Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Harry Wentland | 2722 | 99.67% | 1 | 25.00% |
Charlene Liu | 6 | 0.22% | 1 | 25.00% |
Dmytro Laktyushkin | 2 | 0.07% | 1 | 25.00% |
Wesley Chalmers | 1 | 0.04% | 1 | 25.00% |
Total | 2731 | 4 |
/* * Copyright 2012-17 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dcn20_hubp.h" #include "dm_services.h" #include "dce_calcs.h" #include "reg_helper.h" #include "basics/conversion.h" #define REG(reg)\ hubp2->hubp_regs->reg #define CTX \ hubp2->base.ctx #undef FN #define FN(reg_name, field_name) \ hubp2->hubp_shift->field_name, hubp2->hubp_mask->field_name void hubp2_update_dchub( struct hubp *hubp, struct dchub_init_data *dh_data) { struct dcn20_hubp *hubp2 = TO_DCN20_HUBP(hubp); if (REG(DCN_VM_FB_LOCATION_TOP) == 0) return; switch (dh_data->fb_mode) { case FRAME_BUFFER_MODE_ZFB_ONLY: /*For ZFB case need to put DCHUB FB BASE and TOP upside down to indicate ZFB mode*/ REG_UPDATE(DCN_VM_FB_LOCATION_TOP, FB_TOP, 0); REG_UPDATE(DCN_VM_FB_LOCATION_BASE, FB_BASE, 0xFFFFFF); /*This field defines the 24 MSBs, bits [47:24] of the 48 bit AGP Base*/ REG_UPDATE(DCN_VM_AGP_BASE, AGP_BASE, dh_data->zfb_phys_addr_base >> 24); /*This field defines the bottom range of the AGP aperture and represents the 24*/ /*MSBs, bits [47:24] of the 48 address bits*/ REG_UPDATE(DCN_VM_AGP_BOT, AGP_BOT, dh_data->zfb_mc_base_addr >> 24); /*This field defines the top range of the AGP aperture and represents the 24*/ /*MSBs, bits [47:24] of the 48 address bits*/ REG_UPDATE(DCN_VM_AGP_TOP, AGP_TOP, (dh_data->zfb_mc_base_addr + dh_data->zfb_size_in_byte - 1) >> 24); break; case FRAME_BUFFER_MODE_MIXED_ZFB_AND_LOCAL: /*Should not touch FB LOCATION (done by VBIOS on AsicInit table)*/ /*This field defines the 24 MSBs, bits [47:24] of the 48 bit AGP Base*/ REG_UPDATE(DCN_VM_AGP_BASE, AGP_BASE, dh_data->zfb_phys_addr_base >> 24); /*This field defines the bottom range of the AGP aperture and represents the 24*/ /*MSBs, bits [47:24] of the 48 address bits*/ REG_UPDATE(DCN_VM_AGP_BOT, AGP_BOT, dh_data->zfb_mc_base_addr >> 24); /*This field defines the top range of the AGP aperture and represents the 24*/ /*MSBs, bits [47:24] of the 48 address bits*/ REG_UPDATE(DCN_VM_AGP_TOP, AGP_TOP, (dh_data->zfb_mc_base_addr + dh_data->zfb_size_in_byte - 1) >> 24); break; case FRAME_BUFFER_MODE_LOCAL_ONLY: /*Should not touch FB LOCATION (should be done by VBIOS)*/ /*This field defines the 24 MSBs, bits [47:24] of the 48 bit AGP Base*/ REG_UPDATE(DCN_VM_AGP_BASE, AGP_BASE, 0); /*This field defines the bottom range of the AGP aperture and represents the 24*/ /*MSBs, bits [47:24] of the 48 address bits*/ REG_UPDATE(DCN_VM_AGP_BOT, AGP_BOT, 0xFFFFFF); /*This field defines the top range of the AGP aperture and represents the 24*/ /*MSBs, bits [47:24] of the 48 address bits*/ REG_UPDATE(DCN_VM_AGP_TOP, AGP_TOP, 0); break; default: break; } dh_data->dchub_initialzied = true; dh_data->dchub_info_valid = false; } void hubp2_set_vm_system_aperture_settings(struct hubp *hubp, struct vm_system_aperture_param *apt) { struct dcn20_hubp *hubp2 = TO_DCN20_HUBP(hubp); PHYSICAL_ADDRESS_LOC mc_vm_apt_default; PHYSICAL_ADDRESS_LOC mc_vm_apt_low; PHYSICAL_ADDRESS_LOC mc_vm_apt_high; // The format of default addr is 48:12 of the 48 bit addr mc_vm_apt_default.quad_part = apt->sys_default.quad_part >> 12; // The format of high/low are 48:18 of the 48 bit addr mc_vm_apt_low.quad_part = apt->sys_low.quad_part >> 18; mc_vm_apt_high.quad_part = apt->sys_high.quad_part >> 18; REG_UPDATE_2(DCN_VM_SYSTEM_APERTURE_DEFAULT_ADDR_MSB, DCN_VM_SYSTEM_APERTURE_DEFAULT_SYSTEM, 1, /* 1 = system physical memory */ DCN_VM_SYSTEM_APERTURE_DEFAULT_ADDR_MSB, mc_vm_apt_default.high_part); REG_SET(DCN_VM_SYSTEM_APERTURE_DEFAULT_ADDR_LSB, 0, DCN_VM_SYSTEM_APERTURE_DEFAULT_ADDR_LSB, mc_vm_apt_default.low_part); REG_SET(DCN_VM_SYSTEM_APERTURE_LOW_ADDR, 0, MC_VM_SYSTEM_APERTURE_LOW_ADDR, mc_vm_apt_low.quad_part); REG_SET(DCN_VM_SYSTEM_APERTURE_HIGH_ADDR, 0, MC_VM_SYSTEM_APERTURE_HIGH_ADDR, mc_vm_apt_high.quad_part); REG_SET_2(DCN_VM_MX_L1_TLB_CNTL, 0, ENABLE_L1_TLB, 1, SYSTEM_ACCESS_MODE, 0x3); } void hubp2_program_deadline( struct hubp *hubp, struct _vcs_dpi_display_dlg_regs_st *dlg_attr, struct _vcs_dpi_display_ttu_regs_st *ttu_attr) { struct dcn20_hubp *hubp2 = TO_DCN20_HUBP(hubp); hubp1_program_deadline(hubp, dlg_attr, ttu_attr); REG_SET(FLIP_PARAMETERS_1, 0, REFCYC_PER_PTE_GROUP_FLIP_L, dlg_attr->refcyc_per_pte_group_flip_l); } void hubp2_vready_at_or_After_vsync(struct hubp *hubp, struct _vcs_dpi_display_pipe_dest_params_st *pipe_dest) { uint32_t value = 0; struct dcn20_hubp *hubp2 = TO_DCN20_HUBP(hubp); /* disable_dlg_test_mode Set 9th bit to 1 to disable "dv" mode */ REG_WRITE(HUBPREQ_DEBUG_DB, 1 << 8); /* if (VSTARTUP_START - (VREADY_OFFSET+VUPDATE_WIDTH+VUPDATE_OFFSET)/htotal) <= OTG_V_BLANK_END Set HUBP_VREADY_AT_OR_AFTER_VSYNC = 1 else Set HUBP_VREADY_AT_OR_AFTER_VSYNC = 0 */ if ((pipe_dest->vstartup_start - (pipe_dest->vready_offset+pipe_dest->vupdate_width + pipe_dest->vupdate_offset) / pipe_dest->htotal) <= pipe_dest->vblank_end) { value = 1; } else value = 0; REG_UPDATE(DCHUBP_CNTL, HUBP_VREADY_AT_OR_AFTER_VSYNC, value); } static void