Contributors: 24
Author Tokens Token Proportion Commits Commit Proportion
Alex Deucher 4514 73.27% 17 22.08%
Christian König 890 14.45% 27 35.06%
Shaoyun Liu 206 3.34% 1 1.30%
yanyang1 156 2.53% 1 1.30%
Ken Wang 88 1.43% 2 2.60%
Alex Xie 66 1.07% 2 2.60%
Junwei (Martin) Zhang 64 1.04% 3 3.90%
Monk Liu 38 0.62% 3 3.90%
Harry Wentland 23 0.37% 1 1.30%
Andrey Grodzovsky 16 0.26% 3 3.90%
Roger He 15 0.24% 2 2.60%
Jay Cornwall 13 0.21% 1 1.30%
Edward O'Callaghan 12 0.19% 2 2.60%
Michel Dänzer 11 0.18% 1 1.30%
Flora Cui 10 0.16% 1 1.30%
Chunming Zhou 10 0.16% 2 2.60%
Yong Zhao 5 0.08% 1 1.30%
Tom St Denis 5 0.08% 1 1.30%
Joe Perches 5 0.08% 1 1.30%
Sam Ravnborg 4 0.06% 1 1.30%
Michael D Labriola 3 0.05% 1 1.30%
Jammy Zhou 3 0.05% 1 1.30%
Huang Rui 3 0.05% 1 1.30%
Oak Zeng 1 0.02% 1 1.30%
Total 6161 77


/*
 * Copyright 2014 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */

#include <linux/firmware.h>
#include <linux/module.h>
#include <linux/pci.h>

#include <drm/drm_cache.h>
#include "amdgpu.h"
#include "cikd.h"
#include "cik.h"
#include "gmc_v7_0.h"
#include "amdgpu_ucode.h"
#include "amdgpu_amdkfd.h"
#include "amdgpu_gem.h"

#include "bif/bif_4_1_d.h"
#include "bif/bif_4_1_sh_mask.h"

#include "gmc/gmc_7_1_d.h"
#include "gmc/gmc_7_1_sh_mask.h"

#include "oss/oss_2_0_d.h"
#include "oss/oss_2_0_sh_mask.h"

#include "dce/dce_8_0_d.h"
#include "dce/dce_8_0_sh_mask.h"

#include "amdgpu_atombios.h"

#include "ivsrcid/ivsrcid_vislands30.h"

static void gmc_v7_0_set_gmc_funcs(struct amdgpu_device *adev);
static void gmc_v7_0_set_irq_funcs(struct amdgpu_device *adev);
static int gmc_v7_0_wait_for_idle(void *handle);

MODULE_FIRMWARE("amdgpu/bonaire_mc.bin");
MODULE_FIRMWARE("amdgpu/hawaii_mc.bin");
MODULE_FIRMWARE("amdgpu/topaz_mc.bin");

static const u32 golden_settings_iceland_a11[] =
{
	mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
	mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
	mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
	mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff
};

static const u32 iceland_mgcg_cgcg_init[] =
{
	mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
};

static void gmc_v7_0_init_golden_registers(struct amdgpu_device *adev)
{
	switch (adev->asic_type) {
	case CHIP_TOPAZ:
		amdgpu_device_program_register_sequence(adev,
							iceland_mgcg_cgcg_init,
							ARRAY_SIZE(iceland_mgcg_cgcg_init));
		amdgpu_device_program_register_sequence(adev,
							golden_settings_iceland_a11,
							ARRAY_SIZE(golden_settings_iceland_a11));
		break;
	default:
		break;
	}
}

static void gmc_v7_0_mc_stop(struct amdgpu_device *adev)
{
	u32 blackout;

	gmc_v7_0_wait_for_idle((void *)adev);

	blackout = RREG32(mmMC_SHARED_BLACKOUT_CNTL);
	if (REG_GET_FIELD(blackout, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE) != 1) {
		/* Block CPU access */
		WREG32(mmBIF_FB_EN, 0);
		/* blackout the MC */
		blackout = REG_SET_FIELD(blackout,
					 MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 0);
		WREG32(mmMC_SHARED_BLACKOUT_CNTL, blackout | 1);
	}
	/* wait for the MC to settle */
	udelay(100);
}

static void gmc_v7_0_mc_resume(struct amdgpu_device *adev)
{
	u32 tmp;

	/* unblackout the MC */
	tmp = RREG32(mmMC_SHARED_BLACKOUT_CNTL);
	tmp = REG_SET_FIELD(tmp, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 0);
	WREG32(mmMC_SHARED_BLACKOUT_CNTL, tmp);
	/* allow CPU access */
	tmp = REG_SET_FIELD(0, BIF_FB_EN, FB_READ_EN, 1);
	tmp = REG_SET_FIELD(tmp, BIF_FB_EN, FB_WRITE_EN, 1);
	WREG32(mmBIF_FB_EN, tmp);
}

/**
 * gmc_v7_0_init_microcode - load ucode images from disk
 *
 * @adev: amdgpu_device pointer
 *
 * Use the firmware interface to load the ucode images into
 * the driver (not loaded into hw).
 * Returns 0 on success, error on failure.
 */
static int gmc_v7_0_init_microcode(struct amdgpu_device *adev)
{
	const char *chip_name;
	char fw_name[30];
	int err;

	DRM_DEBUG("\n");

	switch (adev->asic_type) {
	case CHIP_BONAIRE:
		chip_name = "bonaire";
		break;
	case CHIP_HAWAII:
		chip_name = "hawaii";
		break;
	case CHIP_TOPAZ:
		chip_name = "topaz";
		break;
	case CHIP_KAVERI:
	case CHIP_KABINI:
	case CHIP_MULLINS:
		return 0;
	default: BUG();
	}

	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mc.bin", chip_name);

	err = request_firmware(&adev->gmc.fw, fw_name, adev->dev);
	if (err)
		goto out;
	err = amdgpu_ucode_validate(adev->gmc.fw);

out:
	if (err) {
		pr_err("cik_mc: Failed to load firmware \"%s\"\n", fw_name);
		release_firmware(adev->gmc.fw);
		adev->gmc.fw = NULL;
	}
	return err;
}

