Contributors: 19
Author Tokens Token Proportion Commits Commit Proportion
Evgeny Pinchuk 3541 53.41% 1 1.82%
Felix Kuhling 1145 17.27% 12 21.82%
Harish Kasiviswanathan 760 11.46% 8 14.55%
Amber Lin 486 7.33% 4 7.27%
Eric Huang 228 3.44% 2 3.64%
Oak Zeng 149 2.25% 4 7.27%
Yong Zhao 84 1.27% 2 3.64%
Alexey Skidanov 67 1.01% 2 3.64%
Ben Goz 42 0.63% 3 5.45%
Shaoyun Liu 26 0.39% 2 3.64%
Oded Gabbay 26 0.39% 3 5.45%
Flora Cui 25 0.38% 1 1.82%
Philip Cox 13 0.20% 2 3.64%
Edward O'Callaghan 13 0.20% 1 1.82%
Kent Russell 11 0.17% 4 7.27%
Gang Ba 6 0.09% 1 1.82%
Xihan Zhang 6 0.09% 1 1.82%
Gustavo A. R. Silva 1 0.02% 1 1.82%
Heiner Kallweit 1 0.02% 1 1.82%
Total 6630 55


/*
 * Copyright 2014 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/errno.h>
#include <linux/acpi.h>
#include <linux/hash.h>
#include <linux/cpufreq.h>
#include <linux/log2.h>
#include <linux/dmi.h>
#include <linux/atomic.h>

#include "kfd_priv.h"
#include "kfd_crat.h"
#include "kfd_topology.h"
#include "kfd_device_queue_manager.h"
#include "kfd_iommu.h"
#include "amdgpu_amdkfd.h"
#include "amdgpu_ras.h"

/* topology_device_list - Master list of all topology devices */
static struct list_head topology_device_list;
static struct kfd_system_properties sys_props;

static DECLARE_RWSEM(topology_lock);
static atomic_t topology_crat_proximity_domain;

struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
						uint32_t proximity_domain)
{
	struct kfd_topology_device *top_dev;
	struct kfd_topology_device *device = NULL;

	down_read(&topology_lock);

	list_for_each_entry(top_dev, &topology_device_list, list)
		if (top_dev->proximity_domain == proximity_domain) {
			device = top_dev;
			break;
		}

	up_read(&topology_lock);

	return device;
}

struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id)
{
	struct kfd_topology_device *top_dev = NULL;
	struct kfd_topology_device *ret = NULL;

	down_read(&topology_lock);

	list_for_each_entry(top_dev, &topology_device_list, list)
		if (top_dev->gpu_id == gpu_id) {
			ret = top_dev;
			break;
		}

	up_read(&topology_lock);

	return ret;
}

struct kfd_dev *kfd_device_by_id(uint32_t gpu_id)
{
	struct kfd_topology_device *top_dev;

	top_dev = kfd_topology_device_by_id(gpu_id);
	if (!top_dev)
		return NULL;

	return top_dev->gpu;
}

struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev)
{
	struct kfd_topology_device *top_dev;
	struct kfd_dev *device = NULL;

	down_read(&topology_lock);

	list_for_each_entry(top_dev, &topology_device_list, list)
		if (top_dev->gpu && top_dev->gpu->pdev == pdev) {
			device = top_dev->gpu;
			break;
		}

	up_read(&topology_lock);

	return device;
}

struct kfd_dev *kfd_device_by_kgd(const struct kgd_dev *kgd)
{
	struct kfd_topology_device *top_dev;
	struct kfd_dev *device = NULL;

	down_read(&topology_lock);

	list_for_each_entry(top_dev, &topology_device_list, list)
		if (top_dev->gpu && top_dev->gpu->kgd == kgd) {
			device = top_dev->gpu;
			break;
		}

	up_read(&topology_lock);

	return device;
}

/* Called with write topology_lock acquired */
static void kfd_release_topology_device(struct kfd_topology_device *dev)
{
	struct kfd_mem_properties *mem;
	struct kfd_cache_properties *cache;
	struct kfd_iolink_properties *iolink;
	struct kfd_perf_properties *perf;

	list_del(&dev->list);

	while (dev->mem_props.next != &dev->mem_props) {
		mem = container_of(dev->mem_props.next,
				struct kfd_mem_properties, list);
		list_del(&mem->list);
		kfree(mem);
	}

	while (dev->cache_props.next != &dev->cache_props) {
		cache = container_of(dev->cache_props.next,
				struct kfd_cache_properties, list);
		list_del(&cache->list);
		kfree(cache);
	}

	while (dev->io_link_props.next != &dev->io_link_props) {
		iolink = container_of(dev->io_link_props.next,
				struct kfd_iolink_properties, list);
		list_del(&iolink->list);
		kfree(iolink);
	}

	while (dev->perf_props.next != &dev->perf_props) {
		perf = container_of(dev->perf_props.next,
				struct kfd_perf_properties, list);
		list_del(&perf->list);
		kfree(perf);
	}

	kfree(dev);
}

void kfd_release_topology_device_list(struct list_head *device_list)
{
	struct kfd_topology_device *dev;

	while (!list_empty(device_list)) {
		dev = list_first_entry(device_list,
				       struct kfd_topology_device, list);
		kfd_release_topology_device(dev);
	}
}

static void kfd_release_live_view(void)
{
	kfd_release_topology_device_list(&topology_device_list);
	memset(&sys_props, 0, sizeof(sys_props));
}

struct kfd_topology_device *kfd_create_topology_device(
				struct list_head *device_list)
{
	struct kfd_topology_device *dev;

	dev = kfd_alloc_struct(dev);
	if (!dev) {
		pr_err("No memory to allocate a topology device");
		return NULL;
	}

