_map.desc_size = &desc_size; boot_map.desc_ver = NULL; boot_map.key_ptr = NULL; boot_map.buff_size = &buff_size; status = efi_get_memory_map(sys_table_arg, &boot_map); if (status != EFI_SUCCESS) goto fail; /* * Enforce minimum alignment that EFI or Linux requires when * requesting a specific address. We are doing page-based (or * larger) allocations, and both the address and size must meet * alignment constraints. */ if (align < EFI_ALLOC_ALIGN) align = EFI_ALLOC_ALIGN; size = round_up(size, EFI_ALLOC_ALIGN); nr_pages = size / EFI_PAGE_SIZE; again: for (i = 0; i < map_size / desc_size; i++) { efi_memory_desc_t *desc; unsigned long m = (unsigned long)map; u64 start, end; desc = efi_early_memdesc_ptr(m, desc_size, i); if (desc->type != EFI_CONVENTIONAL_MEMORY) continue; if (desc->num_pages < nr_pages) continue; start = desc->phys_addr; end = start + desc->num_pages * EFI_PAGE_SIZE; if (end > max) end = max; if ((start + size) > end) continue; if (round_down(end - size, align) < start) continue; start = round_down(end - size, align); /* * Don't allocate at 0x0. It will confuse code that * checks pointers against NULL. */ if (start == 0x0) continue; if (start > max_addr) max_addr = start; } if (!max_addr) status = EFI_NOT_FOUND; else { status = efi_call_early(allocate_pages, EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA, nr_pages, &max_addr); if (status != EFI_SUCCESS) { max = max_addr; max_addr = 0; goto again; } *addr = max_addr; } efi_call_early(free_pool, map); fail: return status; } /* * Allocate at the lowest possible address. */ efi_status_t efi_low_alloc(efi_system_table_t *sys_table_arg, unsigned long size, unsigned long align, unsigned long *addr) { unsigned long map_size, desc_size, buff_size; efi_memory_desc_t *map; efi_status_t status; unsigned long nr_pages; int i; struct efi_boot_memmap boot_map; boot_map.map = ↦ boot_map.map_size = &map_size; boot_map.desc_size = &desc_size; boot_map.desc_ver = NULL; boot_map.key_ptr = NULL; boot_map.buff_size = &buff_size; status = efi_get_memory_map(sys_table_arg, &boot_map); if (status != EFI_SUCCESS) goto fail; /* * Enforce minimum alignment that EFI or Linux requires when * requesting a specific address. We are doing page-based (or * larger) allocations, and both the address and size must meet * alignment constraints. */ if (align < EFI_ALLOC_ALIGN) align = EFI_ALLOC_ALIGN; size = round_up(size, EFI_ALLOC_ALIGN); nr_pages = size / EFI_PAGE_SIZE; for (i = 0; i < map_size / desc_size; i++) { efi_memory_desc_t *desc; unsigned long m = (unsigned long)map; u64 start, end; desc = efi_early_memdesc_ptr(m, desc_size, i); if (desc->type != EFI_CONVENTIONAL_MEMORY) continue; if (desc->num_pages < nr_pages) continue; start = desc->phys_addr; end = start + desc->num_pages * EFI_PAGE_SIZE; /* * Don't allocate at 0x0. It will confuse code that * checks pointers against NULL. Skip the first 8 * bytes so we start at a nice even number. */ if (start == 0x0) start += 8; start = round_up(start, align); if ((start + size) > end) continue; status = efi_call_early(allocate_pages, EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA, nr_pages, &start); if (status == EFI_SUCCESS) { *addr = start; break; } } if (i == map_size / desc_size) status = EFI_NOT_FOUND; efi_call_early(free_pool, map); fail: return status; } void efi_free(efi_system_table_t *sys_table_arg, unsigned long size, unsigned long addr) { unsigned long nr_pages; if (!size) return; nr_pages = round_up(size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE; efi_call_early(free_pages, addr, nr_pages); } static