/**
 * gmc_v7_0_mc_load_microcode - load MC ucode into the hw
 *
 * @adev: amdgpu_device pointer
 *
 * Load the GDDR MC ucode into the hw (CIK).
 * Returns 0 on success, error on failure.
 */
static int gmc_v7_0_mc_load_microcode(struct amdgpu_device *adev)
{
	const struct mc_firmware_header_v1_0 *hdr;
	const __le32 *fw_data = NULL;
	const __le32 *io_mc_regs = NULL;
	u32 running;
	int i, ucode_size, regs_size;

	if (!adev->gmc.fw)
		return -EINVAL;

	hdr = (const struct mc_firmware_header_v1_0 *)adev->gmc.fw->data;
	amdgpu_ucode_print_mc_hdr(&hdr->header);

	adev->gmc.fw_version = le32_to_cpu(hdr->header.ucode_version);
	regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2);
	io_mc_regs = (const __le32 *)
		(adev->gmc.fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes));
	ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
	fw_data = (const __le32 *)
		(adev->gmc.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));

	running = REG_GET_FIELD(RREG32(mmMC_SEQ_SUP_CNTL), MC_SEQ_SUP_CNTL, RUN);

	if (running == 0) {
		/* reset the engine and set to writable */
		WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
		WREG32(mmMC_SEQ_SUP_CNTL, 0x00000010);

		/* load mc io regs */
		for (i = 0; i < regs_size; i++) {
			WREG32(mmMC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(io_mc_regs++));
			WREG32(mmMC_SEQ_IO_DEBUG_DATA, le32_to_cpup(io_mc_regs++));
		}
		/* load the MC ucode */
		for (i = 0; i < ucode_size; i++)
			WREG32(mmMC_SEQ_SUP_PGM, le32_to_cpup(fw_data++));

		/* put the engine back into the active state */
		WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
		WREG32(mmMC_SEQ_SUP_CNTL, 0x00000004);
		WREG32(mmMC_SEQ_SUP_CNTL, 0x00000001);

		/* wait for training to complete */
		for (i = 0; i < adev->usec_timeout; i++) {
			if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL),
					  MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D0))
				break;
			udelay(1);
		}
		for (i = 0; i < adev->usec_timeout; i++) {
			if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL),
					  MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D1))
				break;
			udelay(1);
		}
	}

	return 0;
}

static void gmc_v7_0_vram_gtt_location(struct amdgpu_device *adev,
				       struct amdgpu_gmc *mc)
{
	u64 base = RREG32(mmMC_VM_FB_LOCATION) & 0xFFFF;
	base <<= 24;

	amdgpu_gmc_vram_location(adev, mc, base);
	amdgpu_gmc_gart_location(adev, mc);
}

/**
 * gmc_v7_0_mc_program - program the GPU memory controller
 *
 * @adev: amdgpu_device pointer
 *
 * Set the location of vram, gart, and AGP in the GPU's
 * physical address space (CIK).
 */
static void gmc_v7_0_mc_program(struct amdgpu_device *adev)
{
	u32 tmp;
	int i, j;

	/* Initialize HDP */
	for (i = 0, j = 0; i < 32; i++, j += 0x6) {
		WREG32((0xb05 + j), 0x00000000);
		WREG32((0xb06 + j), 0x00000000);
		WREG32((0xb07 + j), 0x00000000);
		WREG32((0xb08 + j), 0x00000000);
		WREG32((0xb09 + j), 0x00000000);
	}
	WREG32(mmHDP_REG_COHERENCY_FLUSH_CNTL, 0);

	if (gmc_v7_0_wait_for_idle((void *)adev)) {
		dev_warn(adev->dev, "Wait for MC idle timedout !\n");
	}
	if (adev->mode_info.num_crtc) {
		/* Lockout access through VGA aperture*/
		tmp = RREG32(mmVGA_HDP_CONTROL);
		tmp = REG_SET_FIELD(tmp, VGA_HDP_CONTROL, VGA_MEMORY_DISABLE, 1);
		WREG32(mmVGA_HDP_CONTROL, tmp);

		/* disable VGA render */
		tmp = RREG32(mmVGA_RENDER_CONTROL);
		tmp = REG_SET_FIELD(tmp, VGA_RENDER_CONTROL, VGA_VSTATUS_CNTL, 0);
		WREG32(mmVGA_RENDER_CONTROL, tmp);
	}
	/* Update configuration */
	WREG32(mmMC_VM_SYSTEM_APERTURE_LOW_ADDR,
	       adev->gmc.vram_start >> 12);
	WREG32(mmMC_VM_SYSTEM_APERTURE_HIGH_ADDR,
	       adev->gmc.vram_end >> 12);
	WREG32(mmMC_VM_SYSTEM_APERTURE_DEFAULT_ADDR,
	       adev->vram_scratch.gpu_addr >> 12);
	WREG32(mmMC_VM_AGP_BASE, 0);
	WREG32(mmMC_VM_AGP_TOP, 0x0FFFFFFF);
	WREG32(mmMC_VM_AGP_BOT, 0x0FFFFFFF);
	if (gmc_v7_0_wait_for_idle((void *)adev)) {
		dev_warn(adev->dev, "Wait for MC idle timedout !\n");
	}

	WREG32(mmBIF_FB_EN, BIF_FB_EN__FB_READ_EN_MASK | BIF_FB_EN__FB_WRITE_EN_MASK);

	tmp = RREG32(mmHDP_MISC_CNTL);
	tmp = REG_SET_FIELD(tmp, HDP_MISC_CNTL, FLUSH_INVALIDATE_CACHE, 0);
	WREG32(mmHDP_MISC_CNTL, tmp);

	tmp = RREG32(mmHDP_HOST_PATH_CNTL);
	WREG32(mmHDP_HOST_PATH_CNTL, tmp);
}

/**
 * gmc_v7_0_mc_init - initialize the memory controller driver params
 *
 * @adev: amdgpu_device pointer
 *
 * Look up the amount of vram, vram width, and decide how to place
 * vram and gart within the GPU's physical address space (CIK).
 * Returns 0 for success.
 */
static int gmc_v7_0_mc_init(struct amdgpu_device *adev)
{
	int r;

	adev->gmc.vram_width = amdgpu_atombios_get_vram_width(adev);
	if (!adev->gmc.vram_width) {
		u32 tmp;
		int chansize, numchan;