	INIT_LIST_HEAD(&dev->mem_props);
	INIT_LIST_HEAD(&dev->cache_props);
	INIT_LIST_HEAD(&dev->io_link_props);
	INIT_LIST_HEAD(&dev->perf_props);

	list_add_tail(&dev->list, device_list);

	return dev;
}


#define sysfs_show_gen_prop(buffer, fmt, ...) \
		snprintf(buffer, PAGE_SIZE, "%s"fmt, buffer, __VA_ARGS__)
#define sysfs_show_32bit_prop(buffer, name, value) \
		sysfs_show_gen_prop(buffer, "%s %u\n", name, value)
#define sysfs_show_64bit_prop(buffer, name, value) \
		sysfs_show_gen_prop(buffer, "%s %llu\n", name, value)
#define sysfs_show_32bit_val(buffer, value) \
		sysfs_show_gen_prop(buffer, "%u\n", value)
#define sysfs_show_str_val(buffer, value) \
		sysfs_show_gen_prop(buffer, "%s\n", value)

static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
		char *buffer)
{
	ssize_t ret;

	/* Making sure that the buffer is an empty string */
	buffer[0] = 0;

	if (attr == &sys_props.attr_genid) {
		ret = sysfs_show_32bit_val(buffer, sys_props.generation_count);
	} else if (attr == &sys_props.attr_props) {
		sysfs_show_64bit_prop(buffer, "platform_oem",
				sys_props.platform_oem);
		sysfs_show_64bit_prop(buffer, "platform_id",
				sys_props.platform_id);
		ret = sysfs_show_64bit_prop(buffer, "platform_rev",
				sys_props.platform_rev);
	} else {
		ret = -EINVAL;
	}

	return ret;
}

static void kfd_topology_kobj_release(struct kobject *kobj)
{
	kfree(kobj);
}

static const struct sysfs_ops sysprops_ops = {
	.show = sysprops_show,
};

static struct kobj_type sysprops_type = {
	.release = kfd_topology_kobj_release,
	.sysfs_ops = &sysprops_ops,
};

static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
		char *buffer)
{
	ssize_t ret;
	struct kfd_iolink_properties *iolink;

	/* Making sure that the buffer is an empty string */
	buffer[0] = 0;

	iolink = container_of(attr, struct kfd_iolink_properties, attr);
	sysfs_show_32bit_prop(buffer, "type", iolink->iolink_type);
	sysfs_show_32bit_prop(buffer, "version_major", iolink->ver_maj);
	sysfs_show_32bit_prop(buffer, "version_minor", iolink->ver_min);
	sysfs_show_32bit_prop(buffer, "node_from", iolink->node_from);
	sysfs_show_32bit_prop(buffer, "node_to", iolink->node_to);
	sysfs_show_32bit_prop(buffer, "weight", iolink->weight);
	sysfs_show_32bit_prop(buffer, "min_latency", iolink->min_latency);
	sysfs_show_32bit_prop(buffer, "max_latency", iolink->max_latency);
	sysfs_show_32bit_prop(buffer, "min_bandwidth", iolink->min_bandwidth);
	sysfs_show_32bit_prop(buffer, "max_bandwidth", iolink->max_bandwidth);
	sysfs_show_32bit_prop(buffer, "recommended_transfer_size",
			iolink->rec_transfer_size);
	ret = sysfs_show_32bit_prop(buffer, "flags", iolink->flags);

	return ret;
}

static const struct sysfs_ops iolink_ops = {
	.show = iolink_show,
};

static struct kobj_type iolink_type = {
	.release = kfd_topology_kobj_release,
	.sysfs_ops = &iolink_ops,
};

static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
		char *buffer)
{
	ssize_t ret;
	struct kfd_mem_properties *mem;

	/* Making sure that the buffer is an empty string */
	buffer[0] = 0;

	mem = container_of(attr, struct kfd_mem_properties, attr);
	sysfs_show_32bit_prop(buffer, "heap_type", mem->heap_type);
	sysfs_show_64bit_prop(buffer, "size_in_bytes", mem->size_in_bytes);
	sysfs_show_32bit_prop(buffer, "flags", mem->flags);
	sysfs_show_32bit_prop(buffer, "width", mem->width);
	ret = sysfs_show_32bit_prop(buffer, "mem_clk_max", mem->mem_clk_max);

	return ret;
}

static const struct sysfs_ops mem_ops = {
	.show = mem_show,
};

static struct kobj_type mem_type = {
	.release = kfd_topology_kobj_release,
	.sysfs_ops = &mem_ops,
};

static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
		char *buffer)
{
	ssize_t ret;
	uint32_t i, j;
	struct kfd_cache_properties *cache;

	/* Making sure that the buffer is an empty string */
	buffer[0] = 0;

	cache = container_of(attr, struct kfd_cache_properties, attr);
	sysfs_show_32bit_prop(buffer, "processor_id_low",
			cache->processor_id_low);
	sysfs_show_32bit_prop(buffer, "level", cache->cache_level);
	sysfs_show_32bit_prop(buffer, "size", cache->cache_size);
	sysfs_show_32bit_prop(buffer, "cache_line_size", cache->cacheline_size);
	sysfs_show_32bit_prop(buffer, "cache_lines_per_tag",
			cache->cachelines_per_tag);
	sysfs_show_32bit_prop(buffer, "association", cache->cache_assoc);
	sysfs_show_32bit_prop(buffer, "latency", cache->cache_latency);
	sysfs_show_32bit_prop(buffer, "type", cache->cache_type);
	snprintf(buffer, PAGE_SIZE, "%ssibling_map ", buffer);
	for (i = 0; i < CRAT_SIBLINGMAP_SIZE; i++)
		for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++) {
			/* Check each bit */
			if (cache->sibling_map[i] & (1 << j))
				ret = snprintf(buffer, PAGE_SIZE,
					 "%s%d%s", buffer, 1, ",");
			else
				ret = snprintf(buffer, PAGE_SIZE,
					 "%s%d%s", buffer, 0, ",");
		}
	/* Replace the last "," with end of line */
	*(buffer + strlen(buffer) - 1) = 0xA;
	return ret;
}

static const struct sysfs_ops cache_ops = {
	.show = kfd_cache_show,
};

static struct kobj_type cache_type = {
	.release = kfd_topology_kobj_release,
	.sysfs_ops = &cache_ops,
};

