Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Rex Zhu | 12817 | 91.22% | 27 | 69.23% |
Eric Huang | 1182 | 8.41% | 2 | 5.13% |
Alex Deucher | 18 | 0.13% | 2 | 5.13% |
Evan Quan | 11 | 0.08% | 1 | 2.56% |
Trigger Huang | 7 | 0.05% | 1 | 2.56% |
Prike Liang | 5 | 0.04% | 1 | 2.56% |
Huang Rui | 3 | 0.02% | 1 | 2.56% |
Nils Wallménius | 2 | 0.01% | 1 | 2.56% |
Baoyou Xie | 2 | 0.01% | 1 | 2.56% |
Colin Ian King | 2 | 0.01% | 1 | 2.56% |
Julia Lawall | 1 | 0.01% | 1 | 2.56% |
Total | 14050 | 39 |
/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "pp_debug.h" #include "smumgr.h" #include "smu7_dyn_defaults.h" #include "smu73.h" #include "smu_ucode_xfer_vi.h" #include "fiji_smumgr.h" #include "fiji_ppsmc.h" #include "smu73_discrete.h" #include "ppatomctrl.h" #include "smu/smu_7_1_3_d.h" #include "smu/smu_7_1_3_sh_mask.h" #include "gmc/gmc_8_1_d.h" #include "gmc/gmc_8_1_sh_mask.h" #include "oss/oss_3_0_d.h" #include "gca/gfx_8_0_d.h" #include "bif/bif_5_0_d.h" #include "bif/bif_5_0_sh_mask.h" #include "dce/dce_10_0_d.h" #include "dce/dce_10_0_sh_mask.h" #include "hardwaremanager.h" #include "cgs_common.h" #include "atombios.h" #include "pppcielanes.h" #include "hwmgr.h" #include "smu7_hwmgr.h" #define AVFS_EN_MSB 1568 #define AVFS_EN_LSB 1568 #define FIJI_SMC_SIZE 0x20000 #define POWERTUNE_DEFAULT_SET_MAX 1 #define VDDC_VDDCI_DELTA 300 #define MC_CG_ARB_FREQ_F1 0x0b /* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs * not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ] */ static const uint16_t fiji_clock_stretcher_lookup_table[2][4] = { {600, 1050, 3, 0}, {600, 1050, 6, 1} }; /* [FF, SS] type, [] 4 voltage ranges, and * [Floor Freq, Boundary Freq, VID min , VID max] */ static const uint32_t fiji_clock_stretcher_ddt_table[2][4][4] = { { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} }, { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } }; /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] * (coming from PWR_CKS_CNTL.stretch_amount reg spec) */ static const uint8_t fiji_clock_stretch_amount_conversion[2][6] = { {0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} }; static const struct fiji_pt_defaults fiji_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = { /*sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc */ {1, 0xF, 0xFD, /* TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase */ 0x19, 5, 45} }; static const struct SMU73_Discrete_GraphicsLevel avfs_graphics_level[8] = { /* Min Sclk pcie DeepSleep Activity CgSpll CgSpll spllSpread SpllSpread CcPwr CcPwr Sclk Display Enabled Enabled Voltage Power */ /* Voltage, Frequency, DpmLevel, DivId, Level, FuncCntl3, FuncCntl4, Spectrum, Spectrum2, DynRm, DynRm1 Did, Watermark, ForActivity, ForThrottle, UpHyst, DownHyst, DownHyst, Throttle */ { 0x3c0fd047, 0x30750000, 0x00, 0x03, 0x1e00, 0x00200410, 0x87020000, 0x21680000, 0x0c000000, 0, 0, 0x16, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }, { 0xa00fd047, 0x409c0000, 0x01, 0x04, 0x1e00, 0x00800510, 0x87020000, 0x21680000, 0x11000000, 0, 0, 0x16, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }, { 0x0410d047, 0x50c30000, 0x01, 0x00, 0x1e00, 0x00600410, 0x87020000, 0x21680000, 0x0d000000, 0, 0, 0x0e, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }, { 0x6810d047, 0x60ea0000, 0x01, 0x00, 0x1e00, 0x00800410, 0x87020000, 0x21680000, 0x0e000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }, { 0xcc10d047, 0xe8fd0000, 0x01, 0x00, 0x1e00, 0x00e00410, 0x87020000, 0x21680000, 0x0f000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }, { 0x3011d047, 0x70110100, 0x01, 0x00, 0x1e00, 0x00400510, 0x87020000, 0x21680000, 0x10000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }, { 0x9411d047, 0xf8240100, 0x01, 0x00, 0x1e00, 0x00a00510, 0x87020000, 0x21680000, 0x11000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }, { 0xf811d047, 0x80380100, 0x01, 0x00, 0x1e00, 0x00000610, 0x87020000, 0x21680000, 0x12000000, 0, 0, 0x0c, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 } }; static int fiji_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr) { int result = 0; /* Wait for smc boot up */ /* PHM_WAIT_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0); */ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 1); result = smu7_upload_smu_firmware_image(hwmgr); if (result) return result; /* Clear status */ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMU_STATUS, 0); PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0); /* De-assert reset */ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 0); /* Wait for ROM firmware to initialize interrupt hendler */ /*SMUM_WAIT_VFPF_INDIRECT_REGISTER(hwmgr, SMC_IND, SMC_INTR_CNTL_MASK_0, 0x10040, 0xFFFFFFFF); */ /* Set SMU Auto Start */ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMU_INPUT_DATA, AUTO_START, 1); /* Clear firmware interrupt enable flag */ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixFIRMWARE_FLAGS, 0); PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS, INTERRUPTS_ENABLED, 1); cgs_write_register(hwmgr->device, mmSMC_MSG_ARG_0, 0x20000); cgs_write_register(hwmgr->device, mmSMC_MESSAGE_0, PPSMC_MSG_Test); PHM_WAIT_FIELD_UNEQUAL(hwmgr, SMC_RESP_0, SMC_RESP, 0); /* Wait for done bit to be set */ PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, SMU_STATUS, SMU_DONE, 0); /* Check pass/failed indicator */ if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMU_STATUS, SMU_PASS) != 1) { PP_ASSERT_WITH_CODE(false, "SMU Firmware start failed!", return -1); } /* Wait for firmware to initialize */ PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1); return result; } static int fiji_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr) { int result = 0; /* wait for smc boot up */ PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0); /* Clear firmware interrupt enable flag */ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixFIRMWARE_FLAGS, 0); /* Assert reset */ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 1); result = smu7_upload_smu_firmware_image(hwmgr); if (result) return result; /* Set smc instruct start point at 0x0 */ smu7_program_jump_on_start(hwmgr); /* Enable clock */ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0); /* De-assert reset */ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 0); /* Wait for firmware to initialize */ PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1); return result; } static int fiji_start_avfs_btc(struct pp_hwmgr *hwmgr) { int result = 0; struct smu7_smumgr *smu_data = (struct smu7_smumgr *)(hwmgr->smu_backend); if (0 != smu_data->avfs_btc_param) { if (0 != smu7_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_PerformBtc, smu_data->avfs_btc_param)) { pr_info("[AVFS][Fiji_PerformBtc] PerformBTC SMU msg failed"); result = -EINVAL; } } /* Soft-Reset to reset the engine before loading uCode */ /* halt */ cgs_write_register(hwmgr->device, mmCP_MEC_CNTL, 0x50000000); /* reset everything */ cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0xffffffff); /* clear reset */ cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0); return result; } static int fiji_setup_graphics_level_structure(struct pp_hwmgr *hwmgr) { int32_t vr_config; uint32_t table_start; uint32_t level_addr, vr_config_addr; uint32_t level_size = sizeof(avfs_graphics_level); PP_ASSERT_WITH_CODE(0 == smu7_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU73_Firmware_Header, DpmTable), &table_start, 0x40000), "[AVFS][Fiji_SetupGfxLvlStruct] SMU could not " "communicate starting address of DPM table", return -1;); /* Default value for vr_config = * VR_MERGED_WITH_VDDC + VR_STATIC_VOLTAGE(VDDCI) */ vr_config = 0x01000500; /* Real value:0x50001 */ vr_config_addr = table_start + offsetof(SMU73_Discrete_DpmTable, VRConfig); PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_addr, (uint8_t *)&vr_config, sizeof(int32_t), 0x40000), "[AVFS][Fiji_SetupGfxLvlStruct] Problems copying " "vr_config value over to SMC", return -1;); level_addr = table_start + offsetof(SMU73_Discrete_DpmTable, GraphicsLevel); PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, level_addr, (uint8_t *)(&avfs_graphics_level), level_size, 0x40000), "[AVFS][Fiji_SetupGfxLvlStruct] Copying of DPM table failed!", return -1;); return 0; } static int fiji_avfs_event_mgr(struct pp_hwmgr *hwmgr) { if (!hwmgr->avfs_supported) return 0; PP_ASSERT_WITH_CODE(0 == fiji_setup_graphics_level_structure(hwmgr), "[AVFS][fiji_avfs_event_mgr] Could not Copy Graphics Level" " table over to SMU", return -EINVAL); PP_ASSERT_WITH_CODE(0 == smu7_setup_pwr_virus(hwmgr), "[AVFS][fiji_avfs_event_mgr] Could not setup " "Pwr Virus for AVFS ", return -EINVAL); PP_ASSERT_WITH_CODE(0 == fiji_start_avfs_btc(hwmgr), "[AVFS][fiji_avfs_event_mgr] Failure at " "fiji_start_avfs_btc. AVFS Disabled", return -EINVAL); return 0; } static int fiji_start_smu(struct pp_hwmgr *hwmgr) { int result = 0; struct fiji_smumgr *priv = (struct fiji_smumgr *)(hwmgr->smu_backend); /* Only start SMC if SMC RAM is not running */ if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) { /* Check if SMU is running in protected mode */ if (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_MODE)) { result = fiji_start_smu_in_non_protection_mode(hwmgr); if (result) return result; } else { result = fiji_start_smu_in_protection_mode(hwmgr); if (result) return result; } if (fiji_avfs_event_mgr(hwmgr)) hwmgr->avfs_supported = false; } /* Setup SoftRegsStart here for register lookup in case * DummyBackEnd is used and ProcessFirmwareHeader is not executed */ smu7_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU73_Firmware_Header, SoftRegisters), &(priv->smu7_data.soft_regs_start), 0x40000); result = smu7_request_smu_load_fw(hwmgr); return result; } static bool fiji_is_hw_avfs_present(struct pp_hwmgr *hwmgr) { uint32_t efuse = 0; uint32_t mask = (1 << ((AVFS_EN_MSB - AVFS_EN_LSB) + 1)) - 1; if (!hwmgr->not_vf) return false; if (!atomctrl_read_efuse(hwmgr, AVFS_EN_LSB, AVFS_EN_MSB, mask, &efuse)) { if (efuse) return true; } return false; } static int fiji_smu_init(struct pp_hwmgr *hwmgr) { struct fiji_smumgr *fiji_priv = NULL; fiji_priv = kzalloc(sizeof(struct fiji_smumgr), GFP_KERNEL); if (fiji_priv == NULL) return -ENOMEM; hwmgr->smu_backend = fiji_priv; if (smu7_init(hwmgr)) { kfree(fiji_priv); return -EINVAL; } return 0; } static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr, struct phm_ppt_v1_clock_voltage_dependency_table *dep_table, uint32_t clock, uint32_t *voltage, uint32_t *mvdd) { uint32_t i; uint16_t vddci; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); *voltage = *mvdd = 0; /* clock - voltage dependency table is empty table */ if (dep_table->count == 0) return -EINVAL; for (i = 0; i < dep_table->count; i++) { /* find first sclk bigger than request */ if (dep_table->entries[i].clk >= clock) { *voltage |= (dep_table->entries[i].