Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Felix Kuhling | 4051 | 97.57% | 2 | 14.29% |
Shaoyun Liu | 66 | 1.59% | 5 | 35.71% |
Trigger Huang | 15 | 0.36% | 1 | 7.14% |
Yong Zhao | 8 | 0.19% | 2 | 14.29% |
Alex Deucher | 4 | 0.10% | 1 | 7.14% |
Kees Cook | 4 | 0.10% | 1 | 7.14% |
Andrey Grodzovsky | 2 | 0.05% | 1 | 7.14% |
Arnd Bergmann | 2 | 0.05% | 1 | 7.14% |
Total | 4152 | 14 |
/* * Copyright 2014-2018 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #define pr_fmt(fmt) "kfd2kgd: " fmt #include <linux/module.h> #include <linux/fdtable.h> #include <linux/uaccess.h> #include <linux/mmu_context.h> #include "amdgpu.h" #include "amdgpu_amdkfd.h" #include "soc15_hw_ip.h" #include "gc/gc_9_0_offset.h" #include "gc/gc_9_0_sh_mask.h" #include "vega10_enum.h" #include "sdma0/sdma0_4_0_offset.h" #include "sdma0/sdma0_4_0_sh_mask.h" #include "sdma1/sdma1_4_0_offset.h" #include "sdma1/sdma1_4_0_sh_mask.h" #include "athub/athub_1_0_offset.h" #include "athub/athub_1_0_sh_mask.h" #include "oss/osssys_4_0_offset.h" #include "oss/osssys_4_0_sh_mask.h" #include "soc15_common.h" #include "v9_structs.h" #include "soc15.h" #include "soc15d.h" #include "mmhub_v1_0.h" #include "gfxhub_v1_0.h" #define V9_PIPE_PER_MEC (4) #define V9_QUEUES_PER_PIPE_MEC (8) enum hqd_dequeue_request_type { NO_ACTION = 0, DRAIN_PIPE, RESET_WAVES }; /* * Register access functions */ static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid, uint32_t sh_mem_config, uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases); static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid, unsigned int vmid); static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id); static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id, uint32_t queue_id, uint32_t __user *wptr, uint32_t wptr_shift, uint32_t wptr_mask, struct mm_struct *mm); static int kgd_hqd_dump(struct kgd_dev *kgd, uint32_t pipe_id, uint32_t queue_id, uint32_t (**dump)[2], uint32_t *n_regs); static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd, uint32_t __user *wptr, struct mm_struct *mm); static int kgd_hqd_sdma_dump(struct kgd_dev *kgd, uint32_t engine_id, uint32_t queue_id, uint32_t (**dump)[2], uint32_t *n_regs); static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address, uint32_t pipe_id, uint32_t queue_id); static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd); static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd, enum kfd_preempt_type reset_type, unsigned int utimeout, uint32_t pipe_id, uint32_t queue_id); static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd, unsigned int utimeout); static int kgd_address_watch_disable(struct kgd_dev *kgd); static int kgd_address_watch_execute(struct kgd_dev *kgd, unsigned int watch_point_id, uint32_t cntl_val, uint32_t addr_hi, uint32_t addr_lo); static int kgd_wave_control_execute(struct kgd_dev *kgd, uint32_t gfx_index_val, uint32_t sq_cmd); static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd, unsigned int watch_point_id, unsigned int reg_offset); static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid); static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd, uint8_t vmid); static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid, uint64_t page_table_base); static void set_scratch_backing_va(struct kgd_dev *kgd, uint64_t va, uint32_t vmid); static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid); static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid); /* Because of REG_GET_FIELD() being used, we put this function in the * asic specific file. */ static int amdgpu_amdkfd_get_tile_config(struct kgd_dev *kgd, struct tile_config *config) { struct amdgpu_device *adev = (struct amdgpu_device *)kgd; config->gb_addr_config = adev->gfx.config.gb_addr_config; config->tile_config_ptr = adev->gfx.config.tile_mode_array; config->num_tile_configs = ARRAY_SIZE(adev->gfx.config.tile_mode_array); config->macro_tile_config_ptr = adev->gfx.config.macrotile_mode_array; config->num_macro_tile_configs = ARRAY_SIZE(adev->gfx.config.macrotile_mode_array); return 0; } static const struct kfd2kgd_calls kfd2kgd = { .program_sh_mem_settings = kgd_program_sh_mem_settings, .