/****** Sysfs of Performance Counters ******/

struct kfd_perf_attr {
	struct kobj_attribute attr;
	uint32_t data;
};

static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs,
			char *buf)
{
	struct kfd_perf_attr *attr;

	buf[0] = 0;
	attr = container_of(attrs, struct kfd_perf_attr, attr);
	if (!attr->data) /* invalid data for PMC */
		return 0;
	else
		return sysfs_show_32bit_val(buf, attr->data);
}

#define KFD_PERF_DESC(_name, _data)			\
{							\
	.attr  = __ATTR(_name, 0444, perf_show, NULL),	\
	.data = _data,					\
}

static struct kfd_perf_attr perf_attr_iommu[] = {
	KFD_PERF_DESC(max_concurrent, 0),
	KFD_PERF_DESC(num_counters, 0),
	KFD_PERF_DESC(counter_ids, 0),
};
/****************************************/

static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
		char *buffer)
{
	struct kfd_topology_device *dev;
	char public_name[KFD_TOPOLOGY_PUBLIC_NAME_SIZE];
	uint32_t i;
	uint32_t log_max_watch_addr;

	/* Making sure that the buffer is an empty string */
	buffer[0] = 0;

	if (strcmp(attr->name, "gpu_id") == 0) {
		dev = container_of(attr, struct kfd_topology_device,
				attr_gpuid);
		return sysfs_show_32bit_val(buffer, dev->gpu_id);
	}

	if (strcmp(attr->name, "name") == 0) {
		dev = container_of(attr, struct kfd_topology_device,
				attr_name);
		for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE; i++) {
			public_name[i] =
					(char)dev->node_props.marketing_name[i];
			if (dev->node_props.marketing_name[i] == 0)
				break;
		}
		public_name[KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1] = 0x0;
		return sysfs_show_str_val(buffer, public_name);
	}

	dev = container_of(attr, struct kfd_topology_device,
			attr_props);
	sysfs_show_32bit_prop(buffer, "cpu_cores_count",
			dev->node_props.cpu_cores_count);
	sysfs_show_32bit_prop(buffer, "simd_count",
			dev->node_props.simd_count);
	sysfs_show_32bit_prop(buffer, "mem_banks_count",
			dev->node_props.mem_banks_count);
	sysfs_show_32bit_prop(buffer, "caches_count",
			dev->node_props.caches_count);
	sysfs_show_32bit_prop(buffer, "io_links_count",
			dev->node_props.io_links_count);
	sysfs_show_32bit_prop(buffer, "cpu_core_id_base",
			dev->node_props.cpu_core_id_base);
	sysfs_show_32bit_prop(buffer, "simd_id_base",
			dev->node_props.simd_id_base);
	sysfs_show_32bit_prop(buffer, "max_waves_per_simd",
			dev->node_props.max_waves_per_simd);
	sysfs_show_32bit_prop(buffer, "lds_size_in_kb",
			dev->node_props.lds_size_in_kb);
	sysfs_show_32bit_prop(buffer, "gds_size_in_kb",
			dev->node_props.gds_size_in_kb);
	sysfs_show_32bit_prop(buffer, "num_gws",
			dev->node_props.num_gws);
	sysfs_show_32bit_prop(buffer, "wave_front_size",
			dev->node_props.wave_front_size);
	sysfs_show_32bit_prop(buffer, "array_count",
			dev->node_props.array_count);
	sysfs_show_32bit_prop(buffer, "simd_arrays_per_engine",
			dev->node_props.simd_arrays_per_engine);
	sysfs_show_32bit_prop(buffer, "cu_per_simd_array",
			dev->node_props.cu_per_simd_array);
	sysfs_show_32bit_prop(buffer, "simd_per_cu",
			dev->node_props.simd_per_cu);
	sysfs_show_32bit_prop(buffer, "max_slots_scratch_cu",
			dev->node_props.max_slots_scratch_cu);
	sysfs_show_32bit_prop(buffer, "vendor_id",
			dev->node_props.vendor_id);
	sysfs_show_32bit_prop(buffer, "device_id",
			dev->node_props.device_id);
	sysfs_show_32bit_prop(buffer, "location_id",
			dev->node_props.location_id);
	sysfs_show_32bit_prop(buffer, "drm_render_minor",
			dev->node_props.drm_render_minor);
	sysfs_show_64bit_prop(buffer, "hive_id",
			dev->node_props.hive_id);
	sysfs_show_32bit_prop(buffer, "num_sdma_engines",
			dev->node_props.num_sdma_engines);
	sysfs_show_32bit_prop(buffer, "num_sdma_xgmi_engines",
			dev->node_props.num_sdma_xgmi_engines);

	if (dev->gpu) {
		log_max_watch_addr =
			__ilog2_u32(dev->gpu->device_info->num_of_watch_points);

		if (log_max_watch_addr) {
			dev->node_props.capability |=
					HSA_CAP_WATCH_POINTS_SUPPORTED;

			dev->node_props.capability |=
				((log_max_watch_addr <<
					HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
				HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
		}

		if (dev->gpu->device_info->asic_family == CHIP_TONGA)
			dev->node_props.capability |=
					HSA_CAP_AQL_QUEUE_DOUBLE_MAP;

		sysfs_show_32bit_prop(buffer, "max_engine_clk_fcompute",
			dev->node_props.max_engine_clk_fcompute);

		sysfs_show_64bit_prop(buffer, "local_mem_size",
				(unsigned long long int) 0);

		sysfs_show_32bit_prop(buffer, "fw_version",
				dev->gpu->mec_fw_version);
		sysfs_show_32bit_prop(buffer, "capability",
				dev->node_props.capability);
		sysfs_show_32bit_prop(buffer, "sdma_fw_version",
				dev->gpu->sdma_fw_version);
	}

	return sysfs_show_32bit_prop(buffer, "max_engine_clk_ccompute",
					cpufreq_quick_get_max(0)/1000);
}

static const struct sysfs_ops node_ops = {
	.show = node_show,
};

static struct kobj_type node_type = {
	.release = kfd_topology_kobj_release,
	.sysfs_ops = &node_ops,
};

static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
{
	sysfs_remove_file(kobj, attr);
	kobject_del(kobj);
	kobject_put(kobj);
}