		/* Get VRAM informations */
		tmp = RREG32(mmMC_ARB_RAMCFG);
		if (REG_GET_FIELD(tmp, MC_ARB_RAMCFG, CHANSIZE)) {
			chansize = 64;
		} else {
			chansize = 32;
		}
		tmp = RREG32(mmMC_SHARED_CHMAP);
		switch (REG_GET_FIELD(tmp, MC_SHARED_CHMAP, NOOFCHAN)) {
		case 0:
		default:
			numchan = 1;
			break;
		case 1:
			numchan = 2;
			break;
		case 2:
			numchan = 4;
			break;
		case 3:
			numchan = 8;
			break;
		case 4:
			numchan = 3;
			break;
		case 5:
			numchan = 6;
			break;
		case 6:
			numchan = 10;
			break;
		case 7:
			numchan = 12;
			break;
		case 8:
			numchan = 16;
			break;
		}
		adev->gmc.vram_width = numchan * chansize;
	}
	/* size in MB on si */
	adev->gmc.mc_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL;
	adev->gmc.real_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL;

	if (!(adev->flags & AMD_IS_APU)) {
		r = amdgpu_device_resize_fb_bar(adev);
		if (r)
			return r;
	}
	adev->gmc.aper_base = pci_resource_start(adev->pdev, 0);
	adev->gmc.aper_size = pci_resource_len(adev->pdev, 0);

#ifdef CONFIG_X86_64
	if (adev->flags & AMD_IS_APU) {
		adev->gmc.aper_base = ((u64)RREG32(mmMC_VM_FB_OFFSET)) << 22;
		adev->gmc.aper_size = adev->gmc.real_vram_size;
	}
#endif

	/* In case the PCI BAR is larger than the actual amount of vram */
	adev->gmc.visible_vram_size = adev->gmc.aper_size;
	if (adev->gmc.visible_vram_size > adev->gmc.real_vram_size)
		adev->gmc.visible_vram_size = adev->gmc.real_vram_size;

	/* set the gart size */
	if (amdgpu_gart_size == -1) {
		switch (adev->asic_type) {
		case CHIP_TOPAZ:     /* no MM engines */
		default:
			adev->gmc.gart_size = 256ULL << 20;
			break;
#ifdef CONFIG_DRM_AMDGPU_CIK
		case CHIP_BONAIRE: /* UVD, VCE do not support GPUVM */
		case CHIP_HAWAII:  /* UVD, VCE do not support GPUVM */
		case CHIP_KAVERI:  /* UVD, VCE do not support GPUVM */
		case CHIP_KABINI:  /* UVD, VCE do not support GPUVM */
		case CHIP_MULLINS: /* UVD, VCE do not support GPUVM */
			adev->gmc.gart_size = 1024ULL << 20;
			break;
#endif
		}
	} else {
		adev->gmc.gart_size = (u64)amdgpu_gart_size << 20;
	}

	gmc_v7_0_vram_gtt_location(adev, &adev->gmc);

	return 0;
}

/*
 * GART
 * VMID 0 is the physical GPU addresses as used by the kernel.
 * VMIDs 1-15 are used for userspace clients and are handled
 * by the amdgpu vm/hsa code.
 */

/**
 * gmc_v7_0_flush_gpu_tlb - gart tlb flush callback
 *
 * @adev: amdgpu_device pointer
 * @vmid: vm instance to flush
 *
 * Flush the TLB for the requested page table (CIK).
 */
static void gmc_v7_0_flush_gpu_tlb(struct amdgpu_device *adev,
				uint32_t vmid, uint32_t flush_type)
{
	/* bits 0-15 are the VM contexts0-15 */
	WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
}

static uint64_t gmc_v7_0_emit_flush_gpu_tlb(struct amdgpu_ring *ring,
					    unsigned vmid, uint64_t pd_addr)
{
	uint32_t reg;

	if (vmid < 8)
		reg = mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vmid;
	else
		reg = mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8;
	amdgpu_ring_emit_wreg(ring, reg, pd_addr >> 12);

	/* bits 0-15 are the VM contexts0-15 */
	amdgpu_ring_emit_wreg(ring, mmVM_INVALIDATE_REQUEST, 1 << vmid);

	return pd_addr;
}

static void gmc_v7_0_emit_pasid_mapping(struct amdgpu_ring *ring, unsigned vmid,
					unsigned pasid)
{
	amdgpu_ring_emit_wreg(ring, mmIH_VMID_0_LUT + vmid, pasid);
}

static uint64_t gmc_v7_0_get_vm_pte_flags(struct amdgpu_device *adev,
					  uint32_t flags)
{
	uint64_t pte_flag = 0;

	if (flags & AMDGPU_VM_PAGE_READABLE)
		pte_flag |= AMDGPU_PTE_READABLE;
	if (flags & AMDGPU_VM_PAGE_WRITEABLE)
		pte_flag |= AMDGPU_PTE_WRITEABLE;
	if (flags & AMDGPU_VM_PAGE_PRT)
		pte_flag |= AMDGPU_PTE_PRT;

	return pte_flag;
}

static void gmc_v7_0_get_vm_pde(struct amdgpu_device *adev, int level,
				uint64_t *addr, uint64_t *flags)
{
	BUG_ON(*addr & 0xFFFFFF0000000FFFULL);
}

/**
 * gmc_v8_0_set_fault_enable_default - update VM fault handling
 *
 * @adev: amdgpu_device pointer
 * @value: true redirects VM faults to the default page
 */
static void gmc_v7_0_set_fault_enable_default(struct amdgpu_device *adev,
					      bool value)
{
	u32 tmp;

	tmp = RREG32(mmVM_CONTEXT1_CNTL);
	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
			    RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
			    DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
			    PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, value);
	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
			    VALID_PROTECTION_FAULT_ENABLE_DEFAULT, value);
	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
			    READ_PROTECTION_FAULT_ENABLE_DEFAULT, value);
	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
			    WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
	WREG32(mmVM_CONTEXT1_CNTL, tmp);
}