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control) *voltage |= (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT; else if (dep_table->entries[i].vddci) *voltage |= (dep_table->entries[i].vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; else { vddci = phm_find_closest_vddci(&(data->vddci_voltage_table), (dep_table->entries[i].vddc - VDDC_VDDCI_DELTA)); *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; } if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE; else if (dep_table->entries[i].mvdd) *mvdd = (uint32_t) dep_table->entries[i].mvdd * VOLTAGE_SCALE; *voltage |= 1 << PHASES_SHIFT; return 0; } } /* sclk is bigger than max sclk in the dependence table */ *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control) *voltage |= (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT; else if (dep_table->entries[i-1].vddci) { vddci = phm_find_closest_vddci(&(data->vddci_voltage_table), (dep_table->entries[i].vddc - VDDC_VDDCI_DELTA)); *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; } if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE; else if (dep_table->entries[i].mvdd) *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE; return 0; } static uint16_t scale_fan_gain_settings(uint16_t raw_setting) { uint32_t tmp; tmp = raw_setting * 4096 / 100; return (uint16_t)tmp; } static void get_scl_sda_value(uint8_t line, uint8_t *scl, uint8_t *sda) { switch (line) { case SMU7_I2CLineID_DDC1: *scl = SMU7_I2C_DDC1CLK; *sda = SMU7_I2C_DDC1DATA; break; case SMU7_I2CLineID_DDC2: *scl = SMU7_I2C_DDC2CLK; *sda = SMU7_I2C_DDC2DATA; break; case SMU7_I2CLineID_DDC3: *scl = SMU7_I2C_DDC3CLK; *sda = SMU7_I2C_DDC3DATA; break; case SMU7_I2CLineID_DDC4: *scl = SMU7_I2C_DDC4CLK; *sda = SMU7_I2C_DDC4DATA; break; case SMU7_I2CLineID_DDC5: *scl = SMU7_I2C_DDC5CLK; *sda = SMU7_I2C_DDC5DATA; break; case SMU7_I2CLineID_DDC6: *scl = SMU7_I2C_DDC6CLK; *sda = SMU7_I2C_DDC6DATA; break; case SMU7_I2CLineID_SCLSDA: *scl = SMU7_I2C_SCL; *sda = SMU7_I2C_SDA; break; case SMU7_I2CLineID_DDCVGA: *scl = SMU7_I2C_DDCVGACLK; *sda = SMU7_I2C_DDCVGADATA; break; default: *scl = 0; *sda = 0; break; } } static void fiji_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr) { struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); if (table_info && table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX && table_info->cac_dtp_table->usPowerTuneDataSetID) smu_data->power_tune_defaults = &fiji_power_tune_data_set_array [table_info->cac_dtp_table->usPowerTuneDataSetID - 1]; else smu_data->power_tune_defaults = &fiji_power_tune_data_set_array[0]; } static int fiji_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr) { struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults; SMU73_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table; struct pp_advance_fan_control_parameters *fan_table = &hwmgr->thermal_controller.advanceFanControlParameters; uint8_t uc_scl, uc_sda; /* TDP number of fraction bits are changed from 8 to 7 for Fiji * as requested by SMC team */ dpm_table->DefaultTdp = PP_HOST_TO_SMC_US( (uint16_t)(cac_dtp_table->usTDP * 128)); dpm_table->TargetTdp = PP_HOST_TO_SMC_US( (uint16_t)(cac_dtp_table->usTDP * 128)); PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255, "Target Operating Temp is out of Range!", ); dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp); dpm_table->GpuTjHyst = 8; dpm_table->DTEAmbientTempBase = defaults->DTEAmbientTempBase; /* The following are for new Fiji Multi-input fan/thermal control */ dpm_table->TemperatureLimitEdge = PP_HOST_TO_SMC_US( cac_dtp_table->usTargetOperatingTemp * 256); dpm_table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US( cac_dtp_table->usTemperatureLimitHotspot * 256); dpm_table->TemperatureLimitLiquid1 = PP_HOST_TO_SMC_US( cac_dtp_table->usTemperatureLimitLiquid1 * 256); dpm_table->TemperatureLimitLiquid2 = PP_HOST_TO_SMC_US( cac_dtp_table->usTemperatureLimitLiquid2 * 256); dpm_table->TemperatureLimitVrVddc = PP_HOST_TO_SMC_US( cac_dtp_table->usTemperatureLimitVrVddc * 256); dpm_table->TemperatureLimitVrMvdd = PP_HOST_TO_SMC_US( cac_dtp_table->usTemperatureLimitVrMvdd * 256); dpm_table->TemperatureLimitPlx = PP_HOST_TO_SMC_US( cac_dtp_table->usTemperatureLimitPlx * 256); dpm_table->FanGainEdge = PP_HOST_TO_SMC_US( scale_fan_gain_settings(fan_table->usFanGainEdge)); dpm_table->FanGainHotspot = PP_HOST_TO_SMC_US( scale_fan_gain_settings(fan_table->usFanGainHotspot)); dpm_table->FanGainLiquid = PP_HOST_TO_SMC_US( scale_fan_gain_settings(fan_table->usFanGainLiquid)); dpm_table->FanGainVrVddc = PP_HOST_TO_SMC_US( scale_fan_gain_settings(fan_table->usFanGainVrVddc)); dpm_table->FanGainVrMvdd = PP_HOST_TO_SMC_US( scale_fan_gain_settings(fan_table->usFanGainVrMvdd)); dpm_table->FanGainPlx = PP_HOST_TO_SMC_US( scale_fan_gain_settings(fan_table->usFanGainPlx)); dpm_table->FanGainHbm = PP_HOST_TO_SMC_US( scale_fan_gain_settings(fan_table->usFanGainHbm)); dpm_table->Liquid1_I2C_address = cac_dtp_table->ucLiquid1_I2C_address; dpm_table->Liquid2_I2C_address = cac_dtp_table->ucLiquid2_I2C_address; dpm_table->Vr_I2C_address = cac_dtp_table->ucVr_I2C_address; dpm_table->Plx_I2C_address = cac_dtp_table->ucPlx_I2C_address; get_scl_sda_value(cac_dtp_table->ucLiquid_I2C_Line, &uc_scl, &uc_sda); dpm_table->Liquid_I2C_LineSCL = uc_scl; dpm_table->Liquid_I2C_LineSDA = uc_sda; get_scl_sda_value(cac_dtp_table->ucVr_I2C_Line, &uc_scl, &uc_sda); dpm_table->Vr_I2C_LineSCL = uc_scl; dpm_table->Vr_I2C_LineSDA = uc_sda; get_scl_sda_value(cac_dtp_table->ucPlx_I2C_Line, &uc_scl, &uc_sda); dpm_table->Plx_I2C_LineSCL = uc_scl; dpm_table->Plx_I2C_LineSDA = uc_sda; return 0; } static int fiji_populate_svi_load_line(struct pp_hwmgr *hwmgr) { struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults; smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn; smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC; smu_data->power_tune_table.SviLoadLineTrimVddC = 3; smu_data->power_tune_table.SviLoadLineOffsetVddC = 0; return 0; } static int fiji_populate_tdc_limit(struct pp_hwmgr *hwmgr) { uint16_t tdc_limit; struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults; /* TDC number of fraction bits are changed from 8 to 7 * for Fiji as requested by SMC team */ tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128); smu_data->power_tune_table.TDC_VDDC_PkgLimit = CONVERT_FROM_HOST_TO_SMC_US(tdc_limit); smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc = defaults->TDC_VDDC_ThrottleReleaseLimitPerc; smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt; return 0; } static int fiji_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset) { struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults; uint32_t temp; if (smu7_read_smc_sram_dword(hwmgr, fuse_table_offset + offsetof(SMU73_Discrete_PmFuses, TdcWaterfallCtl), (uint32_t *)&temp, SMC_RAM_END)) PP_ASSERT_WITH_CODE(false, "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!", return -EINVAL); else { smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl; smu_data->power_tune_table.LPMLTemperatureMin = (uint8_t)((temp >> 16) & 0xff); smu_data->power_tune_table.LPMLTemperatureMax = (uint8_t)((temp >> 8) & 0xff); smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff); } return 0; } static int fiji_populate_temperature_scaler(struct pp_hwmgr *hwmgr) { int i; struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); /* Currently not used. Set all to zero. */ for (i = 0; i < 16; i++) smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0; return 0; } static int fiji_populate_fuzzy_fan(struct pp_hwmgr *hwmgr) { struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); if ((hwmgr->thermal_controller.advanceFanControlParameters. usFanOutputSensitivity & (1 << 15)) || 0 == hwmgr->thermal_controller.advanceFanControlParameters. usFanOutputSensitivity) hwmgr->thermal_controller.advanceFanControlParameters. usFanOutputSensitivity = hwmgr->thermal_controller. advanceFanControlParameters.usDefaultFanOutputSensitivity; smu_data->power_tune_table.FuzzyFan_PwmSetDelta = PP_HOST_TO_SMC_US(hwmgr->thermal_controller. advanceFanControlParameters.usFanOutputSensitivity); return 0; } static int fiji_populate_gnb_lpml(struct pp_hwmgr *hwmgr) { int i; struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); /* Currently not used. Set all to zero. */ for (i = 0; i < 16; i++) smu_data->power_tune_table.GnbLPML[i] = 0; return 0; } static int