static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
{
	struct kfd_iolink_properties *iolink;
	struct kfd_cache_properties *cache;
	struct kfd_mem_properties *mem;
	struct kfd_perf_properties *perf;

	if (dev->kobj_iolink) {
		list_for_each_entry(iolink, &dev->io_link_props, list)
			if (iolink->kobj) {
				kfd_remove_sysfs_file(iolink->kobj,
							&iolink->attr);
				iolink->kobj = NULL;
			}
		kobject_del(dev->kobj_iolink);
		kobject_put(dev->kobj_iolink);
		dev->kobj_iolink = NULL;
	}

	if (dev->kobj_cache) {
		list_for_each_entry(cache, &dev->cache_props, list)
			if (cache->kobj) {
				kfd_remove_sysfs_file(cache->kobj,
							&cache->attr);
				cache->kobj = NULL;
			}
		kobject_del(dev->kobj_cache);
		kobject_put(dev->kobj_cache);
		dev->kobj_cache = NULL;
	}

	if (dev->kobj_mem) {
		list_for_each_entry(mem, &dev->mem_props, list)
			if (mem->kobj) {
				kfd_remove_sysfs_file(mem->kobj, &mem->attr);
				mem->kobj = NULL;
			}
		kobject_del(dev->kobj_mem);
		kobject_put(dev->kobj_mem);
		dev->kobj_mem = NULL;
	}

	if (dev->kobj_perf) {
		list_for_each_entry(perf, &dev->perf_props, list) {
			kfree(perf->attr_group);
			perf->attr_group = NULL;
		}
		kobject_del(dev->kobj_perf);
		kobject_put(dev->kobj_perf);
		dev->kobj_perf = NULL;
	}

	if (dev->kobj_node) {
		sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
		sysfs_remove_file(dev->kobj_node, &dev->attr_name);
		sysfs_remove_file(dev->kobj_node, &dev->attr_props);
		kobject_del(dev->kobj_node);
		kobject_put(dev->kobj_node);
		dev->kobj_node = NULL;
	}
}

static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
		uint32_t id)
{
	struct kfd_iolink_properties *iolink;
	struct kfd_cache_properties *cache;
	struct kfd_mem_properties *mem;
	struct kfd_perf_properties *perf;
	int ret;
	uint32_t i, num_attrs;
	struct attribute **attrs;

	if (WARN_ON(dev->kobj_node))
		return -EEXIST;

	/*
	 * Creating the sysfs folders
	 */
	dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
	if (!dev->kobj_node)
		return -ENOMEM;

	ret = kobject_init_and_add(dev->kobj_node, &node_type,
			sys_props.kobj_nodes, "%d", id);
	if (ret < 0)
		return ret;

	dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
	if (!dev->kobj_mem)
		return -ENOMEM;

	dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
	if (!dev->kobj_cache)
		return -ENOMEM;

	dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
	if (!dev->kobj_iolink)
		return -ENOMEM;

	dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node);
	if (!dev->kobj_perf)
		return -ENOMEM;

	/*
	 * Creating sysfs files for node properties
	 */
	dev->attr_gpuid.name = "gpu_id";
	dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
	sysfs_attr_init(&dev->attr_gpuid);
	dev->attr_name.name = "name";
	dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
	sysfs_attr_init(&dev->attr_name);
	dev->attr_props.name = "properties";
	dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
	sysfs_attr_init(&dev->attr_props);
	ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
	if (ret < 0)
		return ret;
	ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
	if (ret < 0)
		return ret;
	ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
	if (ret < 0)
		return ret;

	i = 0;
	list_for_each_entry(mem, &dev->mem_props, list) {
		mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
		if (!mem->kobj)
			return -ENOMEM;
		ret = kobject_init_and_add(mem->kobj, &mem_type,
				dev->kobj_mem, "%d", i);
		if (ret < 0)
			return ret;

		mem->attr.name = "properties";
		mem->attr.mode = KFD_SYSFS_FILE_MODE;
		sysfs_attr_init(&mem->attr);
		ret = sysfs_create_file(mem->kobj, &mem->attr);
		if (ret < 0)
			return ret;
		i++;
	}

	i = 0;
	list_for_each_entry(cache, &dev->cache_props, list) {
		cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
		if (!cache->kobj)
			return -ENOMEM;
		ret = kobject_init_and_add(cache->kobj, &cache_type,
				dev->kobj_cache, "%d", i);
		if (ret < 0)
			return ret;

		cache->attr.name = "properties";
		cache->attr.mode = KFD_SYSFS_FILE_MODE;
		sysfs_attr_init(&cache->attr);
		ret = sysfs_create_file(cache->kobj, &cache->attr);
		if (ret < 0)
			return ret;
		i++;
	}

	i = 0;
	list_for_each_entry(iolink, &dev->io_link_props, list) {
		iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
		if (!iolink->kobj)
			return -ENOMEM;
		ret = kobject_init_and_add(iolink->kobj, &iolink_type,
				dev->kobj_iolink, "%d", i);
		if (ret < 0)
			return ret;

		iolink->attr.name = "properties";
		iolink->attr.mode = KFD_SYSFS_FILE_MODE;
		sysfs_attr_init(&iolink->attr);
		ret = sysfs_create_file(iolink->kobj, &iolink->attr);
		if (ret < 0)
			return ret;
		i++;
	}