efi_status_t efi_file_size(efi_system_table_t *sys_table_arg, void *__fh, efi_char16_t *filename_16, void **handle, u64 *file_sz) { efi_file_handle_t *h, *fh = __fh; efi_file_info_t *info; efi_status_t status; efi_guid_t info_guid = EFI_FILE_INFO_ID; unsigned long info_sz; status = efi_call_proto(efi_file_handle, open, fh, &h, filename_16, EFI_FILE_MODE_READ, (u64)0); if (status != EFI_SUCCESS) { efi_printk(sys_table_arg, "Failed to open file: "); efi_char16_printk(sys_table_arg, filename_16); efi_printk(sys_table_arg, "\n"); return status; } *handle = h; info_sz = 0; status = efi_call_proto(efi_file_handle, get_info, h, &info_guid, &info_sz, NULL); if (status != EFI_BUFFER_TOO_SMALL) { efi_printk(sys_table_arg, "Failed to get file info size\n"); return status; } grow: status = efi_call_early(allocate_pool, EFI_LOADER_DATA, info_sz, (void **)&info); if (status != EFI_SUCCESS) { efi_printk(sys_table_arg, "Failed to alloc mem for file info\n"); return status; } status = efi_call_proto(efi_file_handle, get_info, h, &info_guid, &info_sz, info); if (status == EFI_BUFFER_TOO_SMALL) { efi_call_early(free_pool, info); goto grow; } *file_sz = info->file_size; efi_call_early(free_pool, info); if (status != EFI_SUCCESS) efi_printk(sys_table_arg, "Failed to get initrd info\n"); return status; } static efi_status_t efi_file_read(void *handle, unsigned long *size, void *addr) { return efi_call_proto(efi_file_handle, read, handle, size, addr); } static efi_status_t efi_file_close(void *handle) { return efi_call_proto(efi_file_handle, close, handle); } static efi_status_t efi_open_volume(efi_system_table_t *sys_table_arg, efi_loaded_image_t *image, efi_file_handle_t **__fh) { efi_file_io_interface_t *io; efi_file_handle_t *fh; efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID; efi_status_t status; void *handle = (void *)(unsigned long)efi_table_attr(efi_loaded_image, device_handle, image); status = efi_call_early(handle_protocol, handle, &fs_proto, (void **)&io); if (status != EFI_SUCCESS) { efi_printk(sys_table_arg, "Failed to handle fs_proto\n"); return status; } status = efi_call_proto(efi_file_io_interface, open_volume, io, &fh); if (status != EFI_SUCCESS) efi_printk(sys_table_arg, "Failed to open volume\n"); else *__fh = fh; return status; } /* * Parse the ASCII string 'cmdline' for EFI options, denoted by the efi= * option, e.g. efi=nochunk. * * It should be noted that efi= is parsed in two very different * environments, first in the early boot environment of the EFI boot * stub, and subsequently during the kernel boot. */ efi_status_t efi_parse_options(char const *cmdline) { char *str; str = strstr(cmdline, "nokaslr"); if (str == cmdline || (str && str > cmdline && *(str - 1) == ' ')) __nokaslr = 1; str = strstr(cmdline, "quiet"); if (str == cmdline || (str && str > cmdline && *(str - 1) == ' ')) __quiet = 1; /* * If no EFI parameters were specified on the cmdline we've got * nothing to do. */ str = strstr(cmdline, "efi="); if (!str) return EFI_SUCCESS; /* Skip ahead to first argument */ str += strlen("efi="); /* * Remember, because efi= is also used by the kernel we need to * skip over arguments we don't understand. */ while (*str && *str != ' ') { if (!strncmp(str, "nochunk", 7)) { str += strlen("nochunk"); __chunk_size = -1UL; } if (!strncmp(str, "novamap", 7)) { str += strlen("novamap"); __novamap = 1; } /* Group words together, delimited by "," */ while (*str && *str != ' ' && *str != ',') str++; if (*str == ',') str++; } return EFI_SUCCESS; } /* * Check the