hubp2_setup( struct hubp *hubp, struct _vcs_dpi_display_dlg_regs_st *dlg_attr, struct _vcs_dpi_display_ttu_regs_st *ttu_attr, struct _vcs_dpi_display_rq_regs_st *rq_regs, struct _vcs_dpi_display_pipe_dest_params_st *pipe_dest) { /* otg is locked when this func is called. Register are double buffered. * disable the requestors is not needed */ hubp2_vready_at_or_After_vsync(hubp, pipe_dest); hubp1_program_requestor(hubp, rq_regs); hubp2_program_deadline(hubp, dlg_attr, ttu_attr); } void hubp2_setup_interdependent( struct hubp *hubp, struct _vcs_dpi_display_dlg_regs_st *dlg_attr, struct _vcs_dpi_display_ttu_regs_st *ttu_attr) { struct dcn20_hubp *hubp2 = TO_DCN20_HUBP(hubp); REG_SET_2(PREFETCH_SETTINGS, 0, DST_Y_PREFETCH, dlg_attr->dst_y_prefetch, VRATIO_PREFETCH, dlg_attr->vratio_prefetch); REG_SET(PREFETCH_SETTINGS_C, 0, VRATIO_PREFETCH_C, dlg_attr->vratio_prefetch_c); REG_SET_2(VBLANK_PARAMETERS_0, 0, DST_Y_PER_VM_VBLANK, dlg_attr->dst_y_per_vm_vblank, DST_Y_PER_ROW_VBLANK, dlg_attr->dst_y_per_row_vblank); REG_SET_2(FLIP_PARAMETERS_0, 0, DST_Y_PER_VM_FLIP, dlg_attr->dst_y_per_vm_flip, DST_Y_PER_ROW_FLIP, dlg_attr->dst_y_per_row_flip); REG_SET(VBLANK_PARAMETERS_3, 0, REFCYC_PER_META_CHUNK_VBLANK_L, dlg_attr->refcyc_per_meta_chunk_vblank_l); REG_SET(VBLANK_PARAMETERS_4, 0, REFCYC_PER_META_CHUNK_VBLANK_C, dlg_attr->refcyc_per_meta_chunk_vblank_c); REG_SET(FLIP_PARAMETERS_2, 0, REFCYC_PER_META_CHUNK_FLIP_L, dlg_attr->refcyc_per_meta_chunk_flip_l); REG_SET_2(PER_LINE_DELIVERY_PRE, 0, REFCYC_PER_LINE_DELIVERY_PRE_L, dlg_attr->refcyc_per_line_delivery_pre_l, REFCYC_PER_LINE_DELIVERY_PRE_C, dlg_attr->refcyc_per_line_delivery_pre_c); REG_SET(DCN_SURF0_TTU_CNTL1, 0, REFCYC_PER_REQ_DELIVERY_PRE, ttu_attr->refcyc_per_req_delivery_pre_l); REG_SET(DCN_SURF1_TTU_CNTL1, 0, REFCYC_PER_REQ_DELIVERY_PRE, ttu_attr->refcyc_per_req_delivery_pre_c); REG_SET(DCN_CUR0_TTU_CNTL1, 0, REFCYC_PER_REQ_DELIVERY_PRE, ttu_attr->refcyc_per_req_delivery_pre_cur0); REG_SET(DCN_CUR1_TTU_CNTL1, 0, REFCYC_PER_REQ_DELIVERY_PRE, ttu_attr->refcyc_per_req_delivery_pre_cur1); REG_SET_2(DCN_GLOBAL_TTU_CNTL, 0, MIN_TTU_VBLANK, ttu_attr->min_ttu_vblank, QoS_LEVEL_FLIP, ttu_attr->qos_level_flip); } /* DCN2 (GFX10), the following GFX fields are deprecated. They can be set but they will not be used: * NUM_BANKS * NUM_SE * NUM_RB_PER_SE * RB_ALIGNED * Other things can be defaulted, since they never change: * PIPE_ALIGNED = 0 * META_LINEAR = 0 * In GFX10, only these apply: * PIPE_INTERLEAVE * NUM_PIPES * MAX_COMPRESSED_FRAGS * SW_MODE */ static void hubp2_program_tiling( struct dcn20_hubp *hubp2, const union