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping, .init_interrupts = kgd_init_interrupts, .hqd_load = kgd_hqd_load, .hqd_sdma_load = kgd_hqd_sdma_load, .hqd_dump = kgd_hqd_dump, .hqd_sdma_dump = kgd_hqd_sdma_dump, .hqd_is_occupied = kgd_hqd_is_occupied, .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied, .hqd_destroy = kgd_hqd_destroy, .hqd_sdma_destroy = kgd_hqd_sdma_destroy, .address_watch_disable = kgd_address_watch_disable, .address_watch_execute = kgd_address_watch_execute, .wave_control_execute = kgd_wave_control_execute, .address_watch_get_offset = kgd_address_watch_get_offset, .get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid, .get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid, .set_scratch_backing_va = set_scratch_backing_va, .get_tile_config = amdgpu_amdkfd_get_tile_config, .set_vm_context_page_table_base = set_vm_context_page_table_base, .invalidate_tlbs = invalidate_tlbs, .invalidate_tlbs_vmid = invalidate_tlbs_vmid, .get_hive_id = amdgpu_amdkfd_get_hive_id, }; struct kfd2kgd_calls *amdgpu_amdkfd_gfx_9_0_get_functions(void) { return (struct kfd2kgd_calls *)&kfd2kgd; } static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd) { return (struct amdgpu_device *)kgd; } static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe, uint32_t queue, uint32_t vmid) { struct amdgpu_device *adev = get_amdgpu_device(kgd); mutex_lock(&adev->srbm_mutex); soc15_grbm_select(adev, mec, pipe, queue, vmid); } static void unlock_srbm(struct kgd_dev *kgd) { struct amdgpu_device *adev = get_amdgpu_device(kgd); soc15_grbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); } static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id, uint32_t queue_id) { struct amdgpu_device *adev = get_amdgpu_device(kgd); uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); lock_srbm(kgd, mec, pipe, queue_id, 0); } static uint32_t get_queue_mask(struct amdgpu_device *adev, uint32_t pipe_id, uint32_t queue_id) { unsigned int bit = (pipe_id * adev->gfx.mec.num_queue_per_pipe + queue_id) & 31; return ((uint32_t)1) << bit; } static void release_queue(struct kgd_dev *kgd) { unlock_srbm(kgd); } static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid, uint32_t sh_mem_config, uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases) { struct amdgpu_device *adev = get_amdgpu_device(kgd); lock_srbm(kgd, 0, 0, 0, vmid); WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_CONFIG), sh_mem_config); WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_BASES), sh_mem_bases); /* APE1 no longer exists on GFX9 */ unlock_srbm(kgd); } static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid, unsigned int vmid) { struct amdgpu_device *adev = get_amdgpu_device(kgd); /* * We have to assume that there is no outstanding mapping. * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because * a mapping is in progress or because a mapping finished * and the SW cleared it. * So the protocol is to always wait & clear. */ uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid | ATC_VMID0_PASID_MAPPING__VALID_MASK; /* * need to do this twice, once for gfx and once for mmhub * for ATC add 16 to VMID for mmhub, for IH different registers. * ATC_VMID0..15 registers are separate from ATC_VMID16..31. */ WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid, pasid_mapping); while (!(RREG32(SOC15_REG_OFFSET( ATHUB, 0, mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) & (1U << vmid))) cpu_relax(); WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID_PASID_MAPPING_UPDATE_STATUS), 1U << vmid); /* Mapping vmid to pasid also for IH block */ WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid, pasid_mapping); WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID16_PASID_MAPPING) + vmid, pasid_mapping); while (!