fiji_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr) { struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd; uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd; struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table; HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256); LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256); smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd = CONVERT_FROM_HOST_TO_SMC_US(HiSidd); smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd = CONVERT_FROM_HOST_TO_SMC_US(LoSidd); return 0; } static int fiji_populate_pm_fuses(struct pp_hwmgr *hwmgr) { uint32_t pm_fuse_table_offset; struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PowerContainment)) { if (smu7_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU73_Firmware_Header, PmFuseTable), &pm_fuse_table_offset, SMC_RAM_END)) PP_ASSERT_WITH_CODE(false, "Attempt to get pm_fuse_table_offset Failed!", return -EINVAL); /* DW6 */ if (fiji_populate_svi_load_line(hwmgr)) PP_ASSERT_WITH_CODE(false, "Attempt to populate SviLoadLine Failed!", return -EINVAL); /* DW7 */ if (fiji_populate_tdc_limit(hwmgr)) PP_ASSERT_WITH_CODE(false, "Attempt to populate TDCLimit Failed!", return -EINVAL); /* DW8 */ if (fiji_populate_dw8(hwmgr, pm_fuse_table_offset)) PP_ASSERT_WITH_CODE(false, "Attempt to populate TdcWaterfallCtl, " "LPMLTemperature Min and Max Failed!", return -EINVAL); /* DW9-DW12 */ if (0 != fiji_populate_temperature_scaler(hwmgr)) PP_ASSERT_WITH_CODE(false, "Attempt to populate LPMLTemperatureScaler Failed!", return -EINVAL); /* DW13-DW14 */ if (fiji_populate_fuzzy_fan(hwmgr)) PP_ASSERT_WITH_CODE(false, "Attempt to populate Fuzzy Fan Control parameters Failed!", return -EINVAL); /* DW15-DW18 */ if (fiji_populate_gnb_lpml(hwmgr)) PP_ASSERT_WITH_CODE(false, "Attempt to populate GnbLPML Failed!", return -EINVAL); /* DW20 */ if (fiji_populate_bapm_vddc_base_leakage_sidd(hwmgr)) PP_ASSERT_WITH_CODE(false, "Attempt to populate BapmVddCBaseLeakage Hi and Lo " "Sidd Failed!", return -EINVAL); if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset, (uint8_t *)&smu_data->power_tune_table, sizeof(struct SMU73_Discrete_PmFuses), SMC_RAM_END)) PP_ASSERT_WITH_CODE(false, "Attempt to download PmFuseTable Failed!", return -EINVAL); } return 0; } static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr, struct SMU73_Discrete_DpmTable *table) { uint32_t count; uint8_t index; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_voltage_lookup_table *lookup_table = table_info->vddc_lookup_table; /* tables is already swapped, so in order to use the value from it, * we need to swap it back. * We are populating vddc CAC data to BapmVddc table * in split and merged mode */ for (count = 0; count < lookup_table->count; count++) { index = phm_get_voltage_index(lookup_table, data->vddc_voltage_table.entries[count].value); table->BapmVddcVidLoSidd[count] = convert_to_vid(lookup_table->entries[index].us_cac_low); table->BapmVddcVidHiSidd[count] = convert_to_vid(lookup_table->entries[index].us_cac_high); } return 0; } static int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, struct SMU73_Discrete_DpmTable *table) { int result; result = fiji_populate_cac_table(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "can not populate CAC voltage tables to SMC", return -EINVAL); return 0; } static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr, struct SMU73_Discrete_Ulv *state) { int result = 0; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); state->CcPwrDynRm = 0; state->CcPwrDynRm1 = 0; state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset; state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset * VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1); state->VddcPhase = 1; if (!result) { CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm); CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1); CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset); } return result; } static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr, struct SMU73_Discrete_DpmTable *table) { return fiji_populate_ulv_level(hwmgr, &table->Ulv); } static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr, struct SMU73_Discrete_DpmTable *table) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct smu7_dpm_table *dpm_table = &data->dpm_table; struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); int i; /* Index (dpm_table->pcie_speed_table.count) * is reserved for PCIE boot level. */ for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { table->LinkLevel[i].PcieGenSpeed = (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width( dpm_table->pcie_speed_table.dpm_levels[i].param1); table->LinkLevel[i].EnabledForActivity = 1; table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff); table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5); table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30); } smu_data->smc_state_table.LinkLevelCount = (uint8_t)dpm_table->pcie_speed_table.count; data->dpm_level_enable_mask.pcie_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); return 0; } static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr, uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk) { const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct pp_atomctrl_clock_dividers_vi dividers; uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; uint32_t ref_clock; uint32_t ref_divider; uint32_t fbdiv; int result; /* get the engine clock dividers for this clock value */ result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock, ÷rs); PP_ASSERT_WITH_CODE(result == 0, "Error retrieving Engine Clock dividers from VBIOS.", return result); /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */ ref_clock = atomctrl_get_reference_clock(hwmgr); ref_divider = 1 + dividers.uc_pll_ref_div; /* low 14 bits is fraction and high 12 bits is divider */ fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF; /* SPLL_FUNC_CNTL setup */ spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div); spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, SPLL_PDIV_A, dividers.uc_pll_post_div); /* SPLL_FUNC_CNTL_3 setup*/ spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv); /* set to use fractional accumulation*/ spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EngineSpreadSpectrumSupport)) { struct pp_atomctrl_internal_ss_info ssInfo; uint32_t vco_freq = clock * dividers.uc_pll_post_div; if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr, vco_freq, &ssInfo)) { /* * ss_info.speed_spectrum_percentage -- in unit of 0.01% * ss_info.speed_spectrum_rate -- in unit of khz * * clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */ uint32_t clk_s = ref_clock * 5 / (ref_divider * ssInfo.speed_spectrum_rate); /* clkv = 2 * D * fbdiv / NS */ uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage * fbdiv / (clk_s * 10000); cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s); cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1); cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v); } } sclk->SclkFrequency = clock; sclk->CgSpllFuncCntl3 = spll_func_cntl_3; sclk->CgSpllFuncCntl4 = spll_func_cntl_4; sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum; sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2; sclk->SclkDid = (uint8_t)dividers.pll_post_divider; return 0; } static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr, uint32_t clock, struct SMU73_Discrete_GraphicsLevel *level) { int result; /* PP_Clocks minClocks; */ uint32_t threshold, mvdd; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL; result = fiji_calculate_sclk_params(hwmgr, clock, level); if (hwmgr->od_enabled) vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_sclk; else vdd_dep_table = table_info->vdd_dep_on_sclk; /* populate graphics levels */ result = fiji_get_dependency_volt_by_clk(hwmgr, vdd_dep_table, clock, (uint32_t *)(&level->MinVoltage), &mvdd); PP_ASSERT_WITH_CODE((0 == result), "can not find VDDC voltage value for " "VDDC engine clock dependency table", return result); level->SclkFrequency = clock; level->ActivityLevel = data->current_profile_setting.sclk_activity; level->CcPwrDynRm = 0; level->CcPwrDynRm1 = 0; level->EnabledForActivity = 0; level->EnabledForThrottle = 1; level->UpHyst = data->current_profile_setting.sclk_up_hyst; level->DownHyst = data->current_profile_setting.sclk_down_hyst; level->VoltageDownHyst = 0; level->PowerThrottle = 0; threshold = clock * data->fast_watermark_threshold / 100; data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) level->DeepSleepDivId = smu7_get_sleep_divider_id_from_clock(clock, hwmgr->display_config->min_core_set_clock_in_sr); /* Default to slow, highest DPM level will be * set to PPSMC_DISPLAY_WATERMARK_LOW later. */ level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage); CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency); CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel); CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3); CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4); CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum); CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2); CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm); CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1); return 0; } static int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); struct smu7_dpm_table *dpm_table = &data->dpm_table; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table; uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count; int result = 0; uint32_t array = smu_data->smu7_data.dpm_table_start + offsetof(SMU73_Discrete_DpmTable, GraphicsLevel); uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) * SMU73_MAX_LEVELS_GRAPHICS; struct SMU73_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel; uint32_t i, max_entry; uint8_t hightest_pcie_level_enabled = 0, lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0, count = 0; for (i = 0; i < dpm_table->sclk_table.count; i++) { result = fiji_populate_single_graphic_level(hwmgr, dpm_table->sclk_table.dpm_levels[i].value, &levels[i]); if (result) return result; /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */ if (i > 1) levels[i].DeepSleepDivId = 0; } /* Only enable level 0 for now.