	/* All hardware blocks have the same number of attributes. */
	num_attrs = ARRAY_SIZE(perf_attr_iommu);
	list_for_each_entry(perf, &dev->perf_props, list) {
		perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr)
			* num_attrs + sizeof(struct attribute_group),
			GFP_KERNEL);
		if (!perf->attr_group)
			return -ENOMEM;

		attrs = (struct attribute **)(perf->attr_group + 1);
		if (!strcmp(perf->block_name, "iommu")) {
		/* Information of IOMMU's num_counters and counter_ids is shown
		 * under /sys/bus/event_source/devices/amd_iommu. We don't
		 * duplicate here.
		 */
			perf_attr_iommu[0].data = perf->max_concurrent;
			for (i = 0; i < num_attrs; i++)
				attrs[i] = &perf_attr_iommu[i].attr.attr;
		}
		perf->attr_group->name = perf->block_name;
		perf->attr_group->attrs = attrs;
		ret = sysfs_create_group(dev->kobj_perf, perf->attr_group);
		if (ret < 0)
			return ret;
	}

	return 0;
}

/* Called with write topology lock acquired */
static int kfd_build_sysfs_node_tree(void)
{
	struct kfd_topology_device *dev;
	int ret;
	uint32_t i = 0;

	list_for_each_entry(dev, &topology_device_list, list) {
		ret = kfd_build_sysfs_node_entry(dev, i);
		if (ret < 0)
			return ret;
		i++;
	}

	return 0;
}

/* Called with write topology lock acquired */
static void kfd_remove_sysfs_node_tree(void)
{
	struct kfd_topology_device *dev;

	list_for_each_entry(dev, &topology_device_list, list)
		kfd_remove_sysfs_node_entry(dev);
}

static int kfd_topology_update_sysfs(void)
{
	int ret;

	pr_info("Creating topology SYSFS entries\n");
	if (!sys_props.kobj_topology) {
		sys_props.kobj_topology =
				kfd_alloc_struct(sys_props.kobj_topology);
		if (!sys_props.kobj_topology)
			return -ENOMEM;

		ret = kobject_init_and_add(sys_props.kobj_topology,
				&sysprops_type,  &kfd_device->kobj,
				"topology");
		if (ret < 0)
			return ret;

		sys_props.kobj_nodes = kobject_create_and_add("nodes",
				sys_props.kobj_topology);
		if (!sys_props.kobj_nodes)
			return -ENOMEM;

		sys_props.attr_genid.name = "generation_id";
		sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
		sysfs_attr_init(&sys_props.attr_genid);
		ret = sysfs_create_file(sys_props.kobj_topology,
				&sys_props.attr_genid);
		if (ret < 0)
			return ret;

		sys_props.attr_props.name = "system_properties";
		sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
		sysfs_attr_init(&sys_props.attr_props);
		ret = sysfs_create_file(sys_props.kobj_topology,
				&sys_props.attr_props);
		if (ret < 0)
			return ret;
	}

	kfd_remove_sysfs_node_tree();

	return kfd_build_sysfs_node_tree();
}

static void kfd_topology_release_sysfs(void)
{
	kfd_remove_sysfs_node_tree();
	if (sys_props.kobj_topology) {
		sysfs_remove_file(sys_props.kobj_topology,
				&sys_props.attr_genid);
		sysfs_remove_file(sys_props.kobj_topology,
				&sys_props.attr_props);
		if (sys_props.kobj_nodes) {
			kobject_del(sys_props.kobj_nodes);
			kobject_put(sys_props.kobj_nodes);
			sys_props.kobj_nodes = NULL;
		}
		kobject_del(sys_props.kobj_topology);
		kobject_put(sys_props.kobj_topology);
		sys_props.kobj_topology = NULL;
	}
}

/* Called with write topology_lock acquired */
static void kfd_topology_update_device_list(struct list_head *temp_list,
					struct list_head *master_list)
{
	while (!list_empty(temp_list)) {
		list_move_tail(temp_list->next, master_list);
		sys_props.num_devices++;
	}
}

static void kfd_debug_print_topology(void)
{
	struct kfd_topology_device *dev;

	down_read(&topology_lock);

	dev = list_last_entry(&topology_device_list,
			struct kfd_topology_device, list);
	if (dev) {
		if (dev->node_props.cpu_cores_count &&
				dev->node_props.simd_count) {
			pr_info("Topology: Add APU node [0x%0x:0x%0x]\n",
				dev->node_props.device_id,
				dev->node_props.vendor_id);
		} else if (dev->node_props.cpu_cores_count)
			pr_info("Topology: Add CPU node\n");
		else if (dev->node_props.simd_count)
			pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n",
				dev->node_props.device_id,
				dev->node_props.vendor_id);
	}
	up_read(&topology_lock);
}

/* Helper function for intializing platform_xx members of
 * kfd_system_properties. Uses OEM info from the last CPU/APU node.
 */
static void kfd_update_system_properties(void)
{
	struct kfd_topology_device *dev;

	down_read(&topology_lock);
	dev = list_last_entry(&topology_device_list,
			struct kfd_topology_device, list);
	if (dev) {
		sys_props.platform_id =
			(*((uint64_t *)dev->oem_id)) & CRAT_OEMID_64BIT_MASK;
		sys_props.platform_oem = *((uint64_t *)dev->oem_table_id);
		sys_props.platform_rev = dev->oem_revision;
	}
	up_read(&topology_lock);
}

static void find_system_memory(const struct dmi_header *dm,
	void *private)
{
	struct kfd_mem_properties *mem;
	u16 mem_width, mem_clock;
	struct kfd_topology_device *kdev =
		(struct kfd_topology_device *)private;
	const u8 *dmi_data = (const u8 *)(dm + 1);

	if (dm->type == DMI_ENTRY_MEM_DEVICE && dm->length >= 0x15) {
		mem_width = (u16)(*(const u16 *)(dmi_data + 0x6));
		mem_clock = (u16)(*(const u16 *)(dmi_data + 0x11));
		list_for_each_entry(mem, &kdev->mem_props, list) {
			if (mem_width != 0xFFFF && mem_width != 0)
				mem->width = mem_width;
			if (mem_clock != 0)
				mem->mem_clk_max = mem_clock;
		}
	}
}

/*
 * Performance counters information is not part of CRAT but we would like to
 * put them in the sysfs under topology directory for Thunk to get the data.
 * This function is called before updating the sysfs.
 */
static int kfd_add_perf_to_topology(struct kfd_topology_device *kdev)
{
	/* These are the only counters supported so far */
	return kfd_iommu_add_perf_counters(kdev);
}