/**
 * gmc_v7_0_set_prt - set PRT VM fault
 *
 * @adev: amdgpu_device pointer
 * @enable: enable/disable VM fault handling for PRT
 */
static void gmc_v7_0_set_prt(struct amdgpu_device *adev, bool enable)
{
	uint32_t tmp;

	if (enable && !adev->gmc.prt_warning) {
		dev_warn(adev->dev, "Disabling VM faults because of PRT request!\n");
		adev->gmc.prt_warning = true;
	}

	tmp = RREG32(mmVM_PRT_CNTL);
	tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
			    CB_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable);
	tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
			    CB_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable);
	tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
			    TC_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable);
	tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
			    TC_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable);
	tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
			    L2_CACHE_STORE_INVALID_ENTRIES, enable);
	tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
			    L1_TLB_STORE_INVALID_ENTRIES, enable);
	tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
			    MASK_PDE0_FAULT, enable);
	WREG32(mmVM_PRT_CNTL, tmp);

	if (enable) {
		uint32_t low = AMDGPU_VA_RESERVED_SIZE >> AMDGPU_GPU_PAGE_SHIFT;
		uint32_t high = adev->vm_manager.max_pfn -
			(AMDGPU_VA_RESERVED_SIZE >> AMDGPU_GPU_PAGE_SHIFT);

		WREG32(mmVM_PRT_APERTURE0_LOW_ADDR, low);
		WREG32(mmVM_PRT_APERTURE1_LOW_ADDR, low);
		WREG32(mmVM_PRT_APERTURE2_LOW_ADDR, low);
		WREG32(mmVM_PRT_APERTURE3_LOW_ADDR, low);
		WREG32(mmVM_PRT_APERTURE0_HIGH_ADDR, high);
		WREG32(mmVM_PRT_APERTURE1_HIGH_ADDR, high);
		WREG32(mmVM_PRT_APERTURE2_HIGH_ADDR, high);
		WREG32(mmVM_PRT_APERTURE3_HIGH_ADDR, high);
	} else {
		WREG32(mmVM_PRT_APERTURE0_LOW_ADDR, 0xfffffff);
		WREG32(mmVM_PRT_APERTURE1_LOW_ADDR, 0xfffffff);
		WREG32(mmVM_PRT_APERTURE2_LOW_ADDR, 0xfffffff);
		WREG32(mmVM_PRT_APERTURE3_LOW_ADDR, 0xfffffff);
		WREG32(mmVM_PRT_APERTURE0_HIGH_ADDR, 0x0);
		WREG32(mmVM_PRT_APERTURE1_HIGH_ADDR, 0x0);
		WREG32(mmVM_PRT_APERTURE2_HIGH_ADDR, 0x0);
		WREG32(mmVM_PRT_APERTURE3_HIGH_ADDR, 0x0);
	}
}

/**
 * gmc_v7_0_gart_enable - gart enable
 *
 * @adev: amdgpu_device pointer
 *
 * This sets up the TLBs, programs the page tables for VMID0,
 * sets up the hw for VMIDs 1-15 which are allocated on
 * demand, and sets up the global locations for the LDS, GDS,
 * and GPUVM for FSA64 clients (CIK).
 * Returns 0 for success, errors for failure.
 */
static int gmc_v7_0_gart_enable(struct amdgpu_device *adev)
{
	uint64_t table_addr;
	int r, i;
	u32 tmp, field;

	if (adev->gart.bo == NULL) {
		dev_err(adev->dev, "No VRAM object for PCIE GART.\n");
		return -EINVAL;
	}
	r = amdgpu_gart_table_vram_pin(adev);
	if (r)
		return r;

	table_addr = amdgpu_bo_gpu_offset(adev->gart.bo);

	/* Setup TLB control */
	tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL);
	tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 1);
	tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 1);
	tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_ACCESS_MODE, 3);
	tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 1);
	tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_APERTURE_UNMAPPED_ACCESS, 0);
	WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp);
	/* Setup L2 cache */
	tmp = RREG32(mmVM_L2_CNTL);
	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 1);
	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_FRAGMENT_PROCESSING, 1);
	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE, 1);
	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE, 1);
	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, EFFECTIVE_L2_QUEUE_SIZE, 7);
	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, CONTEXT1_IDENTITY_ACCESS_MODE, 1);
	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_DEFAULT_PAGE_OUT_TO_SYSTEM_MEMORY, 1);
	WREG32(mmVM_L2_CNTL, tmp);
	tmp = REG_SET_FIELD(0, VM_L2_CNTL2, INVALIDATE_ALL_L1_TLBS, 1);
	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_L2_CACHE, 1);
	WREG32(mmVM_L2_CNTL2, tmp);

	field = adev->vm_manager.fragment_size;
	tmp = RREG32(mmVM_L2_CNTL3);
	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY, 1);
	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, BANK_SELECT, field);
	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_FRAGMENT_SIZE, field);
	WREG32(mmVM_L2_CNTL3, tmp);
	/* setup context0 */
	WREG32(mmVM_CONTEXT0_PAGE_TABLE_START_ADDR, adev->gmc.gart_start >> 12);
	WREG32(mmVM_CONTEXT0_PAGE_TABLE_END_ADDR, adev->gmc.gart_end >> 12);
	WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR, table_addr >> 12);
	WREG32(mmVM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR,
			(u32)(adev->dummy_page_addr >> 12));
	WREG32(mmVM_CONTEXT0_CNTL2, 0);
	tmp = RREG32(mmVM_CONTEXT0_CNTL);
	tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, ENABLE_CONTEXT, 1);
	tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, PAGE_TABLE_DEPTH, 0);
	tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
	WREG32(mmVM_CONTEXT0_CNTL, tmp);

	WREG32(0x575, 0);
	WREG32(0x576, 0);
	WREG32(0x577, 0);

	/* empty context1-15 */
	/* FIXME start with 4G, once using 2 level pt switch to full
	 * vm size space
	 */
	/* set vm size, must be a multiple of 4 */
	WREG32(mmVM_CONTEXT1_PAGE_TABLE_START_ADDR, 0);
	WREG32(mmVM_CONTEXT1_PAGE_TABLE_END_ADDR, adev->vm_manager.max_pfn - 1);
	for (i = 1; i < 16; i++) {
		if (i < 8)
			WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + i,
			       table_addr >> 12);
		else
			WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + i - 8,
			       table_addr >> 12);
	}