dc_tiling_info *info, const enum surface_pixel_format pixel_format) { REG_UPDATE_3(DCSURF_ADDR_CONFIG, NUM_PIPES, log_2(info->gfx9.num_pipes), PIPE_INTERLEAVE, info->gfx9.pipe_interleave, MAX_COMPRESSED_FRAGS, log_2(info->gfx9.max_compressed_frags)); REG_UPDATE_4(DCSURF_TILING_CONFIG, SW_MODE, info->gfx9.swizzle, META_LINEAR, 0, RB_ALIGNED, 0, PIPE_ALIGNED, 0); } void hubp2_program_surface_config( struct hubp *hubp, enum surface_pixel_format format, union dc_tiling_info *tiling_info, union plane_size *plane_size, enum dc_rotation_angle rotation, struct dc_plane_dcc_param *dcc, bool horizontal_mirror, unsigned int compat_level) { struct dcn20_hubp *hubp2 = TO_DCN20_HUBP(hubp); hubp1_dcc_control(hubp, dcc->enable, dcc->grph.independent_64b_blks); hubp2_program_tiling(hubp2, tiling_info, format); hubp1_program_size(hubp, format, plane_size, dcc); hubp1_program_rotation(hubp, rotation, horizontal_mirror); hubp1_program_pixel_format(hubp, format); } enum cursor_lines_per_chunk hubp2_get_lines_per_chunk( unsigned int cursor_width, enum dc_cursor_color_format cursor_mode) { enum cursor_lines_per_chunk line_per_chunk = CURSOR_LINE_PER_CHUNK_16; if (cursor_mode == CURSOR_MODE_MONO) line_per_chunk = CURSOR_LINE_PER_CHUNK_16; else if (cursor_mode == CURSOR_MODE_COLOR_1BIT_AND || cursor_mode == CURSOR_MODE_COLOR_PRE_MULTIPLIED_ALPHA || cursor_mode == CURSOR_MODE_COLOR_UN_PRE_MULTIPLIED_ALPHA) { if (cursor_width >= 1 && cursor_width <= 32) line_per_chunk = CURSOR_LINE_PER_CHUNK_16; else if (cursor_width >= 33 && cursor_width <= 64) line_per_chunk = CURSOR_LINE_PER_CHUNK_8; else if (cursor_width >= 65 && cursor_width <= 128) line_per_chunk = CURSOR_LINE_PER_CHUNK_4; else if (cursor_width >= 129 && cursor_width <= 256) line_per_chunk = CURSOR_LINE_PER_CHUNK_2; } else if (cursor_mode == CURSOR_MODE_COLOR_64BIT_FP_PRE_MULTIPLIED || cursor_mode == CURSOR_MODE_COLOR_64BIT_FP_UN_PRE_MULTIPLIED) { if (cursor_width >= 1 && cursor_width <= 16) line_per_chunk = CURSOR_LINE_PER_CHUNK_16; else if (cursor_width >= 17 && cursor_width <= 32) line_per_chunk = CURSOR_LINE_PER_CHUNK_8; else if (cursor_width >= 33 && cursor_width <= 64) line_per_chunk = CURSOR_LINE_PER_CHUNK_4; else if (cursor_width >= 65 && cursor_width <= 128) line_per_chunk = CURSOR_LINE_PER_CHUNK_2; else if (cursor_width >= 129 && cursor_width <= 256) line_per_chunk = CURSOR_LINE_PER_CHUNK_1; } return line_per_chunk; } void hubp2_cursor_set_attributes( struct hubp *hubp, const struct dc_cursor_attributes *attr) { struct dcn20_hubp *hubp2 = TO_DCN20_HUBP(hubp); enum cursor_pitch hw_pitch = hubp1_get_cursor_pitch(attr->pitch); enum