/* kfd_add_non_crat_information - Add information that is not currently
 *	defined in CRAT but is necessary for KFD topology
 * @dev - topology device to which addition info is added
 */
static void kfd_add_non_crat_information(struct kfd_topology_device *kdev)
{
	/* Check if CPU only node. */
	if (!kdev->gpu) {
		/* Add system memory information */
		dmi_walk(find_system_memory, kdev);
	}
	/* TODO: For GPU node, rearrange code from kfd_topology_add_device */
}

/* kfd_is_acpi_crat_invalid - CRAT from ACPI is valid only for AMD APU devices.
 *	Ignore CRAT for all other devices. AMD APU is identified if both CPU
 *	and GPU cores are present.
 * @device_list - topology device list created by parsing ACPI CRAT table.
 * @return - TRUE if invalid, FALSE is valid.
 */
static bool kfd_is_acpi_crat_invalid(struct list_head *device_list)
{
	struct kfd_topology_device *dev;

	list_for_each_entry(dev, device_list, list) {
		if (dev->node_props.cpu_cores_count &&
			dev->node_props.simd_count)
			return false;
	}
	pr_info("Ignoring ACPI CRAT on non-APU system\n");
	return true;
}

int kfd_topology_init(void)
{
	void *crat_image = NULL;
	size_t image_size = 0;
	int ret;
	struct list_head temp_topology_device_list;
	int cpu_only_node = 0;
	struct kfd_topology_device *kdev;
	int proximity_domain;

	/* topology_device_list - Master list of all topology devices
	 * temp_topology_device_list - temporary list created while parsing CRAT
	 * or VCRAT. Once parsing is complete the contents of list is moved to
	 * topology_device_list
	 */

	/* Initialize the head for the both the lists */
	INIT_LIST_HEAD(&topology_device_list);
	INIT_LIST_HEAD(&temp_topology_device_list);
	init_rwsem(&topology_lock);

	memset(&sys_props, 0, sizeof(sys_props));

	/* Proximity domains in ACPI CRAT tables start counting at
	 * 0. The same should be true for virtual CRAT tables created
	 * at this stage. GPUs added later in kfd_topology_add_device
	 * use a counter.
	 */
	proximity_domain = 0;

	/*
	 * Get the CRAT image from the ACPI. If ACPI doesn't have one
	 * or if ACPI CRAT is invalid create a virtual CRAT.
	 * NOTE: The current implementation expects all AMD APUs to have
	 *	CRAT. If no CRAT is available, it is assumed to be a CPU
	 */
	ret = kfd_create_crat_image_acpi(&crat_image, &image_size);
	if (!ret) {
		ret = kfd_parse_crat_table(crat_image,
					   &temp_topology_device_list,
					   proximity_domain);
		if (ret ||
		    kfd_is_acpi_crat_invalid(&temp_topology_device_list)) {
			kfd_release_topology_device_list(
				&temp_topology_device_list);
			kfd_destroy_crat_image(crat_image);
			crat_image = NULL;
		}
	}

	if (!crat_image) {
		ret = kfd_create_crat_image_virtual(&crat_image, &image_size,
						    COMPUTE_UNIT_CPU, NULL,
						    proximity_domain);
		cpu_only_node = 1;
		if (ret) {
			pr_err("Error creating VCRAT table for CPU\n");
			return ret;
		}

		ret = kfd_parse_crat_table(crat_image,
					   &temp_topology_device_list,
					   proximity_domain);
		if (ret) {
			pr_err("Error parsing VCRAT table for CPU\n");
			goto err;
		}
	}

	kdev = list_first_entry(&temp_topology_device_list,
				struct kfd_topology_device, list);
	kfd_add_perf_to_topology(kdev);

	down_write(&topology_lock);
	kfd_topology_update_device_list(&temp_topology_device_list,
					&topology_device_list);
	atomic_set(&topology_crat_proximity_domain, sys_props.num_devices-1);
	ret = kfd_topology_update_sysfs();
	up_write(&topology_lock);

	if (!ret) {
		sys_props.generation_count++;
		kfd_update_system_properties();
		kfd_debug_print_topology();
		pr_info("Finished initializing topology\n");
	} else
		pr_err("Failed to update topology in sysfs ret=%d\n", ret);

	/* For nodes with GPU, this information gets added
	 * when GPU is detected (kfd_topology_add_device).
	 */
	if (cpu_only_node) {
		/* Add additional information to CPU only node created above */
		down_write(&topology_lock);
		kdev = list_first_entry(&topology_device_list,
				struct kfd_topology_device, list);
		up_write(&topology_lock);
		kfd_add_non_crat_information(kdev);
	}

err:
	kfd_destroy_crat_image(crat_image);
	return ret;
}

void kfd_topology_shutdown(void)
{
	down_write(&topology_lock);
	kfd_topology_release_sysfs();
	kfd_release_live_view();
	up_write(&topology_lock);
}

static uint32_t kfd_generate_gpu_id(struct kfd_dev *gpu)
{
	uint32_t hashout;
	uint32_t buf[7];
	uint64_t local_mem_size;
	int i;
	struct kfd_local_mem_info local_mem_info;

	if (!gpu)
		return 0;

	amdgpu_amdkfd_get_local_mem_info(gpu->kgd, &local_mem_info);

	local_mem_size = local_mem_info.local_mem_size_private +
			local_mem_info.local_mem_size_public;

	buf[0] = gpu->pdev->devfn;
	buf[1] = gpu->pdev->subsystem_vendor |
		(gpu->pdev->subsystem_device << 16);
	buf[2] = pci_domain_nr(gpu->pdev->bus);
	buf[3] = gpu->pdev->device;
	buf[4] = gpu->pdev->bus->number;
	buf[5] = lower_32_bits(local_mem_size);
	buf[6] = upper_32_bits(local_mem_size);

	for (i = 0, hashout = 0; i < 7; i++)
		hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH);

	return hashout;
}
/* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If
 *		the GPU device is not already present in the topology device
 *		list then return NULL. This means a new topology device has to
 *		be created for this GPU.
 */
static struct kfd_topology_device *kfd_assign_gpu(struct kfd_dev *gpu)
{
	struct kfd_topology_device *dev;
	struct kfd_topology_device *out_dev = NULL;

	down_write(&topology_lock);
	list_for_each_entry(dev, &topology_device_list, list) {
		/* Discrete GPUs need their own topology device list
		 * entries. Don't assign them to CPU/APU nodes.
		 */
		if (!gpu->device_info->needs_iommu_device &&
		    dev->node_props.cpu_cores_count)
			continue;

		if (!dev->gpu && (dev->node_props.simd_count > 0)) {
			dev->gpu = gpu;
			out_dev = dev;
			break;
		}
	}
	up_write(&topology_lock);
	return out_dev;
}

static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
{
	/*
	 * TODO: Generate an event for thunk about the arrival/removal
	 * of the GPU
	 */
}

/* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info,
 *		patch this after CRAT parsing.
 */
static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev)
{
	struct kfd_mem_properties *mem;
	struct kfd_local_mem_info local_mem_info;

	if (!dev)
		return;

	/* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with
	 * single bank of VRAM local memory.
	 * for dGPUs - VCRAT reports only one bank of Local Memory
	 * for APUs - If CRAT from ACPI reports more than one bank, then
	 *	all the banks will report the same mem_clk_max information
	 */
	amdgpu_amdkfd_get_local_mem_info(dev->gpu->kgd, &local_mem_info);

	list_for_each_entry(mem, &dev->mem_props, list)
		mem->mem_clk_max = local_mem_info.mem_clk_max;
}

static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev)
{
	struct kfd_iolink_properties *link, *cpu_link;
	struct kfd_topology_device *cpu_dev;
	uint32_t cap;
	uint32_t cpu_flag = CRAT_IOLINK_FLAGS_ENABLED;
	uint32_t flag = CRAT_IOLINK_FLAGS_ENABLED;

	if (!dev || !dev->gpu)
		return;

	pcie_capability_read_dword(dev->gpu->pdev,
			PCI_EXP_DEVCAP2, &cap);

	if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
		     PCI_EXP_DEVCAP2_ATOMIC_COMP64)))
		cpu_flag |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
			CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;

	if (!dev->gpu->pci_atomic_requested ||
	    dev->gpu->device_info->asic_family == CHIP_HAWAII)
		flag |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
			CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;

	/* GPU only creates direct links so apply flags setting to all */
	list_for_each_entry(link, &dev->io_link_props, list) {
		link->flags = flag;
		cpu_dev = kfd_topology_device_by_proximity_domain(
				link->node_to);
		if (cpu_dev) {
			list_for_each_entry(cpu_link,
					    &cpu_dev->io_link_props, list)
				if (cpu_link->node_to == link->node_from)
					cpu_link->flags = cpu_flag;
		}
	}
}

int kfd_topology_add_device(struct kfd_dev *gpu)
{
	uint32_t gpu_id;
	struct kfd_topology_device *dev;
	struct kfd_cu_info cu_info;
	int res = 0;
	struct list_head temp_topology_device_list;
	void *crat_image = NULL;
	size_t image_size = 0;
	int proximity_domain;
	struct amdgpu_ras *ctx;

	INIT_LIST_HEAD(&temp_topology_device_list);

	gpu_id = kfd_generate_gpu_id(gpu);

	pr_debug("Adding new GPU (ID: 0x%x) to topology\n", gpu_id);

	proximity_domain = atomic_inc_return(&topology_crat_proximity_domain);

	/* Check to see if this gpu device exists in the topology_device_list.
	 * If so, assign the gpu to that device,
	 * else create a Virtual CRAT for this gpu device and then parse that
	 * CRAT to create a new topology device. Once created assign the gpu to
	 * that topology device
	 */
	dev = kfd_assign_gpu(gpu);
	if (!dev) {
		res = kfd_create_crat_image_virtual(&crat_image, &image_size,
						    COMPUTE_UNIT_GPU, gpu,
						    proximity_domain);
		if (res) {
			pr_err("Error creating VCRAT for GPU (ID: 0x%x)\n",
			       gpu_id);
			return res;
		}
		res = kfd_parse_crat_table(crat_image,
					   &temp_topology_device_list,
					   proximity_domain);
		if (res) {
			pr_err("Error parsing VCRAT for GPU (ID: 0x%x)\n",
			       gpu_id);
			goto err;
		}

		down_write(&topology_lock);
		kfd_topology_update_device_list(&temp_topology_device_list,
			&topology_device_list);

		/* Update the SYSFS tree, since we added another topology
		 * device
		 */
		res = kfd_topology_update_sysfs();
		up_write(&topology_lock);

		if (!res)
			sys_props.generation_count++;
		else
			pr_err("Failed to update GPU (ID: 0x%x) to sysfs topology. res=%d\n",
						gpu_id, res);
		dev = kfd_assign_gpu(gpu);
		if (WARN_ON(!dev)) {
			res = -ENODEV;
			goto err;
		}
	}

	dev->gpu_id = gpu_id;
	gpu->id = gpu_id;

	/* TODO: Move the following lines to function
	 *	kfd_add_non_crat_information
	 */

	/* Fill-in additional information that is not available in CRAT but
	 * needed for the topology
	 */

	amdgpu_amdkfd_get_cu_info(dev->gpu->kgd, &cu_info);
	dev->node_props.simd_arrays_per_engine =
		cu_info.num_shader_arrays_per_engine;

	dev->node_props.vendor_id = gpu->pdev->vendor;
	dev->node_props.device_id = gpu->pdev->device;
	dev->node_props.location_id = pci_dev_id(gpu->pdev);
	dev->node_props.max_engine_clk_fcompute =
		amdgpu_amdkfd_get_max_engine_clock_in_mhz(dev->gpu->kgd);
	dev->node_props.max_engine_clk_ccompute =
		cpufreq_quick_get_max(0) / 1000;
	dev->node_props.drm_render_minor =
		gpu->shared_resources.drm_render_minor;

	dev->node_props.hive_id = gpu->hive_id;
	dev->node_props.num_sdma_engines = gpu->device_info->num_sdma_engines;
	dev->node_props.num_sdma_xgmi_engines =
				gpu->device_info->num_xgmi_sdma_engines;
	dev->node_props.num_gws = (hws_gws_support &&
		dev->gpu->dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) ?
		amdgpu_amdkfd_get_num_gws(dev->gpu->kgd) : 0;