	/* enable context1-15 */
	WREG32(mmVM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR,
	       (u32)(adev->dummy_page_addr >> 12));
	WREG32(mmVM_CONTEXT1_CNTL2, 4);
	tmp = RREG32(mmVM_CONTEXT1_CNTL);
	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, ENABLE_CONTEXT, 1);
	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_DEPTH, 1);
	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_BLOCK_SIZE,
			    adev->vm_manager.block_size - 9);
	WREG32(mmVM_CONTEXT1_CNTL, tmp);
	if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_ALWAYS)
		gmc_v7_0_set_fault_enable_default(adev, false);
	else
		gmc_v7_0_set_fault_enable_default(adev, true);

	if (adev->asic_type == CHIP_KAVERI) {
		tmp = RREG32(mmCHUB_CONTROL);
		tmp &= ~BYPASS_VM;
		WREG32(mmCHUB_CONTROL, tmp);
	}

	gmc_v7_0_flush_gpu_tlb(adev, 0, 0);
	DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n",
		 (unsigned)(adev->gmc.gart_size >> 20),
		 (unsigned long long)table_addr);
	adev->gart.ready = true;
	return 0;
}

static int gmc_v7_0_gart_init(struct amdgpu_device *adev)
{
	int r;

	if (adev->gart.bo) {
		WARN(1, "R600 PCIE GART already initialized\n");
		return 0;
	}
	/* Initialize common gart structure */
	r = amdgpu_gart_init(adev);
	if (r)
		return r;
	adev->gart.table_size = adev->gart.num_gpu_pages * 8;
	adev->gart.gart_pte_flags = 0;
	return amdgpu_gart_table_vram_alloc(adev);
}

/**
 * gmc_v7_0_gart_disable - gart disable
 *
 * @adev: amdgpu_device pointer
 *
 * This disables all VM page table (CIK).
 */
static void gmc_v7_0_gart_disable(struct amdgpu_device *adev)
{
	u32 tmp;

	/* Disable all tables */
	WREG32(mmVM_CONTEXT0_CNTL, 0);
	WREG32(mmVM_CONTEXT1_CNTL, 0);
	/* Setup TLB control */
	tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL);
	tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 0);
	tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 0);
	tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 0);
	WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp);
	/* Setup L2 cache */
	tmp = RREG32(mmVM_L2_CNTL);
	tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 0);
	WREG32(mmVM_L2_CNTL, tmp);
	WREG32(mmVM_L2_CNTL2, 0);
	amdgpu_gart_table_vram_unpin(adev);
}

/**
 * gmc_v7_0_vm_decode_fault - print human readable fault info
 *
 * @adev: amdgpu_device pointer
 * @status: VM_CONTEXT1_PROTECTION_FAULT_STATUS register value
 * @addr: VM_CONTEXT1_PROTECTION_FAULT_ADDR register value
 *
 * Print human readable fault information (CIK).
 */
static void gmc_v7_0_vm_decode_fault(struct amdgpu_device *adev, u32 status,
				     u32 addr, u32 mc_client, unsigned pasid)
{
	u32 vmid = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
	u32 protections = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
					PROTECTIONS);
	char block[5] = { mc_client >> 24, (mc_client >> 16) & 0xff,
		(mc_client >> 8) & 0xff, mc_client & 0xff, 0 };
	u32 mc_id;

	mc_id = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
			      MEMORY_CLIENT_ID);

	dev_err(adev->dev, "VM fault (0x%02x, vmid %d, pasid %d) at page %u, %s from '%s' (0x%08x) (%d)\n",
	       protections, vmid, pasid, addr,
	       REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
			     MEMORY_CLIENT_RW) ?
	       "write" : "read", block, mc_client, mc_id);
}


static const u32 mc_cg_registers[] = {
	mmMC_HUB_MISC_HUB_CG,
	mmMC_HUB_MISC_SIP_CG,
	mmMC_HUB_MISC_VM_CG,
	mmMC_XPB_CLK_GAT,
	mmATC_MISC_CG,
	mmMC_CITF_MISC_WR_CG,
	mmMC_CITF_MISC_RD_CG,
	mmMC_CITF_MISC_VM_CG,
	mmVM_L2_CG,
};

static const u32 mc_cg_ls_en[] = {
	MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK,
	MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK,
	MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK,
	MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK,
	ATC_MISC_CG__MEM_LS_ENABLE_MASK,
	MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK,
	MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK,
	MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK,
	VM_L2_CG__MEM_LS_ENABLE_MASK,
};

static const u32 mc_cg_en[] = {
	MC_HUB_MISC_HUB_CG__ENABLE_MASK,
	MC_HUB_MISC_SIP_CG__ENABLE_MASK,
	MC_HUB_MISC_VM_CG__ENABLE_MASK,
	MC_XPB_CLK_GAT__ENABLE_MASK,
	ATC_MISC_CG__ENABLE_MASK,
	MC_CITF_MISC_WR_CG__ENABLE_MASK,
	MC_CITF_MISC_RD_CG__ENABLE_MASK,
	MC_CITF_MISC_VM_CG__ENABLE_MASK,
	VM_L2_CG__ENABLE_MASK,
};

static void gmc_v7_0_enable_mc_ls(struct amdgpu_device *adev,
				  bool enable)
{
	int i;
	u32 orig, data;

	for (i = 0; i < ARRAY_SIZE(mc_cg_registers); i++) {
		orig = data = RREG32(mc_cg_registers[i]);
		if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_LS))
			data |= mc_cg_ls_en[i];
		else
			data &= ~mc_cg_ls_en[i];
		if (data != orig)
			WREG32(mc_cg_registers[i], data);
	}
}

static void gmc_v7_0_enable_mc_mgcg(struct amdgpu_device *adev,
				    bool enable)
{
	int i;
	u32 orig, data;

	for (i = 0; i < ARRAY_SIZE(mc_cg_registers); i++) {
		orig = data = RREG32(mc_cg_registers[i]);
		if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_MGCG))
			data |= mc_cg_en[i];
		else
			data &= ~mc_cg_en[i];
		if (data != orig)
			WREG32(mc_cg_registers[i], data);
	}
}

static void gmc_v7_0_enable_bif_mgls(struct amdgpu_device *adev,
				     bool enable)
{
	u32 orig, data;

	orig = data = RREG32_PCIE(ixPCIE_CNTL2);