cursor_lines_per_chunk lpc = hubp2_get_lines_per_chunk( attr->width, attr->color_format); hubp->curs_attr = *attr; REG_UPDATE(CURSOR_SURFACE_ADDRESS_HIGH, CURSOR_SURFACE_ADDRESS_HIGH, attr->address.high_part); REG_UPDATE(CURSOR_SURFACE_ADDRESS, CURSOR_SURFACE_ADDRESS, attr->address.low_part); REG_UPDATE_2(CURSOR_SIZE, CURSOR_WIDTH, attr->width, CURSOR_HEIGHT, attr->height); REG_UPDATE_4(CURSOR_CONTROL, CURSOR_MODE, attr->color_format, CURSOR_2X_MAGNIFY, attr->attribute_flags.bits.ENABLE_MAGNIFICATION, CURSOR_PITCH, hw_pitch, CURSOR_LINES_PER_CHUNK, lpc); REG_SET_2(CURSOR_SETTINGS, 0, /* no shift of the cursor HDL schedule */ CURSOR0_DST_Y_OFFSET, 0, /* used to shift the cursor chunk request deadline */ CURSOR0_CHUNK_HDL_ADJUST, 3); } void hubp2_dmdata_set_attributes( struct hubp *hubp, const struct dc_dmdata_attributes *attr) { struct dcn20_hubp *hubp2 = TO_DCN20_HUBP(hubp); if (attr->dmdata_mode == DMDATA_HW_MODE) { /* set to HW mode */ REG_UPDATE(DMDATA_CNTL, DMDATA_MODE, 1); /* for DMDATA flip, need to use SURFACE_UPDATE_LOCK */ REG_UPDATE(DCSURF_FLIP_CONTROL, SURFACE_UPDATE_LOCK, 1); /* toggle DMDATA_UPDATED and set repeat and size */ REG_UPDATE(DMDATA_CNTL, DMDATA_UPDATED, 0); REG_UPDATE_3(DMDATA_CNTL, DMDATA_UPDATED, 1, DMDATA_REPEAT, attr->dmdata_repeat, DMDATA_SIZE, attr->dmdata_size); /* set DMDATA address */ REG_WRITE(DMDATA_ADDRESS_LOW, attr->address.low_part); REG_UPDATE(DMDATA_ADDRESS_HIGH, DMDATA_ADDRESS_HIGH, attr->address.high_part); REG_UPDATE(DCSURF_FLIP_CONTROL, SURFACE_UPDATE_LOCK, 0); } else { /* set to SW mode before loading data */ REG_SET(DMDATA_CNTL, 0, DMDATA_MODE, 0); /* toggle DMDATA_SW_UPDATED to start loading sequence */ REG_UPDATE(DMDATA_SW_CNTL, DMDATA_SW_UPDATED, 0); REG_UPDATE_3(DMDATA_SW_CNTL, DMDATA_SW_UPDATED, 1, DMDATA_SW_REPEAT, attr->dmdata_repeat, DMDATA_SW_SIZE, attr->dmdata_size); /* load data into hubp dmdata buffer */ hubp2_dmdata_load(hubp, attr->dmdata_size, attr->dmdata_sw_data); } /* Note that DL_DELTA must be programmed if we want to use TTU mode */ REG_SET_3(DMDATA_QOS_CNTL, 0, DMDATA_QOS_MODE, attr->dmdata_qos_mode, DMDATA_QOS_LEVEL, attr->dmdata_qos_level, DMDATA_DL_DELTA, attr->dmdata_dl_delta); } void hubp2_dmdata_load( struct hubp *hubp, uint32_t dmdata_sw_size, const uint32_t *dmdata_sw_data) { int i; struct dcn20_hubp *hubp2 = TO_DCN20_HUBP(hubp); /* load dmdata into HUBP buffer in SW mode */ for (i = 0; i < dmdata_sw_size / 4; i++) REG_WRITE(DMDATA_SW_DATA, dmdata_sw_data[i]); } bool hubp2_dmdata_status_done(struct hubp *hubp) { uint32_t status; struct dcn20_hubp *hubp2 = TO_DCN20_HUBP(hubp); REG_GET(DMDATA_STATUS, DMDATA_DONE, &status); return (status == 1); } bool hubp2_program_surface_flip_and_addr( struct hubp *hubp, const struct dc_plane_address *address, bool flip_immediate) { struct dcn20_hubp *hubp2 = TO_DCN20_HUBP(hubp); //program flip type REG_UPDATE(DCSURF_FLIP_CONTROL, SURFACE_FLIP_TYPE, flip_immediate); // Program VMID reg REG_UPDATE(VMID_SETTINGS_0, VMID, address->vmid); if (address->type == PLN_ADDR_TYPE_GRPH_STEREO) { REG_UPDATE(DCSURF_FLIP_CONTROL, SURFACE_FLIP_MODE_FOR_STEREOSYNC, 0x1); REG_UPDATE(DCSURF_FLIP_CONTROL, SURFACE_FLIP_IN_STEREOSYNC, 0x1); } else { // turn off stereo if not in stereo REG_UPDATE(DCSURF_FLIP_CONTROL, SURFACE_FLIP_MODE_FOR_STEREOSYNC, 0x0); REG_UPDATE(DCSURF_FLIP_CONTROL, SURFACE_FLIP_IN_STEREOSYNC, 0x0); } /* HW automatically latch rest of address register on write to * DCSURF_PRIMARY_SURFACE_ADDRESS if SURFACE_UPDATE_LOCK is not used * * program high first and then the low addr, order matters! */ switch (address->type) { case PLN_ADDR_TYPE_GRAPHICS: /* DCN1.0 does not support const color * TODO: program DCHUBBUB_RET_PATH_DCC_CFGx_0/1 * base on address->grph.dcc_const_color * x = 0, 2, 4, 6 for pipe 0, 1, 2, 3 for rgb and luma * x = 1, 3, 5, 7 for pipe 0, 1, 2, 3 for chroma */ if (address->grph.addr.quad_part == 0) break; REG_UPDATE_2(DCSURF_SURFACE_CONTROL, PRIMARY_SURFACE_TMZ, address->tmz_surface, PRIMARY_META_SURFACE_TMZ, address->tmz_surface); if (address->grph.meta_addr.quad_part != 0) { REG_SET(DCSURF_PRIMARY_META_SURFACE_ADDRESS_HIGH, 0, PRIMARY_META_SURFACE_ADDRESS_HIGH, address->grph.meta_addr.high_part); REG_SET(DCSURF_PRIMARY_META_SURFACE_ADDRESS, 0, PRIMARY_META_SURFACE_ADDRESS, address->grph.meta_addr.low_part); } REG_SET(DCSURF_PRIMARY_SURFACE_ADDRESS_HIGH, 0, PRIMARY_SURFACE_ADDRESS_HIGH, address->grph.addr.high_part); REG_SET(DCSURF_PRIMARY_SURFACE_ADDRESS, 0, PRIMARY_SURFACE_ADDRESS, address->grph.addr.low_part); break; case PLN_ADDR_TYPE_VIDEO_PROGRESSIVE: if (address->video_progressive.luma_addr.quad_part == 0 || address->video_progressive.chroma_addr.quad_part == 0) break; REG_UPDATE_4(DCSURF_SURFACE_CONTROL, PRIMARY_SURFACE_TMZ, address->tmz_surface, PRIMARY_SURFACE_TMZ_C, address->tmz_surface, PRIMARY_META_SURFACE_TMZ, address->tmz_surface, PRIMARY_META_SURFACE_TMZ_C, address->tmz_surface); if (address->video_progressive.luma_meta_addr.quad_part != 0) { REG_SET(DCSURF_PRIMARY_META_SURFACE_ADDRESS_HIGH_C, 0, PRIMARY_META_SURFACE_ADDRESS_HIGH_C, address->video_progressive.chroma_meta_addr.high_part); REG_SET(DCSURF_PRIMARY_META_SURFACE_ADDRESS_C, 