(RREG32(SOC15_REG_OFFSET( ATHUB, 0, mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) & (1U << (vmid + 16)))) cpu_relax(); WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID_PASID_MAPPING_UPDATE_STATUS), 1U << (vmid + 16)); /* Mapping vmid to pasid also for IH block */ WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT_MM) + vmid, pasid_mapping); return 0; } /* TODO - RING0 form of field is obsolete, seems to date back to SI * but still works */ static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id) { struct amdgpu_device *adev = get_amdgpu_device(kgd); uint32_t mec; uint32_t pipe; mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); lock_srbm(kgd, mec, pipe, 0, 0); WREG32(SOC15_REG_OFFSET(GC, 0, mmCPC_INT_CNTL), CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK | CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK); unlock_srbm(kgd); return 0; } static uint32_t get_sdma_base_addr(struct amdgpu_device *adev, unsigned int engine_id, unsigned int queue_id) { uint32_t base[2] = { SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL, SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC0_RB_CNTL) - mmSDMA1_RLC0_RB_CNTL }; uint32_t retval; retval = base[engine_id] + queue_id * (mmSDMA0_RLC1_RB_CNTL - mmSDMA0_RLC0_RB_CNTL); pr_debug("sdma base address: 0x%x\n", retval); return retval; } static inline struct v9_mqd *get_mqd(void *mqd) { return (struct v9_mqd *)mqd; } static inline struct v9_sdma_mqd *get_sdma_mqd(void *mqd) { return (struct v9_sdma_mqd *)mqd; } static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id, uint32_t queue_id, uint32_t __user *wptr, uint32_t wptr_shift, uint32_t wptr_mask, struct mm_struct *mm) { struct amdgpu_device *adev = get_amdgpu_device(kgd); struct v9_mqd *m; uint32_t *mqd_hqd; uint32_t reg, hqd_base, data; m = get_mqd(mqd); acquire_queue(kgd, pipe_id, queue_id); /* HIQ is set during driver init period with vmid set to 0*/ if (m->cp_hqd_vmid == 0) { uint32_t value, mec, pipe; mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n", mec, pipe, queue_id); value = RREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_CP_SCHEDULERS)); value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1, ((mec << 5) | (pipe << 3) | queue_id | 0x80)); WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmRLC_CP_SCHEDULERS), value); } /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */ mqd_hqd = &m->cp_mqd_base_addr_lo; hqd_base = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR); for (reg = hqd_base; reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++) WREG32_RLC(reg, mqd_hqd[reg - hqd_base]); /* Activate doorbell logic before triggering WPTR poll. */ data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1); WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL), data); if (wptr) { /* Don't read wptr with get_user because the user * context may not be accessible (if this function * runs in a work queue). Instead trigger a one-shot * polling read from memory in the CP. This assumes * that wptr is GPU-accessible in the queue's VMID via * ATC or SVM. WPTR==RPTR before starting the poll so * the CP starts fetching new commands from the right * place. * * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit * tricky. Assume that the queue didn't overflow. The * number of valid bits in the 32-bit RPTR depends on * the queue size. The remaining bits are taken from * the saved 64-bit WPTR. If the WPTR wrapped, add the * queue size. */ uint32_t queue_size = 2 << REG_GET_FIELD(m->cp_hqd_pq_control, CP_HQD_PQ_CONTROL, QUEUE_SIZE); uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1); if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr) guessed_wptr += queue_size; guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1); guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32; WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_LO), lower_32_bits(guessed_wptr)); WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI), upper_32_bits(guessed_wptr)); WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR), lower_32_bits((uintptr_t)wptr)); WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR_HI), upper_32_bits((uintptr_t)wptr)); WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_PQ_WPTR_POLL_CNTL1), get_queue_mask(adev, pipe_id, queue_id)); } /* Start the EOP fetcher */ WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_EOP_RPTR), REG_SET_FIELD(m->cp_hqd_eop_rptr, CP_HQD_EOP_RPTR, INIT_FETCHER, 