cmdline for a LILO-style file= arguments. * * We only support loading a file from the same filesystem as * the kernel image. */ efi_status_t handle_cmdline_files(efi_system_table_t *sys_table_arg, efi_loaded_image_t *image, char *cmd_line, char *option_string, unsigned long max_addr, unsigned long *load_addr, unsigned long *load_size) { struct file_info *files; unsigned long file_addr; u64 file_size_total; efi_file_handle_t *fh = NULL; efi_status_t status; int nr_files; char *str; int i, j, k; file_addr = 0; file_size_total = 0; str = cmd_line; j = 0; /* See close_handles */ if (!load_addr || !load_size) return EFI_INVALID_PARAMETER; *load_addr = 0; *load_size = 0; if (!str || !*str) return EFI_SUCCESS; for (nr_files = 0; *str; nr_files++) { str = strstr(str, option_string); if (!str) break; str += strlen(option_string); /* Skip any leading slashes */ while (*str == '/' || *str == '\\') str++; while (*str && *str != ' ' && *str != '\n') str++; } if (!nr_files) return EFI_SUCCESS; status = efi_call_early(allocate_pool, EFI_LOADER_DATA, nr_files * sizeof(*files), (void **)&files); if (status != EFI_SUCCESS) { pr_efi_err(sys_table_arg, "Failed to alloc mem for file handle list\n"); goto fail; } str = cmd_line; for (i = 0; i < nr_files; i++) { struct file_info *file; efi_char16_t filename_16[256]; efi_char16_t *p; str = strstr(str, option_string); if (!str) break; str += strlen(option_string); file = &files[i]; p = filename_16; /* Skip any leading slashes */ while (*str == '/' || *str == '\\') str++; while (*str && *str != ' ' && *str != '\n') { if ((u8 *)p >= (u8 *)filename_16 + sizeof(filename_16)) break; if (*str == '/') { *p++ = '\\'; str++; } else { *p++ = *str++; } } *p = '\0'; /* Only open the volume once. */ if (!i) { status = efi_open_volume(sys_table_arg, image, &fh); if (status != EFI_SUCCESS) goto free_files; } status = efi_file_size(sys_table_arg, fh, filename_16, (void **)&file->handle, &file->size); if (status != EFI_SUCCESS) goto close_handles; file_size_total += file->size; } if (file_size_total) { unsigned long addr; /* * Multiple files need to be at consecutive addresses in memory, * so allocate enough memory for all the files. This is used * for loading multiple files. */ status = efi_high_alloc(sys_table_arg, file_size_total, 0x1000, &file_addr, max_addr); if (status != EFI_SUCCESS) { pr_efi_err(sys_table_arg, "Failed to alloc highmem for files\n"); goto close_handles; } /* We've run out of free low memory. */ if (file_addr > max_addr) { pr_efi_err(sys_table_arg, "We've run out of free low memory\n"); status = EFI_INVALID_PARAMETER; goto free_file_total; } addr = file_addr; for (j = 0; j < nr_files; j++) { unsigned long size; size = files[j].size; while (size) { unsigned long chunksize; if (IS_ENABLED(CONFIG_X86) && size > __chunk_size) chunksize = __chunk_size; else chunksize = size; status = efi_file_read(files[j].handle, &chunksize, (void *)addr); if (status != EFI_SUCCESS) { pr_efi_err(sys_table_arg, "Failed to read file\n"); goto free_file_total; } addr += chunksize; size -= chunksize; } efi_file_close(files[j].handle); } } efi_call_early(free_pool, files); *load_addr = file_addr; *load_size = file_size_total; return status; free_file_total: efi_free(sys_table_arg, file_size_total, file_addr); close_handles: for (k = j; k < i; k++) efi_file_close(files[k].handle); free_files: efi_call_early(free_pool, files); fail: *load_addr = 0; *load_size = 0; return status; } /* * Relocate a kernel image, either compressed or uncompressed. * In the ARM64 case, all kernel images