0, PRIMARY_META_SURFACE_ADDRESS_C, address->video_progressive.chroma_meta_addr.low_part); REG_SET(DCSURF_PRIMARY_META_SURFACE_ADDRESS_HIGH, 0, PRIMARY_META_SURFACE_ADDRESS_HIGH, address->video_progressive.luma_meta_addr.high_part); REG_SET(DCSURF_PRIMARY_META_SURFACE_ADDRESS, 0, PRIMARY_META_SURFACE_ADDRESS, address->video_progressive.luma_meta_addr.low_part); } REG_SET(DCSURF_PRIMARY_SURFACE_ADDRESS_HIGH_C, 0, PRIMARY_SURFACE_ADDRESS_HIGH_C, address->video_progressive.chroma_addr.high_part); REG_SET(DCSURF_PRIMARY_SURFACE_ADDRESS_C, 0, PRIMARY_SURFACE_ADDRESS_C, address->video_progressive.chroma_addr.low_part); REG_SET(DCSURF_PRIMARY_SURFACE_ADDRESS_HIGH, 0, PRIMARY_SURFACE_ADDRESS_HIGH, address->video_progressive.luma_addr.high_part); REG_SET(DCSURF_PRIMARY_SURFACE_ADDRESS, 0, PRIMARY_SURFACE_ADDRESS, address->video_progressive.luma_addr.low_part); break; case PLN_ADDR_TYPE_GRPH_STEREO: if (address->grph_stereo.left_addr.quad_part == 0) break; if (address->grph_stereo.right_addr.quad_part == 0) break; REG_UPDATE_8(DCSURF_SURFACE_CONTROL, PRIMARY_SURFACE_TMZ, address->tmz_surface, PRIMARY_SURFACE_TMZ_C, address->tmz_surface, PRIMARY_META_SURFACE_TMZ, address->tmz_surface, PRIMARY_META_SURFACE_TMZ_C, address->tmz_surface, SECONDARY_SURFACE_TMZ, address->tmz_surface, SECONDARY_SURFACE_TMZ_C, address->tmz_surface, SECONDARY_META_SURFACE_TMZ, address->tmz_surface, SECONDARY_META_SURFACE_TMZ_C, address->tmz_surface); if (address->grph_stereo.right_meta_addr.quad_part != 0) { REG_SET(DCSURF_SECONDARY_META_SURFACE_ADDRESS_HIGH, 0, SECONDARY_META_SURFACE_ADDRESS_HIGH, address->grph_stereo.right_meta_addr.high_part); REG_SET(DCSURF_SECONDARY_META_SURFACE_ADDRESS, 0, SECONDARY_META_SURFACE_ADDRESS, address->grph_stereo.right_meta_addr.low_part); } if (address->grph_stereo.left_meta_addr.quad_part != 0) { REG_SET(DCSURF_PRIMARY_META_SURFACE_ADDRESS_HIGH, 0, PRIMARY_META_SURFACE_ADDRESS_HIGH, address->grph_stereo.left_meta_addr.high_part); REG_SET(DCSURF_PRIMARY_META_SURFACE_ADDRESS, 0, PRIMARY_META_SURFACE_ADDRESS, address->grph_stereo.left_meta_addr.low_part); } REG_SET(DCSURF_SECONDARY_SURFACE_ADDRESS_HIGH, 0, SECONDARY_SURFACE_ADDRESS_HIGH, address->grph_stereo.right_addr.high_part); REG_SET(DCSURF_SECONDARY_SURFACE_ADDRESS, 0, SECONDARY_SURFACE_ADDRESS, address->grph_stereo.right_addr.low_part); REG_SET(DCSURF_PRIMARY_SURFACE_ADDRESS_HIGH, 0, PRIMARY_SURFACE_ADDRESS_HIGH, address->grph_stereo.left_addr.high_part); REG_SET(DCSURF_PRIMARY_SURFACE_ADDRESS, 0, PRIMARY_SURFACE_ADDRESS, address->grph_stereo.left_addr.low_part); break; default: BREAK_TO_DEBUGGER(); break; } hubp->request_address = *address; return true; } void hubp2_enable_triplebuffer( struct hubp *hubp, bool enable) { struct dcn20_hubp *hubp2 = TO_DCN20_HUBP(hubp); uint32_t triple_buffer_en = 0; bool tri_buffer_en; REG_GET(DCSURF_FLIP_CONTROL2, SURFACE_TRIPLE_BUFFER_ENABLE, &triple_buffer_en); tri_buffer_en = (triple_buffer_en == 1); if (tri_buffer_en != enable) { REG_UPDATE(DCSURF_FLIP_CONTROL2, SURFACE_TRIPLE_BUFFER_ENABLE, enable ? DC_TRIPLEBUFFER_ENABLE : DC_TRIPLEBUFFER_DISABLE); } } bool hubp2_is_triplebuffer_enabled( struct hubp *hubp) { struct dcn20_hubp *hubp2 = TO_DCN20_HUBP(hubp); uint32_t triple_buffer_en = 0; REG_GET(DCSURF_FLIP_CONTROL2, SURFACE_TRIPLE_BUFFER_ENABLE, &triple_buffer_en); return (bool)triple_buffer_en; } void hubp2_set_flip_control_surface_gsl(struct hubp *hubp, bool enable) { struct dcn20_hubp *hubp2 = TO_DCN20_HUBP(hubp); REG_UPDATE(DCSURF_FLIP_CONTROL2, SURFACE_GSL_ENABLE, enable ? 1 : 0); } static struct hubp_funcs dcn20_hubp_funcs = { .hubp_enable_tripleBuffer = hubp2_enable_triplebuffer, .hubp_is_triplebuffer_enabled = hubp2_is_triplebuffer_enabled, .hubp_program_surface_flip_and_addr = hubp2_program_surface_flip_and_addr, .hubp_program_surface_config = hubp2_program_surface_config, .hubp_is_flip_pending = hubp1_is_flip_pending, .hubp_setup = hubp2_setup, .hubp_setup_interdependent = hubp2_setup_interdependent, .hubp_set_vm_system_aperture_settings = hubp2_set_vm_system_aperture_settings, .set_blank = hubp1_set_blank, .dcc_control = hubp1_dcc_control, .hubp_update_dchub = hubp2_update_dchub, .mem_program_viewport = min_set_viewport, .set_cursor_attributes = hubp2_cursor_set_attributes, .set_cursor_position = hubp1_cursor_set_position, .hubp_clk_cntl = hubp1_clk_cntl, .hubp_vtg_sel = hubp1_vtg_sel, .dmdata_set_attributes = hubp2_dmdata_set_attributes, .dmdata_load = hubp2_dmdata_load, .dmdata_status_done = hubp2_dmdata_status_done, .hubp_read_state = hubp1_read_state, .hubp_clear_underflow = hubp1_clear_underflow, .hubp_set_flip_control_surface_gsl = hubp2_set_flip_control_surface_gsl, .hubp_init = hubp1_init, }; bool hubp2_construct( struct dcn20_hubp *hubp2, struct dc_context *ctx, uint32_t inst, const struct dcn_hubp2_registers *hubp_regs, const struct dcn_hubp2_shift *hubp_shift, const struct dcn_hubp2_mask *hubp_mask) { hubp2->base.funcs = &dcn20_hubp_funcs; hubp2->base.ctx = ctx; hubp2->hubp_regs = hubp_regs; hubp2->hubp_shift = hubp_shift; hubp2->hubp_mask = hubp_mask; hubp2->base.inst = inst; hubp2->base.opp_id = OPP_ID_INVALID; hubp2->base.mpcc_id = 0xf; return true; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1