*/ levels[0].EnabledForActivity = 1; /* set highest level watermark to high */ levels[dpm_table->sclk_table.count - 1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH; smu_data->smc_state_table.GraphicsDpmLevelCount = (uint8_t)dpm_table->sclk_table.count; data->dpm_level_enable_mask.sclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); if (pcie_table != NULL) { PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt), "There must be 1 or more PCIE levels defined in PPTable.", return -EINVAL); max_entry = pcie_entry_cnt - 1; for (i = 0; i < dpm_table->sclk_table.count; i++) levels[i].pcieDpmLevel = (uint8_t) ((i < max_entry) ? i : max_entry); } else { while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & (1 << (hightest_pcie_level_enabled + 1))) != 0)) hightest_pcie_level_enabled++; while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & (1 << lowest_pcie_level_enabled)) == 0)) lowest_pcie_level_enabled++; while ((count < hightest_pcie_level_enabled) && ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & (1 << (lowest_pcie_level_enabled + 1 + count))) == 0)) count++; mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) < hightest_pcie_level_enabled ? (lowest_pcie_level_enabled + 1 + count) : hightest_pcie_level_enabled; /* set pcieDpmLevel to hightest_pcie_level_enabled */ for (i = 2; i < dpm_table->sclk_table.count; i++) levels[i].pcieDpmLevel = hightest_pcie_level_enabled; /* set pcieDpmLevel to lowest_pcie_level_enabled */ levels[0].pcieDpmLevel = lowest_pcie_level_enabled; /* set pcieDpmLevel to mid_pcie_level_enabled */ levels[1].pcieDpmLevel = mid_pcie_level_enabled; } /* level count will send to smc once at init smc table and never change */ result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels, (uint32_t)array_size, SMC_RAM_END); return result; } /** * MCLK Frequency Ratio * SEQ_CG_RESP Bit[31:24] - 0x0 * Bit[27:24] \96 DDR3 Frequency ratio * 0x0 <= 100MHz, 450 < 0x8 <= 500MHz * 100 < 0x1 <= 150MHz, 500 < 0x9 <= 550MHz * 150 < 0x2 <= 200MHz, 550 < 0xA <= 600MHz * 200 < 0x3 <= 250MHz, 600 < 0xB <= 650MHz * 250 < 0x4 <= 300MHz, 650 < 0xC <= 700MHz * 300 < 0x5 <= 350MHz, 700 < 0xD <= 750MHz * 350 < 0x6 <= 400MHz, 750 < 0xE <= 800MHz * 400 < 0x7 <= 450MHz, 800 < 0xF */ static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock) { if (mem_clock <= 10000) return 0x0; if (mem_clock <= 15000) return 0x1; if (mem_clock <= 20000) return 0x2; if (mem_clock <= 25000) return 0x3; if (mem_clock <= 30000) return 0x4; if (mem_clock <= 35000) return 0x5; if (mem_clock <= 40000) return 0x6; if (mem_clock <= 45000) return 0x7; if (mem_clock <= 50000) return 0x8; if (mem_clock <= 55000) return 0x9; if (mem_clock <= 60000) return 0xa; if (mem_clock <= 65000) return 0xb; if (mem_clock <= 70000) return 0xc; if (mem_clock <= 75000) return 0xd; if (mem_clock <= 80000) return 0xe; /* mem_clock > 800MHz */ return 0xf; } static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr, uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk) { struct pp_atomctrl_memory_clock_param mem_param; int result; result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param); PP_ASSERT_WITH_CODE((0 == result), "Failed to get Memory PLL Dividers.", ); /* Save the result data to outpupt memory level structure */ mclk->MclkFrequency = clock; mclk->MclkDivider = (uint8_t)mem_param.mpll_post_divider; mclk->FreqRange = fiji_get_mclk_frequency_ratio(clock); return result; } static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr, uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); int result = 0; uint32_t mclk_stutter_mode_threshold = 60000; phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL; if (hwmgr->od_enabled) vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_mclk; else vdd_dep_table = table_info->vdd_dep_on_mclk; if (vdd_dep_table) { result = fiji_get_dependency_volt_by_clk(hwmgr, vdd_dep_table, clock, (uint32_t *)(&mem_level->MinVoltage), &mem_level->MinMvdd); PP_ASSERT_WITH_CODE((0 == result), "can not find MinVddc voltage value from memory " "VDDC voltage dependency table", return result); } mem_level->EnabledForThrottle = 1; mem_level->EnabledForActivity = 0; mem_level->UpHyst = data->current_profile_setting.mclk_up_hyst; mem_level->DownHyst = data->current_profile_setting.mclk_down_hyst; mem_level->VoltageDownHyst = 0; mem_level->ActivityLevel = data->current_profile_setting.mclk_activity; mem_level->StutterEnable = false; mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; /* enable stutter mode if all the follow condition applied * PECI_GetNumberOfActiveDisplays(hwmgr->pPECI, * &(data->DisplayTiming.numExistingDisplays)); */ data->display_timing.num_existing_displays = hwmgr->display_config->num_display; data->display_timing.vrefresh = hwmgr->display_config->vrefresh; if (mclk_stutter_mode_threshold && (clock <= mclk_stutter_mode_threshold) && (!data->is_uvd_enabled) && (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, STUTTER_ENABLE) & 0x1)) mem_level->StutterEnable = true; result = fiji_calculate_mclk_params(hwmgr, clock, mem_level); if (!result) { CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd); CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency); CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel); CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage); } return result; } static int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); struct smu7_dpm_table *dpm_table = &data->dpm_table; int result; /* populate MCLK dpm table to SMU7 */ uint32_t array = smu_data->smu7_data.dpm_table_start + offsetof(SMU73_Discrete_DpmTable, MemoryLevel); uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) * SMU73_MAX_LEVELS_MEMORY; struct SMU73_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel; uint32_t i; for (i = 0; i < dpm_table->mclk_table.count; i++) { PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value), "can not populate memory level as memory clock is zero", return -EINVAL); result = fiji_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value, &levels[i]); if (result) return result; } /* Only enable level 0 for now. */ levels[0].EnabledForActivity = 1; /* in order to prevent MC activity from stutter mode to push DPM up. * the UVD change complements this by putting the MCLK in * a higher state by default such that we are not effected by * up threshold or and MCLK DPM latency. */ levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target; CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel); smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count; data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); /* set highest level watermark to high */ levels[dpm_table->mclk_table.count - 1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH; /* level count will send to smc once at init smc table and never change */ result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels, (uint32_t)array_size, SMC_RAM_END); return result; } static int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk, SMIO_Pattern *smio_pat) { const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); uint32_t i = 0; if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) { /* find mvdd value which clock is more than request */ for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) { if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) { smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value; break; } } PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count, "MVDD Voltage is outside the supported range.", return -EINVAL); } else return -EINVAL; return 0; } static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr, SMU73_Discrete_DpmTable *table) { int result = 0; const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct pp_atomctrl_clock_dividers_vi dividers; SMIO_Pattern vol_level; uint32_t mvdd; uint16_t us_mvdd; uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2; table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC; if (!data->sclk_dpm_key_disabled) { /* Get MinVoltage and Frequency from DPM0, * already converted to SMC_UL */ table->ACPILevel.SclkFrequency = data->dpm_table.sclk_table.dpm_levels[0].value; result = fiji_get_dependency_volt_by_clk(hwmgr, table_info->vdd_dep_on_sclk, table->ACPILevel.SclkFrequency, (uint32_t *)(&table->ACPILevel.MinVoltage), &mvdd); PP_ASSERT_WITH_CODE((0 == result), "Cannot find ACPI VDDC voltage value " \ "in Clock Dependency Table", ); } else { table->ACPILevel.SclkFrequency = data->vbios_boot_state.sclk_bootup_value; table->ACPILevel.MinVoltage = data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE; } /* get the engine clock dividers for this clock value */ result = atomctrl_get_engine_pll_dividers_vi(hwmgr, table->ACPILevel.SclkFrequency, ÷rs); PP_ASSERT_WITH_CODE(result == 0, "Error retrieving Engine Clock dividers from VBIOS.", return result); table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider; table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; table->ACPILevel.DeepSleepDivId = 0; spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, SPLL_PWRON, 0); spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, SPLL_RESET, 1); spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL, 4); table->ACPILevel.CgSpllFuncCntl = spll_func_cntl; table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2; table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; table->ACPILevel.CcPwrDynRm = 0; table->ACPILevel.CcPwrDynRm1 = 0; CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1); if (!data->mclk_dpm_key_disabled) { /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */ table->MemoryACPILevel.MclkFrequency = data->dpm_table.mclk_table.dpm_levels[0].value; result = fiji_get_dependency_volt_by_clk(hwmgr, table_info->vdd_dep_on_mclk, table->MemoryACPILevel.MclkFrequency, (uint32_t *)(&table->MemoryACPILevel.MinVoltage), &mvdd); PP_ASSERT_WITH_CODE((0 == result), "Cannot find ACPI VDDCI voltage value in Clock Dependency Table", ); } else { table->MemoryACPILevel.MclkFrequency = data->vbios_boot_state.mclk_bootup_value; table->MemoryACPILevel.MinVoltage = data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE; } us_mvdd = 0; if ((SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) || (data->mclk_dpm_key_disabled)) us_mvdd = data->vbios_boot_state.mvdd_bootup_value; else { if (!fiji_populate_mvdd_value(hwmgr, data->dpm_table.mclk_table.dpm_levels[0].value, &vol_level)) us_mvdd = vol_level.Voltage; } table->MemoryACPILevel.MinMvdd = PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE); table->MemoryACPILevel.EnabledForThrottle = 0; table->MemoryACPILevel.EnabledForActivity = 0; table->MemoryACPILevel.UpHyst = 0; table->MemoryACPILevel.DownHyst = 100; table->MemoryACPILevel.VoltageDownHyst = 0; table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity); table->MemoryACPILevel.StutterEnable = false; CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency); CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage); return result; } static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr, SMU73_Discrete_DpmTable *table) { int result = -EINVAL; uint8_t count; struct pp_atomctrl_clock_dividers_vi dividers; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = table_info->mm_dep_table; table->VceLevelCount = (uint8_t)(mm_table->count); table->VceBootLevel = 0; for (count = 0; count < table->VceLevelCount; count++) { table->VceLevel[count].Frequency = mm_table->entries[count].eclk; table->VceLevel[count].MinVoltage = 0; table->VceLevel[count].MinVoltage |= (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; table->VceLevel[count].MinVoltage |= ((mm_table->entries[count].vddc - VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT; table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT; /*retrieve divider value for VBIOS */ result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, table->VceLevel[count].Frequency, ÷rs); PP_ASSERT_WITH_CODE((0 == result), "can not find divide id for VCE engine clock", return result); table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider; CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency); CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage); } return result; } static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr, SMU73_Discrete_DpmTable *table) { int result = -EINVAL; uint8_t count; struct pp_atomctrl_clock_dividers_vi dividers; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = table_info->mm_dep_table; table->AcpLevelCount = (uint8_t)(mm_table->count); table->AcpBootLevel = 0; for (count = 0; count < table->AcpLevelCount; count++) { table->AcpLevel[count].Frequency = mm_table->entries[count].aclk; table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc - VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT; table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT; /* retrieve divider value for VBIOS */ result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, table->AcpLevel[count].Frequency, ÷rs); PP_ASSERT_WITH_CODE((0 == result), "can not find divide id for engine clock", return result); table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider; CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency); CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage); } return result; } static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr, int32_t eng_clock, int32_t mem_clock, struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs) { uint32_t dram_timing; uint32_t dram_timing2; uint32_t burstTime; ULONG state, trrds, trrdl; int result; result = atomctrl_set_engine_dram_timings_rv770(hwmgr, eng_clock, mem_clock); PP_ASSERT_WITH_CODE(result == 0, "Error calling VBIOS to set DRAM_TIMING.", return result); dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME); state = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, STATE0); trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0); trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0); arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing); arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2); arb_regs->McArbBurstTime = (uint8_t)burstTime; arb_regs->TRRDS = (uint8_t)trrds; arb_regs->TRRDL = (uint8_t)trrdl; return 0; } static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); struct SMU73_Discrete_MCArbDramTimingTable arb_regs; uint32_t i, j; int result = 0; for (i = 0; i < data->dpm_table.sclk_table.count; i++) { for (j = 0; j < data->dpm_table.mclk_table.count; j++) { result = fiji_populate_memory_timing_parameters(hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value, data->dpm_table.mclk_table.dpm_levels[j].value, &arb_regs.entries[i][j]); if (result) break; } } if (!result) result = smu7_copy_bytes_to_smc( hwmgr, smu_data->smu7_data.arb_table_start, (uint8_t *)&arb_regs, sizeof(SMU73_Discrete_MCArbDramTimingTable), SMC_RAM_END); return result; } static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr, struct SMU73_Discrete_DpmTable *table) { int result = -EINVAL; uint8_t count; struct pp_atomctrl_clock_dividers_vi dividers; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = table_info->mm_dep_table; table->UvdLevelCount = (uint8_t)(mm_table->count); table->UvdBootLevel = 0; for (count = 0; count < table->UvdLevelCount; count++) { table->UvdLevel[count].MinVoltage = 0; table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk; table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk; table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc - VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT; table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT; /* retrieve divider value for VBIOS */ result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, table->UvdLevel[count].VclkFrequency, ÷rs); PP_ASSERT_WITH_CODE((0 == result), "can not find divide id for Vclk clock", return result); table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider; result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, table->UvdLevel[count].DclkFrequency, ÷rs); PP_ASSERT_WITH_CODE((0 == result), "can not find divide id for Dclk clock", return result); table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider; CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency); CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency); CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage); } return result; } static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr, struct SMU73_Discrete_DpmTable *table) { int result = 0; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); table->GraphicsBootLevel = 0; table->MemoryBootLevel = 0; /* find boot level from dpm table */ result = phm_find_boot_level(&(data->dpm_table.sclk_table), data->vbios_boot_state.sclk_bootup_value, (uint32_t *)&(table->GraphicsBootLevel)); result = phm_find_boot_level(&(data->dpm_table.mclk_table), data->vbios_boot_state.mclk_bootup_value, (uint32_t *)&(table->MemoryBootLevel)); table->BootVddc = data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE; table->BootVddci = data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE; table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE; CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc); CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci); CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd); return 0; } static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); uint8_t count, level; count = (uint8_t)(table_info->vdd_dep_on_sclk->count); for (level = 0; level < count; level++) { if (table_info->vdd_dep_on_sclk->entries[level].clk >= data->vbios_boot_state.sclk_bootup_value) { smu_data->smc_state_table.GraphicsBootLevel = level; break; } } count = (uint8_t)(table_info->vdd_dep_on_mclk->count); for (level = 0; level < count; level++) { if (table_info->vdd_dep_on_mclk->entries[level].clk >= data->vbios_boot_state.mclk_bootup_value) { smu_data->smc_state_table.MemoryBootLevel = level; break; } } return 0; } static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr) { uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks, volt_with_cks, value; uint16_t clock_freq_u16; struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2, volt_offset = 0; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = table_info->vdd_dep_on_sclk; stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount; /* Read SMU_Eefuse to read and calculate RO and determine * if the part is SS or FF. if RO >= 1660MHz, part is FF. */ efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMU_EFUSE_0 + (146 * 4)); efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMU_EFUSE_0 + (148 * 4)); efuse &= 