	kfd_fill_mem_clk_max_info(dev);
	kfd_fill_iolink_non_crat_info(dev);

	switch (dev->gpu->device_info->asic_family) {
	case CHIP_KAVERI:
	case CHIP_HAWAII:
	case CHIP_TONGA:
		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 <<
			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
		break;
	case CHIP_CARRIZO:
	case CHIP_FIJI:
	case CHIP_POLARIS10:
	case CHIP_POLARIS11:
	case CHIP_POLARIS12:
	case CHIP_VEGAM:
		pr_debug("Adding doorbell packet type capability\n");
		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 <<
			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
		break;
	case CHIP_VEGA10:
	case CHIP_VEGA12:
	case CHIP_VEGA20:
	case CHIP_RAVEN:
	case CHIP_NAVI10:
		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 <<
			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
		break;
	default:
		WARN(1, "Unexpected ASIC family %u",
		     dev->gpu->device_info->asic_family);
	}

	/*
	* Overwrite ATS capability according to needs_iommu_device to fix
	* potential missing corresponding bit in CRAT of BIOS.
	*/
	if (dev->gpu->device_info->needs_iommu_device)
		dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
	else
		dev->node_props.capability &= ~HSA_CAP_ATS_PRESENT;

	/* Fix errors in CZ CRAT.
	 * simd_count: Carrizo CRAT reports wrong simd_count, probably
	 *		because it doesn't consider masked out CUs
	 * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd
	 */
	if (dev->gpu->device_info->asic_family == CHIP_CARRIZO) {
		dev->node_props.simd_count =
			cu_info.simd_per_cu * cu_info.cu_active_number;
		dev->node_props.max_waves_per_simd = 10;
	}

	ctx = amdgpu_ras_get_context((struct amdgpu_device *)(dev->gpu->kgd));
	if (ctx) {
		/* kfd only concerns sram ecc on GFX/SDMA and HBM ecc on UMC */
		dev->node_props.capability |=
			(((ctx->features & BIT(AMDGPU_RAS_BLOCK__SDMA)) != 0) ||
			 ((ctx->features & BIT(AMDGPU_RAS_BLOCK__GFX)) != 0)) ?
			HSA_CAP_SRAM_EDCSUPPORTED : 0;
		dev->node_props.capability |= ((ctx->features & BIT(AMDGPU_RAS_BLOCK__UMC)) != 0) ?
			HSA_CAP_MEM_EDCSUPPORTED : 0;

		dev->node_props.capability |= (ctx->features != 0) ?
			HSA_CAP_RASEVENTNOTIFY : 0;
	}

	kfd_debug_print_topology();

	if (!res)
		kfd_notify_gpu_change(gpu_id, 1);
err:
	kfd_destroy_crat_image(crat_image);
	return res;
}

int kfd_topology_remove_device(struct kfd_dev *gpu)
{
	struct kfd_topology_device *dev, *tmp;
	uint32_t gpu_id;
	int res = -ENODEV;

	down_write(&topology_lock);

	list_for_each_entry_safe(dev, tmp, &topology_device_list, list)
		if (dev->gpu == gpu) {
			gpu_id = dev->gpu_id;
			kfd_remove_sysfs_node_entry(dev);
			kfd_release_topology_device(dev);
			sys_props.num_devices--;
			res = 0;
			if (kfd_topology_update_sysfs() < 0)
				kfd_topology_release_sysfs();
			break;
		}

	up_write(&topology_lock);

	if (!res)
		kfd_notify_gpu_change(gpu_id, 0);

	return res;
}

/* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD
 *	topology. If GPU device is found @idx, then valid kfd_dev pointer is
 *	returned through @kdev
 * Return -	0: On success (@kdev will be NULL for non GPU nodes)
 *		-1: If end of list
 */
int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev)
{

	struct kfd_topology_device *top_dev;
	uint8_t device_idx = 0;

	*kdev = NULL;
	down_read(&topology_lock);

	list_for_each_entry(top_dev, &topology_device_list, list) {
		if (device_idx == idx) {
			*kdev = top_dev->gpu;
			up_read(&topology_lock);
			return 0;
		}

		device_idx++;
	}

	up_read(&topology_lock);

	return -1;

}

static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask)
{
	int first_cpu_of_numa_node;

	if (!cpumask || cpumask == cpu_none_mask)
		return -1;
	first_cpu_of_numa_node = cpumask_first(cpumask);
	if (first_cpu_of_numa_node >= nr_cpu_ids)
		return -1;
#ifdef CONFIG_X86_64
	return cpu_data(first_cpu_of_numa_node).apicid;
#else
	return first_cpu_of_numa_node;
#endif
}

/* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor
 *	of the given NUMA node (numa_node_id)
 * Return -1 on failure
 */
int kfd_numa_node_to_apic_id(int numa_node_id)
{
	if (numa_node_id == -1) {
		pr_warn("Invalid NUMA Node. Use online CPU mask\n");
		return kfd_cpumask_to_apic_id(cpu_online_mask);
	}
	return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id));
}

#if defined(CONFIG_DEBUG_FS)

int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data)
{
	struct kfd_topology_device *dev;
	unsigned int i = 0;
	int r = 0;

	down_read(&topology_lock);

	list_for_each_entry(dev, &topology_device_list, list) {
		if (!dev->gpu) {
			i++;
			continue;
		}

		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
		r = dqm_debugfs_hqds(m, dev->gpu->dqm);
		if (r)
			break;
	}

	up_read(&topology_lock);

	return r;
}

int kfd_debugfs_rls_by_device(struct seq_file *m, void *data)
{
	struct kfd_topology_device *dev;
	unsigned int i = 0;
	int r = 0;

	down_read(&topology_lock);

	list_for_each_entry(dev, &topology_device_list, list) {
		if (!dev->gpu) {
			i++;
			continue;
		}

		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
		r = pm_debugfs_runlist(m, &dev->gpu->dqm->packets);
		if (r)
			break;
	}

	up_read(&topology_lock);

	return r;
}

#endif