	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_BIF_LS)) {
		data = REG_SET_FIELD(data, PCIE_CNTL2, SLV_MEM_LS_EN, 1);
		data = REG_SET_FIELD(data, PCIE_CNTL2, MST_MEM_LS_EN, 1);
		data = REG_SET_FIELD(data, PCIE_CNTL2, REPLAY_MEM_LS_EN, 1);
		data = REG_SET_FIELD(data, PCIE_CNTL2, SLV_MEM_AGGRESSIVE_LS_EN, 1);
	} else {
		data = REG_SET_FIELD(data, PCIE_CNTL2, SLV_MEM_LS_EN, 0);
		data = REG_SET_FIELD(data, PCIE_CNTL2, MST_MEM_LS_EN, 0);
		data = REG_SET_FIELD(data, PCIE_CNTL2, REPLAY_MEM_LS_EN, 0);
		data = REG_SET_FIELD(data, PCIE_CNTL2, SLV_MEM_AGGRESSIVE_LS_EN, 0);
	}

	if (orig != data)
		WREG32_PCIE(ixPCIE_CNTL2, data);
}

static void gmc_v7_0_enable_hdp_mgcg(struct amdgpu_device *adev,
				     bool enable)
{
	u32 orig, data;

	orig = data = RREG32(mmHDP_HOST_PATH_CNTL);

	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_HDP_MGCG))
		data = REG_SET_FIELD(data, HDP_HOST_PATH_CNTL, CLOCK_GATING_DIS, 0);
	else
		data = REG_SET_FIELD(data, HDP_HOST_PATH_CNTL, CLOCK_GATING_DIS, 1);

	if (orig != data)
		WREG32(mmHDP_HOST_PATH_CNTL, data);
}

static void gmc_v7_0_enable_hdp_ls(struct amdgpu_device *adev,
				   bool enable)
{
	u32 orig, data;

	orig = data = RREG32(mmHDP_MEM_POWER_LS);

	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_HDP_LS))
		data = REG_SET_FIELD(data, HDP_MEM_POWER_LS, LS_ENABLE, 1);
	else
		data = REG_SET_FIELD(data, HDP_MEM_POWER_LS, LS_ENABLE, 0);

	if (orig != data)
		WREG32(mmHDP_MEM_POWER_LS, data);
}

static int gmc_v7_0_convert_vram_type(int mc_seq_vram_type)
{
	switch (mc_seq_vram_type) {
	case MC_SEQ_MISC0__MT__GDDR1:
		return AMDGPU_VRAM_TYPE_GDDR1;
	case MC_SEQ_MISC0__MT__DDR2:
		return AMDGPU_VRAM_TYPE_DDR2;
	case MC_SEQ_MISC0__MT__GDDR3:
		return AMDGPU_VRAM_TYPE_GDDR3;
	case MC_SEQ_MISC0__MT__GDDR4:
		return AMDGPU_VRAM_TYPE_GDDR4;
	case MC_SEQ_MISC0__MT__GDDR5:
		return AMDGPU_VRAM_TYPE_GDDR5;
	case MC_SEQ_MISC0__MT__HBM:
		return AMDGPU_VRAM_TYPE_HBM;
	case MC_SEQ_MISC0__MT__DDR3:
		return AMDGPU_VRAM_TYPE_DDR3;
	default:
		return AMDGPU_VRAM_TYPE_UNKNOWN;
	}
}

static int gmc_v7_0_early_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	gmc_v7_0_set_gmc_funcs(adev);
	gmc_v7_0_set_irq_funcs(adev);

	adev->gmc.shared_aperture_start = 0x2000000000000000ULL;
	adev->gmc.shared_aperture_end =
		adev->gmc.shared_aperture_start + (4ULL << 30) - 1;
	adev->gmc.private_aperture_start =
		adev->gmc.shared_aperture_end + 1;
	adev->gmc.private_aperture_end =
		adev->gmc.private_aperture_start + (4ULL << 30) - 1;

	return 0;
}

static int gmc_v7_0_late_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	amdgpu_bo_late_init(adev);

	if (amdgpu_vm_fault_stop != AMDGPU_VM_FAULT_STOP_ALWAYS)
		return amdgpu_irq_get(adev, &adev->gmc.vm_fault, 0);
	else
		return 0;
}

static unsigned gmc_v7_0_get_vbios_fb_size(struct amdgpu_device *adev)
{
	u32 d1vga_control = RREG32(mmD1VGA_CONTROL);
	unsigned size;

	if (REG_GET_FIELD(d1vga_control, D1VGA_CONTROL, D1VGA_MODE_ENABLE)) {
		size = 9 * 1024 * 1024; /* reserve 8MB for vga emulator and 1 MB for FB */
	} else {
		u32 viewport = RREG32(mmVIEWPORT_SIZE);
		size = (REG_GET_FIELD(viewport, VIEWPORT_SIZE, VIEWPORT_HEIGHT) *
			REG_GET_FIELD(viewport, VIEWPORT_SIZE, VIEWPORT_WIDTH) *
			4);
	}
	/* return 0 if the pre-OS buffer uses up most of vram */
	if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024))
		return 0;
	return size;
}

static int gmc_v7_0_sw_init(void *handle)
{
	int r;
	int dma_bits;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	if (adev->flags & AMD_IS_APU) {
		adev->gmc.vram_type = AMDGPU_VRAM_TYPE_UNKNOWN;
	} else {
		u32 tmp = RREG32(mmMC_SEQ_MISC0);
		tmp &= MC_SEQ_MISC0__MT__MASK;
		adev->gmc.vram_type = gmc_v7_0_convert_vram_type(tmp);
	}

	r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_GFX_PAGE_INV_FAULT, &adev->gmc.vm_fault);
	if (r)
		return r;

	r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_GFX_MEM_PROT_FAULT, &adev->gmc.vm_fault);
	if (r)
		return r;

	/* Adjust VM size here.
	 * Currently set to 4GB ((1 << 20) 4k pages).
	 * Max GPUVM size for cayman and SI is 40 bits.
	 */
	amdgpu_vm_adjust_size(adev, 64, 9, 1, 40);

	/* Set the internal MC address mask
	 * This is the max address of the GPU's
	 * internal address space.
	 */
	adev->gmc.mc_mask = 0xffffffffffULL; /* 40 bit MC */