0xFF000000; efuse = efuse >> 24; efuse2 &= 0xF; if (efuse2 == 1) ro = (2300 - 1350) * efuse / 255 + 1350; else ro = (2500 - 1000) * efuse / 255 + 1000; if (ro >= 1660) type = 0; else type = 1; /* Populate Stretch amount */ smu_data->smc_state_table.ClockStretcherAmount = stretch_amount; /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */ for (i = 0; i < sclk_table->count; i++) { smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |= sclk_table->entries[i].cks_enable << i; volt_without_cks = (uint32_t)((14041 * (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 / (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000))); volt_with_cks = (uint32_t)((13946 * (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 / (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000))); if (volt_without_cks >= volt_with_cks) volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks + sclk_table->entries[i].cks_voffset) * 100 / 625) + 1); smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset; } PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, STRETCH_ENABLE, 0x0); PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, masterReset, 0x1); PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, staticEnable, 0x1); PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, masterReset, 0x0); /* Populate CKS Lookup Table */ if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5) stretch_amount2 = 0; else if (stretch_amount == 3 || stretch_amount == 4) stretch_amount2 = 1; else { phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ClockStretcher); PP_ASSERT_WITH_CODE(false, "Stretch Amount in PPTable not supported", return -EINVAL); } value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL); value &= 0xFFC2FF87; smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq = fiji_clock_stretcher_lookup_table[stretch_amount2][0]; smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq = fiji_clock_stretcher_lookup_table[stretch_amount2][1]; clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table. GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. SclkFrequency) / 100); if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] < clock_freq_u16 && fiji_clock_stretcher_lookup_table[stretch_amount2][1] > clock_freq_u16) { /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */ value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16; /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */ value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18; /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */ value |= (fiji_clock_stretch_amount_conversion [fiji_clock_stretcher_lookup_table[stretch_amount2][3]] [stretch_amount]) << 3; } CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry[0].minFreq); CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry[0].maxFreq); smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting = fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F; smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7; cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value); /* Populate DDT Lookup Table */ for (i = 0; i < 4; i++) { /* Assign the minimum and maximum VID stored * in the last row of Clock Stretcher Voltage Table. */ smu_data->smc_state_table.ClockStretcherDataTable. ClockStretcherDataTableEntry[i].minVID = (uint8_t) fiji_clock_stretcher_ddt_table[type][i][2]; smu_data->smc_state_table.ClockStretcherDataTable. ClockStretcherDataTableEntry[i].maxVID = (uint8_t) fiji_clock_stretcher_ddt_table[type][i][3]; /* Loop through each SCLK and check the frequency * to see if it lies within the frequency for clock stretcher. */ for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) { cks_setting = 0; clock_freq = PP_SMC_TO_HOST_UL( smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency); /* Check the allowed frequency against the sclk level[j]. * Sclk's endianness has already been converted, * and it's in 10Khz unit, * as opposed to Data table, which is in Mhz unit. */ if (clock_freq >= (fiji_clock_stretcher_ddt_table[type][i][0]) * 100) { cks_setting |= 0x2; if (clock_freq < (fiji_clock_stretcher_ddt_table[type][i][1]) * 100) cks_setting |= 0x1; } smu_data->smc_state_table.ClockStretcherDataTable. ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2); } CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table. ClockStretcherDataTable. ClockStretcherDataTableEntry[i].setting); } value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL); value &= 0xFFFFFFFE; cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value); return 0; } static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr, struct SMU73_Discrete_DpmTable *table) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); uint16_t config; config = VR_MERGED_WITH_VDDC; table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT); /* Set Vddc Voltage Controller */ if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { config = VR_SVI2_PLANE_1; table->VRConfig |= config; } else { PP_ASSERT_WITH_CODE(false, "VDDC should be on SVI2 control in merged mode!", ); } /* Set Vddci Voltage Controller */ if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { config = VR_SVI2_PLANE_2; /* only in merged mode */ table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { config = VR_SMIO_PATTERN_1; table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); } else { config = VR_STATIC_VOLTAGE; table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); } /* Set Mvdd Voltage Controller */ if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) { config = VR_SVI2_PLANE_2; table->VRConfig |= (config << VRCONF_MVDD_SHIFT); } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { config = VR_SMIO_PATTERN_2; table->VRConfig |= (config << VRCONF_MVDD_SHIFT); } else { config = VR_STATIC_VOLTAGE; table->VRConfig |= (config << VRCONF_MVDD_SHIFT); } return 0; } static int fiji_init_arb_table_index(struct pp_hwmgr *hwmgr) { struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); uint32_t tmp; int result; /* This is a read-modify-write on the first byte of the ARB table. * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure * is the field 'current'. * This solution is ugly, but we never write the whole table only * individual fields in it. * In reality this field should not be in that structure * but in a soft register. */ result = smu7_read_smc_sram_dword(hwmgr, smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END); if (result) return result; tmp &= 0x00FFFFFF; tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24; return smu7_write_smc_sram_dword(hwmgr, smu_data->smu7_data.arb_table_start, tmp, SMC_RAM_END); } static int fiji_setup_dpm_led_config(struct pp_hwmgr *hwmgr) { pp_atomctrl_voltage_table param_led_dpm; int result = 0; u32 mask = 0; result = atomctrl_get_voltage_table_v3(hwmgr, VOLTAGE_TYPE_LEDDPM, VOLTAGE_OBJ_GPIO_LUT, ¶m_led_dpm); if (result == 0) { int i, j; u32 tmp = param_led_dpm.mask_low; for (i = 0, j = 0; i < 32; i++) { if (tmp & 1) { mask |= (i << (8 * j)); if (++j >= 3) break; } tmp >>= 1; } } if (mask) smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_LedConfig, mask); return 0; } static int fiji_init_smc_table(struct pp_hwmgr *hwmgr) { int result; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct SMU73_Discrete_DpmTable *table = &(smu_data->smc_state_table); uint8_t i; struct pp_atomctrl_gpio_pin_assignment gpio_pin; fiji_initialize_power_tune_defaults(hwmgr); if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control) fiji_populate_smc_voltage_tables(hwmgr, table); table->SystemFlags = 0; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_AutomaticDCTransition)) table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StepVddc)) table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC; if (data->is_memory_gddr5) table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5; if (data->ulv_supported && table_info->us_ulv_voltage_offset) { result = fiji_populate_ulv_state(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize ULV state!", return result); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_ULV_PARAMETER, 0x40035); } result = fiji_populate_smc_link_level(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Link Level!", return result); result = fiji_populate_all_graphic_levels(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Graphics Level!", return result); result = fiji_populate_all_memory_levels(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Memory Level!", return result); result = fiji_populate_smc_acpi_level(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize ACPI Level!", return result); result = fiji_populate_smc_vce_level(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize VCE Level!", return result); result = fiji_populate_smc_acp_level(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize ACP Level!", return result); /* Since only the initial state is completely set up at this point * (the other states are just copies of the boot state) we only * need to populate the ARB settings for the initial state. */ result = fiji_program_memory_timing_parameters(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to Write ARB settings for the initial state.", return result); result = fiji_populate_smc_uvd_level(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize UVD Level!", return result); result = fiji_populate_smc_boot_level(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot Level!", return result); result = fiji_populate_smc_initailial_state(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result); result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ClockStretcher)) { result = fiji_populate_clock_stretcher_data_table(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to populate Clock Stretcher Data Table!", return result); } table->GraphicsVoltageChangeEnable = 1; table->GraphicsThermThrottleEnable = 1; table->GraphicsInterval = 1; table->VoltageInterval = 1; table->ThermalInterval = 1; table->TemperatureLimitHigh = table_info->cac_dtp_table->usTargetOperatingTemp * SMU7_Q88_FORMAT_CONVERSION_UNIT; table->TemperatureLimitLow = (table_info->cac_dtp_table->usTargetOperatingTemp - 1) * SMU7_Q88_FORMAT_CONVERSION_UNIT; table->MemoryVoltageChangeEnable = 1; table->MemoryInterval = 1; table->VoltageResponseTime = 0; table->PhaseResponseTime = 0; table->MemoryThermThrottleEnable = 1; table->PCIeBootLinkLevel = 0; /* 0:Gen1 1:Gen2 2:Gen3*/ table->PCIeGenInterval = 1; table->VRConfig = 0; result = fiji_populate_vr_config(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to populate VRConfig setting!", return result); data->vr_config = table->VRConfig; table->ThermGpio = 17; table->SclkStepSize = 0x4000; if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) { table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_RegulatorHot); } else { table->VRHotGpio = SMU7_UNUSED_GPIO_PIN; phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_RegulatorHot); } if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID, &gpio_pin)) { table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_AutomaticDCTransition); } else { table->AcDcGpio = SMU7_UNUSED_GPIO_PIN; phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_AutomaticDCTransition); } /* Thermal Output GPIO */ if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin)) { phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ThermalOutGPIO); table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift; /* For porlarity read GPIOPAD_A with assigned Gpio pin * since VBIOS will program this register to set 'inactive state', * driver can then determine 'active state' from this and * program SMU with correct polarity */ table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) & (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0; table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY; /* if required, combine VRHot/PCC with thermal out GPIO */ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_RegulatorHot) && phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_CombinePCCWithThermalSignal)) table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT; } else { phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ThermalOutGPIO); table->ThermOutGpio = 17; table->ThermOutPolarity = 1; table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE; } for (i = 0; i < SMU73_MAX_ENTRIES_SMIO; i++) table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]); CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags); CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig); CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1); CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2); CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize); CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh); CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow); CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime); CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime); /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ result = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.dpm_table_start + offsetof(SMU73_Discrete_DpmTable, SystemFlags), (uint8_t *)&(table->SystemFlags), sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController), SMC_RAM_END); PP_ASSERT_WITH_CODE(0 == result, "Failed to upload dpm data to SMC memory!", return result); result = fiji_init_arb_table_index(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to upload arb data to SMC memory!", return result); result = fiji_populate_pm_fuses(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to populate PM fuses to SMC memory!", return result); result = fiji_setup_dpm_led_config(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to setup dpm led config", return result); return 0; } static int fiji_thermal_setup_fan_table(struct pp_hwmgr *hwmgr) { struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); SMU73_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE }; uint32_t duty100; uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2; uint16_t fdo_min, slope1, slope2; uint32_t reference_clock; int res; uint64_t tmp64; if (hwmgr->thermal_controller.fanInfo.bNoFan) { phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); return 0; } if (smu_data->smu7_data.fan_table_start == 0) { phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); return 0; } duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100); if (duty100 == 0) { phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); return 0; } tmp64 = hwmgr->thermal_controller.advanceFanControlParameters. usPWMMin * duty100; do_div(tmp64, 10000); fdo_min = (uint16_t)tmp64; t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin; t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed; pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin; pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed; slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100); slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100); fan_table.TempMin = cpu_to_be16((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMin) / 100); fan_table.TempMed = cpu_to_be16((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMed) / 100); fan_table.TempMax = cpu_to_be16((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMax) / 100); fan_table.Slope1 = cpu_to_be16(slope1); fan_table.Slope2 = cpu_to_be16(slope2); fan_table.FdoMin = cpu_to_be16(fdo_min); fan_table.HystDown = cpu_to_be16(hwmgr-> thermal_controller.advanceFanControlParameters.ucTHyst); fan_table.HystUp = cpu_to_be16(1); fan_table.HystSlope = cpu_to_be16(1); fan_table.TempRespLim = cpu_to_be16(5); reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev); fan_table.RefreshPeriod = cpu_to_be32((hwmgr-> thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600); fan_table.FdoMax = cpu_to_be16((uint16_t)duty100); fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD( hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL); res = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END); if (!res && hwmgr->thermal_controller. advanceFanControlParameters.ucMinimumPWMLimit) res = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetFanMinPwm, hwmgr->thermal_controller. advanceFanControlParameters.ucMinimumPWMLimit); if (!res && hwmgr->thermal_controller. advanceFanControlParameters.ulMinFanSCLKAcousticLimit) res = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetFanSclkTarget, hwmgr->thermal_controller. advanceFanControlParameters.ulMinFanSCLKAcousticLimit); if (res) phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); return 0; } static int fiji_thermal_avfs_enable(struct pp_hwmgr *hwmgr) { if (!hwmgr->avfs_supported) return 0; smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs); return 0; } static int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK)) return fiji_program_memory_timing_parameters(hwmgr); return 0; } static int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); int result = 0; uint32_t low_sclk_interrupt_threshold = 0; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkThrottleLowNotification) && (data->low_sclk_interrupt_threshold != 0)) { low_sclk_interrupt_threshold = data->low_sclk_interrupt_threshold; CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold); result = smu7_copy_bytes_to_smc( hwmgr, smu_data->smu7_data.dpm_table_start + offsetof(SMU73_Discrete_DpmTable, LowSclkInterruptThreshold), (uint8_t *)&low_sclk_interrupt_threshold, sizeof(uint32_t), SMC_RAM_END); } result = fiji_program_mem_timing_parameters(hwmgr); PP_ASSERT_WITH_CODE((result == 0), "Failed to program memory timing parameters!", ); return result; } static uint32_t fiji_get_offsetof(uint32_t type, uint32_t member) { switch (type) { case SMU_SoftRegisters: switch (member) { case HandshakeDisables: return offsetof(SMU73_SoftRegisters, HandshakeDisables); case VoltageChangeTimeout: return offsetof(SMU73_SoftRegisters, VoltageChangeTimeout); case AverageGraphicsActivity: return offsetof(SMU73_SoftRegisters, AverageGraphicsActivity); case AverageMemoryActivity: return offsetof(SMU73_SoftRegisters, AverageMemoryActivity); case PreVBlankGap: return offsetof(SMU73_SoftRegisters, PreVBlankGap); case VBlankTimeout: return offsetof(SMU73_SoftRegisters, VBlankTimeout); case UcodeLoadStatus: return offsetof(SMU73_SoftRegisters, UcodeLoadStatus); case DRAM_LOG_ADDR_H: return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_H); case DRAM_LOG_ADDR_L: return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_L); case DRAM_LOG_PHY_ADDR_H: return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_H); case DRAM_LOG_PHY_ADDR_L: return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_L); case DRAM_LOG_BUFF_SIZE: return offsetof(SMU73_SoftRegisters, DRAM_LOG_BUFF_SIZE); } break; case SMU_Discrete_DpmTable: switch (member) { case UvdBootLevel: return offsetof(SMU73_Discrete_DpmTable, UvdBootLevel); case VceBootLevel: return offsetof(SMU73_Discrete_DpmTable, VceBootLevel); case LowSclkInterruptThreshold: return offsetof(SMU73_Discrete_DpmTable, LowSclkInterruptThreshold); } break; } pr_warn("can't get the offset of type %x member %x\n", type, member); return 0; } static uint32_t fiji_get_mac_definition(uint32_t value) { switch (value) { case