1)); data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1); WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE), data); release_queue(kgd); return 0; } static int kgd_hqd_dump(struct kgd_dev *kgd, uint32_t pipe_id, uint32_t queue_id, uint32_t (**dump)[2], uint32_t *n_regs) { struct amdgpu_device *adev = get_amdgpu_device(kgd); uint32_t i = 0, reg; #define HQD_N_REGS 56 #define DUMP_REG(addr) do { \ if (WARN_ON_ONCE(i >= HQD_N_REGS)) \ break; \ (*dump)[i][0] = (addr) << 2; \ (*dump)[i++][1] = RREG32(addr); \ } while (0) *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL); if (*dump == NULL) return -ENOMEM; acquire_queue(kgd, pipe_id, queue_id); for (reg = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR); reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++) DUMP_REG(reg); release_queue(kgd); WARN_ON_ONCE(i != HQD_N_REGS); *n_regs = i; return 0; } static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd, uint32_t __user *wptr, struct mm_struct *mm) { struct amdgpu_device *adev = get_amdgpu_device(kgd); struct v9_sdma_mqd *m; uint32_t sdma_base_addr, sdmax_gfx_context_cntl; unsigned long end_jiffies; uint32_t data; uint64_t data64; uint64_t __user *wptr64 = (uint64_t __user *)wptr; m = get_sdma_mqd(mqd); sdma_base_addr = get_sdma_base_addr(adev, m->sdma_engine_id, m->sdma_queue_id); sdmax_gfx_context_cntl = m->sdma_engine_id ? SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GFX_CONTEXT_CNTL) : SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GFX_CONTEXT_CNTL); WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)); end_jiffies = msecs_to_jiffies(2000) + jiffies; while (true) { data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS); if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK) break; if (time_after(jiffies, end_jiffies)) return -ETIME; usleep_range(500, 1000); } data = RREG32(sdmax_gfx_context_cntl); data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL, RESUME_CTX, 0); WREG32(sdmax_gfx_context_cntl, data); WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL_OFFSET, m->sdmax_rlcx_doorbell_offset); data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL, ENABLE, 1); WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data); WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdmax_rlcx_rb_rptr); WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_HI, m->sdmax_rlcx_rb_rptr_hi); WREG32(sdma_base_addr + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1); if (read_user_wptr(mm, wptr64, data64)) { WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, lower_32_bits(data64)); WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR_HI, upper_32_bits(data64)); } else { WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, m->sdmax_rlcx_rb_rptr); WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR_HI, m->sdmax_rlcx_rb_rptr_hi); } WREG32(sdma_base_addr + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0); WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base); WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI, m->sdmax_rlcx_rb_base_hi); WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO, m->sdmax_rlcx_rb_rptr_addr_lo); WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI, m->sdmax_rlcx_rb_rptr_addr_hi); data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL, RB_ENABLE, 1); WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data); return 0; } static int kgd_hqd_sdma_dump(struct kgd_dev *kgd, uint32_t engine_id, uint32_t queue_id, uint32_t (**dump)[2], uint32_t *n_regs) { struct amdgpu_device *adev = get_amdgpu_device(kgd); uint32_t sdma_base_addr = get_sdma_base_addr(adev, engine_id, queue_id); uint32_t i = 0, reg; #undef HQD_N_REGS #define HQD_N_REGS (19+6+7+10) *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL); if (*dump == NULL) return -ENOMEM; for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++) DUMP_REG(sdma_base_addr + reg); for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++) DUMP_REG(sdma_base_addr + reg); for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN; reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++) DUMP_REG(sdma_base_addr + reg); for (reg = mmSDMA0_RLC0_MIDCMD_DATA0; reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++) DUMP_REG(sdma_base_addr + reg); WARN_ON_ONCE(i != HQD_N_REGS); *n_regs = i; return 0; } static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address, uint32_t pipe_id, uint32_t queue_id) { struct amdgpu_device *adev = get_amdgpu_device(kgd); uint32_t act; bool retval = false; uint32_t low, high; acquire_queue(kgd, pipe_id, queue_id); act = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE)); if (act) { low = lower_32_bits(queue_address >> 8); high = upper_32_bits(queue_address >> 8); if (low == RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_BASE)) && high == RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_BASE_HI))) retval = true; } release_queue(kgd); return retval; } static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd) { struct amdgpu_device *adev = get_amdgpu_device(kgd); struct v9_sdma_mqd *m; uint32_t sdma_base_addr; uint32_t sdma_rlc_rb_cntl; m = get_sdma_mqd(mqd); sdma_base_addr = get_sdma_base_addr(adev, m->sdma_engine_id, m->sdma_queue_id); sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL); if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK) return true; return false; } static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd, enum kfd_preempt_type reset_type, unsigned int utimeout, uint32_t pipe_id, uint32_t queue_id) { struct amdgpu_device *adev = get_amdgpu_device(kgd); enum hqd_dequeue_request_type type; unsigned long end_jiffies; uint32_t temp; struct v9_mqd *m = get_mqd(mqd); if (adev->in_gpu_reset) return -EIO; acquire_queue(kgd, pipe_id, queue_id); if (m->cp_hqd_vmid == 0) WREG32_FIELD15_RLC(GC, 0, RLC_CP_SCHEDULERS, scheduler1, 0); switch (reset_type) { case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN: type = DRAIN_PIPE; break; case KFD_PREEMPT_TYPE_WAVEFRONT_RESET: type = RESET_WAVES; break; default: type = DRAIN_PIPE; break; } WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_DEQUEUE_REQUEST), type); end_jiffies = (utimeout * HZ / 1000) + jiffies; while (true) { temp = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE)); if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK)) break; if (time_after(jiffies, end_jiffies)) { pr_err("cp queue preemption time out.\n"); release_queue(kgd); return -ETIME; } usleep_range(500, 1000); } release_queue(kgd); return 0; } static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd, unsigned int utimeout) { struct amdgpu_device *adev = get_amdgpu_device(kgd); struct v9_sdma_mqd *m; uint32_t sdma_base_addr; uint32_t temp; unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies; m = get_sdma_mqd(mqd); sdma_base_addr = get_sdma_base_addr(adev, m->sdma_engine_id, m->sdma_queue_id); temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL); temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK; WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp); while (true) { temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS); if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK) break; if (time_after(jiffies, end_jiffies)) return -ETIME; usleep_range(500, 1000); } WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0); WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) | SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK); m->sdmax_rlcx_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR); m->sdmax_rlcx_rb_rptr_hi = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_HI); return 0; } static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid) { uint32_t reg; struct amdgpu_device *adev = (struct amdgpu_device *) kgd; reg = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid); return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK; } static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd, uint8_t vmid) { uint32_t reg; struct amdgpu_device *adev = (struct amdgpu_device *) kgd; reg = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid); return reg & ATC_VMID0_PASID_MAPPING__PASID_MASK; } static int invalidate_tlbs_with_kiq(struct