are currently * uncompressed, and as such when we relocate it we need to * allocate additional space for the BSS segment. Any low * memory that this function should avoid needs to be * unavailable in the EFI memory map, as if the preferred * address is not available the lowest available address will * be used. */ efi_status_t efi_relocate_kernel(efi_system_table_t *sys_table_arg, unsigned long *image_addr, unsigned long image_size, unsigned long alloc_size, unsigned long preferred_addr, unsigned long alignment) { unsigned long cur_image_addr; unsigned long new_addr = 0; efi_status_t status; unsigned long nr_pages; efi_physical_addr_t efi_addr = preferred_addr; if (!image_addr || !image_size || !alloc_size) return EFI_INVALID_PARAMETER; if (alloc_size < image_size) return EFI_INVALID_PARAMETER; cur_image_addr = *image_addr; /* * The EFI firmware loader could have placed the kernel image * anywhere in memory, but the kernel has restrictions on the * max physical address it can run at. Some architectures * also have a prefered address, so first try to relocate * to the preferred address. If that fails, allocate as low * as possible while respecting the required alignment. */ nr_pages = round_up(alloc_size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE; status = efi_call_early(allocate_pages, EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA, nr_pages, &efi_addr); new_addr = efi_addr; /* * If preferred address allocation failed allocate as low as * possible. */ if (status != EFI_SUCCESS) { status = efi_low_alloc(sys_table_arg, alloc_size, alignment, &new_addr); } if (status != EFI_SUCCESS) { pr_efi_err(sys_table_arg, "Failed to allocate usable memory for kernel.\n"); return status; } /* * We know source/dest won't overlap since both memory ranges * have been allocated by UEFI, so we can safely use memcpy. */ memcpy((void *)new_addr, (void *)cur_image_addr, image_size); /* Return the new address of the relocated image. */ *image_addr = new_addr; return status; } /* * Get the number of UTF-8 bytes corresponding to an UTF-16 character. * This overestimates for surrogates, but that is okay. */ static int efi_utf8_bytes(u16 c) { return 1 + (c >= 0x80) + (c >= 0x800); } /* * Convert an UTF-16 string, not necessarily null terminated, to UTF-8. */ static u8 *efi_utf16_to_utf8(u8 *dst, const u16 *src, int n) { unsigned int c; while (n--) { c = *src++; if (n && c >= 0xd800 && c <= 0xdbff && *src >= 0xdc00 && *src <= 0xdfff) { c = 0x10000 + ((c & 0x3ff) << 10) + (*src & 0x3ff); src++; n--; } if (c >= 0xd800 && c <= 0xdfff) c = 0xfffd; /* Unmatched surrogate */ if (c < 0x80) { *dst++ = c; continue; } if (c < 0x800) { *dst++ = 0xc0 + (c >> 6); goto t1; } if (c < 0x10000) { *dst++ = 0xe0 + (c >> 12); goto t2; } *dst++ = 0xf0 + (c >> 18); *dst++ = 0x80 + ((c >> 12) & 0x3f); t2: *dst++ = 0x80 + ((c >> 6) & 0x3f); t1: *dst++ = 0x80 + (c & 0x3f); } return dst; } #ifndef MAX_CMDLINE_ADDRESS #define MAX_CMDLINE_ADDRESS ULONG_MAX #endif /* * Convert the unicode UEFI command line to ASCII to pass to kernel. * Size of memory allocated return in *cmd_line_len. * Returns NULL on error. */ char *efi_convert_cmdline(efi_system_table_t *sys_table_arg, efi_loaded_image_t *image, int *cmd_line_len) { const u16 *s2; u8 *s1 = NULL; unsigned long cmdline_addr = 0; int load_options_chars = image->load_options_size / 2; /* UTF-16 */ const u16 *options = image->load_options; int options_bytes = 0; /* UTF-8 bytes */ int options_chars = 0; /* UTF-16 chars */ efi_status_t status; u16 zero = 0; if (options) { s2 = options; while (*s2 && *s2 != '\n' && options_chars < load_options_chars) { options_bytes += efi_utf8_bytes(*s2++); options_chars++; } } if (!options_chars) { /* No command line options, so return empty string*/ options = &zero; } options_bytes++; /* NUL termination */ status = efi_high_alloc(sys_table_arg, options_bytes, 0, &cmdline_addr, MAX_CMDLINE_ADDRESS); if (status != EFI_SUCCESS) return NULL; s1 = (u8 *)cmdline_addr; s2 = (const u16 *)options; s1 = efi_utf16_to_utf8(s1, s2, options_chars); *s1 = '\0'; *cmd_line_len = options_bytes; return (char *)cmdline_addr; } /* * Handle calling ExitBootServices according to the requirements set out by the * spec. Obtains the current memory map, and returns that info after calling * ExitBootServices. The client must specify a function to perform any * processing of the memory map data prior to ExitBootServices. A client * specific structure may be passed to the function via priv. The client * function may be called multiple times. */ efi_status_t efi_exit_boot_services(efi_system_table_t *sys_table_arg, void *handle, struct efi_boot_memmap *map, void *priv, efi_exit_boot_map_processing priv_func) { efi_status_t status; status = efi_get_memory_map(sys_table_arg, map); if (status != EFI_SUCCESS) goto fail; status = priv_func(sys_table_arg, map, priv); if (status != EFI_SUCCESS) goto free_map; status = efi_call_early(exit_boot_services, handle, *map->key_ptr); if (status == EFI_INVALID_PARAMETER) { /* * The memory map changed between efi_get_memory_map() and * exit_boot_services(). Per the UEFI Spec v2.6, Section 6.4: * EFI_BOOT_SERVICES.ExitBootServices we need to get the * updated map, and try again. The spec implies one retry * should be sufficent, which is confirmed against the EDK2 * implementation. Per the spec, we can only invoke * get_memory_map() and exit_boot_services() - we cannot alloc * so efi_get_memory_map() cannot be used, and we must reuse * the buffer. For all practical purposes, the headroom in the * buffer should account for any changes in the map so the call * to get_memory_map() is expected to succeed here. */ *map->map_size = *map->buff_size; status = efi_call_early(get_memory_map, map->map_size, *map->map, map->key_ptr, map->desc_size, map->desc_ver); /* exit_boot_services() was called, thus cannot free */ if (status != EFI_SUCCESS) goto fail; status = priv_func(sys_table_arg, map, priv); /* exit_boot_services() was called, thus cannot free */ if (status != EFI_SUCCESS) goto fail; status = efi_call_early(exit_boot_services, handle, *map->key_ptr); } /* exit_boot_services() was called, thus cannot free */ if (status != EFI_SUCCESS) goto fail; return EFI_SUCCESS; free_map: efi_call_early(free_pool, *map->map); fail: return status; } #define GET_EFI_CONFIG_TABLE(bits) \ static void *get_efi_config_table##bits(efi_system_table_t *_sys_table, \ efi_guid_t guid) \ { \ efi_system_table_##bits##_t *sys_table; \ efi_config_table_##bits##_t *tables; \ int i; \ \ sys_table = (typeof(sys_table))_sys_table; \ tables = (typeof(tables))(unsigned long)sys_table->tables; \ \ for (i = 0; i < sys_table->nr_tables; i++) { \ if (efi_guidcmp(tables[i].guid, guid) != 0) \ continue; \ \ return (void *)(unsigned long)tables[i].table; \ } \ \ return NULL; \ } GET_EFI_CONFIG_TABLE(32) GET_EFI_CONFIG_TABLE(64) void *get_efi_config_table(efi_system_table_t *sys_table, efi_guid_t guid) { if (efi_is_64bit()) return get_efi_config_table64(sys_table, guid); else return get_efi_config_table32(sys_table, guid); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1