	/* set DMA mask + need_dma32 flags.
	 * PCIE - can handle 40-bits.
	 * IGP - can handle 40-bits
	 * PCI - dma32 for legacy pci gart, 40 bits on newer asics
	 */
	adev->need_dma32 = false;
	dma_bits = adev->need_dma32 ? 32 : 40;
	r = pci_set_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits));
	if (r) {
		adev->need_dma32 = true;
		dma_bits = 32;
		pr_warn("amdgpu: No suitable DMA available\n");
	}
	r = pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits));
	if (r) {
		pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(32));
		pr_warn("amdgpu: No coherent DMA available\n");
	}
	adev->need_swiotlb = drm_need_swiotlb(dma_bits);

	r = gmc_v7_0_init_microcode(adev);
	if (r) {
		DRM_ERROR("Failed to load mc firmware!\n");
		return r;
	}

	r = gmc_v7_0_mc_init(adev);
	if (r)
		return r;

	adev->gmc.stolen_size = gmc_v7_0_get_vbios_fb_size(adev);

	/* Memory manager */
	r = amdgpu_bo_init(adev);
	if (r)
		return r;

	r = gmc_v7_0_gart_init(adev);
	if (r)
		return r;

	/*
	 * number of VMs
	 * VMID 0 is reserved for System
	 * amdgpu graphics/compute will use VMIDs 1-7
	 * amdkfd will use VMIDs 8-15
	 */
	adev->vm_manager.id_mgr[0].num_ids = AMDGPU_NUM_OF_VMIDS;
	amdgpu_vm_manager_init(adev);

	/* base offset of vram pages */
	if (adev->flags & AMD_IS_APU) {
		u64 tmp = RREG32(mmMC_VM_FB_OFFSET);

		tmp <<= 22;
		adev->vm_manager.vram_base_offset = tmp;
	} else {
		adev->vm_manager.vram_base_offset = 0;
	}

	adev->gmc.vm_fault_info = kmalloc(sizeof(struct kfd_vm_fault_info),
					GFP_KERNEL);
	if (!adev->gmc.vm_fault_info)
		return -ENOMEM;
	atomic_set(&adev->gmc.vm_fault_info_updated, 0);

	return 0;
}

static int gmc_v7_0_sw_fini(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	amdgpu_gem_force_release(adev);
	amdgpu_vm_manager_fini(adev);
	kfree(adev->gmc.vm_fault_info);
	amdgpu_gart_table_vram_free(adev);
	amdgpu_bo_fini(adev);
	amdgpu_gart_fini(adev);
	release_firmware(adev->gmc.fw);
	adev->gmc.fw = NULL;

	return 0;
}

static int gmc_v7_0_hw_init(void *handle)
{
	int r;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	gmc_v7_0_init_golden_registers(adev);

	gmc_v7_0_mc_program(adev);

	if (!(adev->flags & AMD_IS_APU)) {
		r = gmc_v7_0_mc_load_microcode(adev);
		if (r) {
			DRM_ERROR("Failed to load MC firmware!\n");
			return r;
		}
	}

	r = gmc_v7_0_gart_enable(adev);
	if (r)
		return r;

	return r;
}

static int gmc_v7_0_hw_fini(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	amdgpu_irq_put(adev, &adev->gmc.vm_fault, 0);
	gmc_v7_0_gart_disable(adev);

	return 0;
}

static int gmc_v7_0_suspend(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	gmc_v7_0_hw_fini(adev);

	return 0;
}

static int gmc_v7_0_resume(void *handle)
{
	int r;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	r = gmc_v7_0_hw_init(adev);
	if (r)
		return r;

	amdgpu_vmid_reset_all(adev);

	return 0;
}

static bool gmc_v7_0_is_idle(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	u32 tmp = RREG32(mmSRBM_STATUS);

	if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
		   SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK | SRBM_STATUS__VMC_BUSY_MASK))
		return false;

	return true;
}

static int gmc_v7_0_wait_for_idle(void *handle)
{
	unsigned i;
	u32 tmp;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	for (i = 0; i < adev->usec_timeout; i++) {
		/* read MC_STATUS */
		tmp = RREG32(mmSRBM_STATUS) & (SRBM_STATUS__MCB_BUSY_MASK |
					       SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
					       SRBM_STATUS__MCC_BUSY_MASK |
					       SRBM_STATUS__MCD_BUSY_MASK |
					       SRBM_STATUS__VMC_BUSY_MASK);
		if (!tmp)
			return 0;
		udelay(1);
	}
	return -ETIMEDOUT;

}

static int gmc_v7_0_soft_reset(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	u32 srbm_soft_reset = 0;
	u32 tmp = RREG32(mmSRBM_STATUS);

	if (tmp & SRBM_STATUS__VMC_BUSY_MASK)
		srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
						SRBM_SOFT_RESET, SOFT_RESET_VMC, 1);

	if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
		   SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK)) {
		if (!(adev->flags & AMD_IS_APU))
			srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
							SRBM_SOFT_RESET, SOFT_RESET_MC, 1);
	}

	if (srbm_soft_reset) {
		gmc_v7_0_mc_stop(adev);
		if (gmc_v7_0_wait_for_idle((void *)adev)) {
			dev_warn(adev->dev, "Wait for GMC idle timed out !\n");
		}


		tmp = RREG32(mmSRBM_SOFT_RESET);
		tmp |= srbm_soft_reset;
		dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
		WREG32(mmSRBM_SOFT_RESET, tmp);
		tmp = RREG32(mmSRBM_SOFT_RESET);

		udelay(50);

		tmp &= ~srbm_soft_reset;
		WREG32(mmSRBM_SOFT_RESET, tmp);
		tmp = RREG32(mmSRBM_SOFT_RESET);