amdgpu_device *adev, uint16_t pasid, uint32_t flush_type) { signed long r; uint32_t seq; struct amdgpu_ring *ring = &adev->gfx.kiq.ring; spin_lock(&adev->gfx.kiq.ring_lock); amdgpu_ring_alloc(ring, 12); /* fence + invalidate_tlbs package*/ amdgpu_ring_write(ring, PACKET3(PACKET3_INVALIDATE_TLBS, 0)); amdgpu_ring_write(ring, PACKET3_INVALIDATE_TLBS_DST_SEL(1) | PACKET3_INVALIDATE_TLBS_ALL_HUB(1) | PACKET3_INVALIDATE_TLBS_PASID(pasid) | PACKET3_INVALIDATE_TLBS_FLUSH_TYPE(flush_type)); amdgpu_fence_emit_polling(ring, &seq); amdgpu_ring_commit(ring); spin_unlock(&adev->gfx.kiq.ring_lock); r = amdgpu_fence_wait_polling(ring, seq, adev->usec_timeout); if (r < 1) { DRM_ERROR("wait for kiq fence error: %ld.\n", r); return -ETIME; } return 0; } static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid) { struct amdgpu_device *adev = (struct amdgpu_device *) kgd; int vmid; struct amdgpu_ring *ring = &adev->gfx.kiq.ring; uint32_t flush_type = 0; if (adev->in_gpu_reset) return -EIO; if (adev->gmc.xgmi.num_physical_nodes && adev->asic_type == CHIP_VEGA20) flush_type = 2; if (ring->sched.ready) return invalidate_tlbs_with_kiq(adev, pasid, flush_type); for (vmid = 0; vmid < 16; vmid++) { if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) continue; if (get_atc_vmid_pasid_mapping_valid(kgd, vmid)) { if (get_atc_vmid_pasid_mapping_pasid(kgd, vmid) == pasid) { amdgpu_gmc_flush_gpu_tlb(adev, vmid, flush_type); break; } } } return 0; } static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid) { struct amdgpu_device *adev = (struct amdgpu_device *) kgd; if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) { pr_err("non kfd vmid %d\n", vmid); return 0; } /* Use legacy mode tlb invalidation. * * Currently on Raven the code below is broken for anything but * legacy mode due to a MMHUB power gating problem. A workaround * is for MMHUB to wait until the condition PER_VMID_INVALIDATE_REQ * == PER_VMID_INVALIDATE_ACK instead of simply waiting for the ack * bit. * * TODO 1: agree on the right set of invalidation registers for * KFD use. Use the last one for now. Invalidate both GC and * MMHUB. * * TODO 2: support range-based invalidation, requires kfg2kgd * interface change */ amdgpu_gmc_flush_gpu_tlb(adev, vmid, 0); return 0; } static int kgd_address_watch_disable(struct kgd_dev *kgd) { return 0; } static int kgd_address_watch_execute(struct kgd_dev *kgd, unsigned int watch_point_id, uint32_t cntl_val, uint32_t addr_hi, uint32_t addr_lo) { return 0; } static int kgd_wave_control_execute(struct kgd_dev *kgd, uint32_t gfx_index_val, uint32_t sq_cmd) { struct amdgpu_device *adev = get_amdgpu_device(kgd); uint32_t data = 0; mutex_lock(&adev->grbm_idx_mutex); WREG32_SOC15_RLC_SHADOW(GC, 0, mmGRBM_GFX_INDEX, gfx_index_val); WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_CMD), sq_cmd); data = REG_SET_FIELD(data, GRBM_GFX_INDEX, INSTANCE_BROADCAST_WRITES, 1); data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SH_BROADCAST_WRITES, 1); data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SE_BROADCAST_WRITES, 1); WREG32_SOC15_RLC_SHADOW(GC, 0, mmGRBM_GFX_INDEX, data); mutex_unlock(&adev->grbm_idx_mutex); return 0; } static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd, unsigned int watch_point_id, unsigned int reg_offset) { return 0; } static void set_scratch_backing_va(struct kgd_dev *kgd, uint64_t va, uint32_t vmid) { /* No longer needed on GFXv9. The scratch base address is * passed to the shader by the CP. It's the user mode driver's * responsibility. */ } static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid, uint64_t page_table_base) { struct amdgpu_device *adev = get_amdgpu_device(kgd); if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) { pr_err("trying to set page table base for wrong VMID %u\n", vmid); return; } /* TODO: take advantage of per-process address space size. For * now, all processes share the same address space size, like * on GFX8 and older. */ mmhub_v1_0_setup_vm_pt_regs(adev, vmid, page_table_base); gfxhub_v1_0_setup_vm_pt_regs(adev, vmid, page_table_base); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1