SMU_MAX_LEVELS_GRAPHICS: return SMU73_MAX_LEVELS_GRAPHICS; case SMU_MAX_LEVELS_MEMORY: return SMU73_MAX_LEVELS_MEMORY; case SMU_MAX_LEVELS_LINK: return SMU73_MAX_LEVELS_LINK; case SMU_MAX_ENTRIES_SMIO: return SMU73_MAX_ENTRIES_SMIO; case SMU_MAX_LEVELS_VDDC: return SMU73_MAX_LEVELS_VDDC; case SMU_MAX_LEVELS_VDDGFX: return SMU73_MAX_LEVELS_VDDGFX; case SMU_MAX_LEVELS_VDDCI: return SMU73_MAX_LEVELS_VDDCI; case SMU_MAX_LEVELS_MVDD: return SMU73_MAX_LEVELS_MVDD; } pr_warn("can't get the mac of %x\n", value); return 0; } static int fiji_update_uvd_smc_table(struct pp_hwmgr *hwmgr) { struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); uint32_t mm_boot_level_offset, mm_boot_level_value; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); smu_data->smc_state_table.UvdBootLevel = 0; if (table_info->mm_dep_table->count > 0) smu_data->smc_state_table.UvdBootLevel = (uint8_t) (table_info->mm_dep_table->count - 1); mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU73_Discrete_DpmTable, UvdBootLevel); mm_boot_level_offset /= 4; mm_boot_level_offset *= 4; mm_boot_level_value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset); mm_boot_level_value &= 0x00FFFFFF; mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24; cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDDPM) || phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_UVDDPM_SetEnabledMask, (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel)); return 0; } static int fiji_update_vce_smc_table(struct pp_hwmgr *hwmgr) { struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); uint32_t mm_boot_level_offset, mm_boot_level_value; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) smu_data->smc_state_table.VceBootLevel = (uint8_t) (table_info->mm_dep_table->count - 1); else smu_data->smc_state_table.VceBootLevel = 0; mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU73_Discrete_DpmTable, VceBootLevel); mm_boot_level_offset /= 4; mm_boot_level_offset *= 4; mm_boot_level_value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset); mm_boot_level_value &= 0xFF00FFFF; mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16; cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_VCEDPM_SetEnabledMask, (uint32_t)1 << smu_data->smc_state_table.VceBootLevel); return 0; } static int fiji_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type) { switch (type) { case SMU_UVD_TABLE: fiji_update_uvd_smc_table(hwmgr); break; case SMU_VCE_TABLE: fiji_update_vce_smc_table(hwmgr); break; default: break; } return 0; } static int fiji_process_firmware_header(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); uint32_t tmp; int result; bool error = false; result = smu7_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU73_Firmware_Header, DpmTable), &tmp, SMC_RAM_END); if (0 == result) smu_data->smu7_data.dpm_table_start = tmp; error |= (0 != result); result = smu7_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU73_Firmware_Header, SoftRegisters), &tmp, SMC_RAM_END); if (!result) { data->soft_regs_start = tmp; smu_data->smu7_data.soft_regs_start = tmp; } error |= (0 != result); result = smu7_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU73_Firmware_Header, mcRegisterTable), &tmp, SMC_RAM_END); if (!result) smu_data->smu7_data.mc_reg_table_start = tmp; result = smu7_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU73_Firmware_Header, FanTable), &tmp, SMC_RAM_END); if (!result) smu_data->smu7_data.fan_table_start = tmp; error |= (0 != result); result = smu7_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU73_Firmware_Header, mcArbDramTimingTable), &tmp, SMC_RAM_END); if (!result) smu_data->smu7_data.arb_table_start = tmp; error |= (0 != result); result = smu7_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU73_Firmware_Header, Version), &tmp, SMC_RAM_END); if (!result) hwmgr->microcode_version_info.SMC = tmp; error |= (0 != result); return error ? -1 : 0; } static int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr) { /* Program additional LP registers * that are no longer programmed by VBIOS */ cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING)); cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING)); cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2)); cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1)); cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0)); cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1)); cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING)); return 0; } static bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr) { return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON)) ? true : false; } static int fiji_update_dpm_settings(struct pp_hwmgr *hwmgr, void *profile_setting) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct fiji_smumgr *smu_data = (struct fiji_smumgr *) (hwmgr->smu_backend); struct profile_mode_setting *setting; struct SMU73_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel; uint32_t array = smu_data->smu7_data.dpm_table_start + offsetof(SMU73_Discrete_DpmTable, GraphicsLevel); uint32_t mclk_array = smu_data->smu7_data.dpm_table_start + offsetof(SMU73_Discrete_DpmTable, MemoryLevel); struct SMU73_Discrete_MemoryLevel *mclk_levels = smu_data->smc_state_table.MemoryLevel; uint32_t i; uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp; if (profile_setting == NULL) return -EINVAL; setting = (struct profile_mode_setting *)profile_setting; if (setting->bupdate_sclk) { if (!data->sclk_dpm_key_disabled) smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel); for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) { if (levels[i].ActivityLevel != cpu_to_be16(setting->sclk_activity)) { levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity); clk_activity_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i) + offsetof(SMU73_Discrete_GraphicsLevel, ActivityLevel); offset = clk_activity_offset & ~0x3; tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset)); tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t)); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp)); } if (levels[i].UpHyst != setting->sclk_up_hyst || levels[i].DownHyst != setting->sclk_down_hyst) { levels[i].UpHyst = setting->sclk_up_hyst; levels[i].DownHyst = setting->sclk_down_hyst; up_hyst_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i) + offsetof(SMU73_Discrete_GraphicsLevel, UpHyst); down_hyst_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i) + offsetof(SMU73_Discrete_GraphicsLevel, DownHyst); offset = up_hyst_offset & ~0x3; tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset)); tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpHyst, sizeof(uint8_t)); tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownHyst, sizeof(uint8_t)); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp)); } } if (!data->sclk_dpm_key_disabled) smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel); } if (setting->bupdate_mclk) { if (!data->mclk_dpm_key_disabled) smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel); for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) { if (mclk_levels[i].ActivityLevel != cpu_to_be16(setting->mclk_activity)) { mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity); clk_activity_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i) + offsetof(SMU73_Discrete_MemoryLevel, ActivityLevel); offset = clk_activity_offset & ~0x3; tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset)); tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t)); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp)); } if (mclk_levels[i].UpHyst != setting->mclk_up_hyst || mclk_levels[i].DownHyst != setting->mclk_down_hyst) { mclk_levels[i].UpHyst = setting->mclk_up_hyst; mclk_levels[i].DownHyst = setting->mclk_down_hyst; up_hyst_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i) + offsetof(SMU73_Discrete_MemoryLevel, UpHyst); down_hyst_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i) + offsetof(SMU73_Discrete_MemoryLevel, DownHyst); offset = up_hyst_offset & ~0x3; tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset)); tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpHyst, sizeof(uint8_t)); tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownHyst, sizeof(uint8_t)); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp)); } } if (!data->mclk_dpm_key_disabled) smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel); } return 0; } const struct pp_smumgr_func fiji_smu_funcs = { .name = "fiji_smu", .smu_init = &fiji_smu_init, .smu_fini = &smu7_smu_fini, .start_smu = &fiji_start_smu, .check_fw_load_finish = &smu7_check_fw_load_finish, .request_smu_load_fw = &smu7_reload_firmware, .request_smu_load_specific_fw = NULL, .send_msg_to_smc = &smu7_send_msg_to_smc, .send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter, .download_pptable_settings = NULL, .upload_pptable_settings = NULL, .update_smc_table = fiji_update_smc_table, .get_offsetof = fiji_get_offsetof, .process_firmware_header = fiji_process_firmware_header, .init_smc_table = fiji_init_smc_table, .update_sclk_threshold = fiji_update_sclk_threshold, .thermal_setup_fan_table = fiji_thermal_setup_fan_table, .thermal_avfs_enable = fiji_thermal_avfs_enable, .populate_all_graphic_levels = fiji_populate_all_graphic_levels, .populate_all_memory_levels = fiji_populate_all_memory_levels, .get_mac_definition = fiji_get_mac_definition, .initialize_mc_reg_table = fiji_initialize_mc_reg_table, .is_dpm_running = fiji_is_dpm_running, .is_hw_avfs_present = fiji_is_hw_avfs_present, .update_dpm_settings = fiji_update_dpm_settings, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1