		/* Wait a little for things to settle down */
		udelay(50);

		gmc_v7_0_mc_resume(adev);
		udelay(50);
	}

	return 0;
}

static int gmc_v7_0_vm_fault_interrupt_state(struct amdgpu_device *adev,
					     struct amdgpu_irq_src *src,
					     unsigned type,
					     enum amdgpu_interrupt_state state)
{
	u32 tmp;
	u32 bits = (VM_CONTEXT1_CNTL__RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
		    VM_CONTEXT1_CNTL__DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
		    VM_CONTEXT1_CNTL__PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
		    VM_CONTEXT1_CNTL__VALID_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
		    VM_CONTEXT1_CNTL__READ_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
		    VM_CONTEXT1_CNTL__WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK);

	switch (state) {
	case AMDGPU_IRQ_STATE_DISABLE:
		/* system context */
		tmp = RREG32(mmVM_CONTEXT0_CNTL);
		tmp &= ~bits;
		WREG32(mmVM_CONTEXT0_CNTL, tmp);
		/* VMs */
		tmp = RREG32(mmVM_CONTEXT1_CNTL);
		tmp &= ~bits;
		WREG32(mmVM_CONTEXT1_CNTL, tmp);
		break;
	case AMDGPU_IRQ_STATE_ENABLE:
		/* system context */
		tmp = RREG32(mmVM_CONTEXT0_CNTL);
		tmp |= bits;
		WREG32(mmVM_CONTEXT0_CNTL, tmp);
		/* VMs */
		tmp = RREG32(mmVM_CONTEXT1_CNTL);
		tmp |= bits;
		WREG32(mmVM_CONTEXT1_CNTL, tmp);
		break;
	default:
		break;
	}

	return 0;
}

static int gmc_v7_0_process_interrupt(struct amdgpu_device *adev,
				      struct amdgpu_irq_src *source,
				      struct amdgpu_iv_entry *entry)
{
	u32 addr, status, mc_client, vmid;

	addr = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_ADDR);
	status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
	mc_client = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_MCCLIENT);
	/* reset addr and status */
	WREG32_P(mmVM_CONTEXT1_CNTL2, 1, ~1);

	if (!addr && !status)
		return 0;

	if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_FIRST)
		gmc_v7_0_set_fault_enable_default(adev, false);

	if (printk_ratelimit()) {
		dev_err(adev->dev, "GPU fault detected: %d 0x%08x\n",
			entry->src_id, entry->src_data[0]);
		dev_err(adev->dev, "  VM_CONTEXT1_PROTECTION_FAULT_ADDR   0x%08X\n",
			addr);
		dev_err(adev->dev, "  VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n",
			status);
		gmc_v7_0_vm_decode_fault(adev, status, addr, mc_client,
					 entry->pasid);
	}

	vmid = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
			     VMID);
	if (amdgpu_amdkfd_is_kfd_vmid(adev, vmid)
		&& !atomic_read(&adev->gmc.vm_fault_info_updated)) {
		struct kfd_vm_fault_info *info = adev->gmc.vm_fault_info;
		u32 protections = REG_GET_FIELD(status,
					VM_CONTEXT1_PROTECTION_FAULT_STATUS,
					PROTECTIONS);

		info->vmid = vmid;
		info->mc_id = REG_GET_FIELD(status,
					    VM_CONTEXT1_PROTECTION_FAULT_STATUS,
					    MEMORY_CLIENT_ID);
		info->status = status;
		info->page_addr = addr;
		info->prot_valid = protections & 0x7 ? true : false;
		info->prot_read = protections & 0x8 ? true : false;
		info->prot_write = protections & 0x10 ? true : false;
		info->prot_exec = protections & 0x20 ? true : false;
		mb();
		atomic_set(&adev->gmc.vm_fault_info_updated, 1);
	}

	return 0;
}

static int gmc_v7_0_set_clockgating_state(void *handle,
					  enum amd_clockgating_state state)
{
	bool gate = false;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	if (state == AMD_CG_STATE_GATE)
		gate = true;

	if (!(adev->flags & AMD_IS_APU)) {
		gmc_v7_0_enable_mc_mgcg(adev, gate);
		gmc_v7_0_enable_mc_ls(adev, gate);
	}
	gmc_v7_0_enable_bif_mgls(adev, gate);
	gmc_v7_0_enable_hdp_mgcg(adev, gate);
	gmc_v7_0_enable_hdp_ls(adev, gate);

	return 0;
}

static int gmc_v7_0_set_powergating_state(void *handle,
					  enum amd_powergating_state state)
{
	return 0;
}

static const struct amd_ip_funcs gmc_v7_0_ip_funcs = {
	.name = "gmc_v7_0",
	.early_init = gmc_v7_0_early_init,
	.late_init = gmc_v7_0_late_init,
	.sw_init = gmc_v7_0_sw_init,
	.sw_fini = gmc_v7_0_sw_fini,
	.hw_init = gmc_v7_0_hw_init,
	.hw_fini = gmc_v7_0_hw_fini,
	.suspend = gmc_v7_0_suspend,
	.resume = gmc_v7_0_resume,
	.is_idle = gmc_v7_0_is_idle,
	.wait_for_idle = gmc_v7_0_wait_for_idle,
	.soft_reset = gmc_v7_0_soft_reset,
	.set_clockgating_state = gmc_v7_0_set_clockgating_state,
	.set_powergating_state = gmc_v7_0_set_powergating_state,
};

static const struct amdgpu_gmc_funcs gmc_v7_0_gmc_funcs = {
	.flush_gpu_tlb = gmc_v7_0_flush_gpu_tlb,
	.emit_flush_gpu_tlb = gmc_v7_0_emit_flush_gpu_tlb,
	.emit_pasid_mapping = gmc_v7_0_emit_pasid_mapping,
	.set_prt = gmc_v7_0_set_prt,
	.get_vm_pte_flags = gmc_v7_0_get_vm_pte_flags,
	.get_vm_pde = gmc_v7_0_get_vm_pde
};

static const struct amdgpu_irq_src_funcs gmc_v7_0_irq_funcs = {
	.set = gmc_v7_0_vm_fault_interrupt_state,
	.process = gmc_v7_0_process_interrupt,
};

static void gmc_v7_0_set_gmc_funcs(struct amdgpu_device *adev)
{
	adev->gmc.gmc_funcs = &gmc_v7_0_gmc_funcs;
}

static void gmc_v7_0_set_irq_funcs(struct amdgpu_device *adev)
{
	adev->gmc.vm_fault.num_types = 1;
	adev->gmc.vm_fault.funcs = &gmc_v7_0_irq_funcs;
}

const struct amdgpu_ip_block_version gmc_v7_0_ip_block =
{
	.type = AMD_IP_BLOCK_TYPE_GMC,
	.major = 7,
	.minor = 0,
	.rev = 0,
	.funcs = &gmc_v7_0_ip_funcs,
};

const struct amdgpu_ip_block_version gmc_v7_4_ip_block =
{
	.type = AMD_IP_BLOCK_TYPE_GMC,
	.major = 7,
	.minor = 4,
	.rev = 0,
	.funcs = &gmc_v7_0_ip_funcs,
};