Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Rex Zhu | 14493 | 95.73% | 28 | 60.87% |
Alex Deucher | 518 | 3.42% | 5 | 10.87% |
yanyang1 | 43 | 0.28% | 1 | 2.17% |
Flora Cui | 29 | 0.19% | 1 | 2.17% |
Evan Quan | 23 | 0.15% | 2 | 4.35% |
Kenneth Feng | 14 | 0.09% | 1 | 2.17% |
Prike Liang | 5 | 0.03% | 1 | 2.17% |
Huang Rui | 5 | 0.03% | 2 | 4.35% |
Sam Ravnborg | 3 | 0.02% | 1 | 2.17% |
Eric Huang | 2 | 0.01% | 1 | 2.17% |
Baoyou Xie | 2 | 0.01% | 1 | 2.17% |
Nils Wallménius | 2 | 0.01% | 1 | 2.17% |
Julia Lawall | 1 | 0.01% | 1 | 2.17% |
Total | 15140 | 46 |
/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include <linux/pci.h> #include "pp_debug.h" #include "smumgr.h" #include "smu74.h" #include "smu_ucode_xfer_vi.h" #include "polaris10_smumgr.h" #include "smu74_discrete.h" #include "smu/smu_7_1_3_d.h" #include "smu/smu_7_1_3_sh_mask.h" #include "gmc/gmc_8_1_d.h" #include "gmc/gmc_8_1_sh_mask.h" #include "oss/oss_3_0_d.h" #include "gca/gfx_8_0_d.h" #include "bif/bif_5_0_d.h" #include "bif/bif_5_0_sh_mask.h" #include "ppatomctrl.h" #include "cgs_common.h" #include "smu7_ppsmc.h" #include "smu7_smumgr.h" #include "smu7_dyn_defaults.h" #include "smu7_hwmgr.h" #include "hardwaremanager.h" #include "atombios.h" #include "pppcielanes.h" #include "dce/dce_10_0_d.h" #include "dce/dce_10_0_sh_mask.h" #define POLARIS10_SMC_SIZE 0x20000 #define POWERTUNE_DEFAULT_SET_MAX 1 #define VDDC_VDDCI_DELTA 200 #define MC_CG_ARB_FREQ_F1 0x0b static const struct polaris10_pt_defaults polaris10_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = { /* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt, * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT */ { 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000, { 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61}, { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 } }, }; static const sclkFcwRange_t Range_Table[NUM_SCLK_RANGE] = { {VCO_2_4, POSTDIV_DIV_BY_16, 75, 160, 112}, {VCO_3_6, POSTDIV_DIV_BY_16, 112, 224, 160}, {VCO_2_4, POSTDIV_DIV_BY_8, 75, 160, 112}, {VCO_3_6, POSTDIV_DIV_BY_8, 112, 224, 160}, {VCO_2_4, POSTDIV_DIV_BY_4, 75, 160, 112}, {VCO_3_6, POSTDIV_DIV_BY_4, 112, 216, 160}, {VCO_2_4, POSTDIV_DIV_BY_2, 75, 160, 108}, {VCO_3_6, POSTDIV_DIV_BY_2, 112, 216, 160} }; #define PPPOLARIS10_TARGETACTIVITY_DFLT 50 static const SMU74_Discrete_GraphicsLevel avfs_graphics_level_polaris10[8] = { /* Min pcie DeepSleep Activity CgSpll CgSpll CcPwr CcPwr Sclk Enabled Enabled Voltage Power */ /* Voltage, DpmLevel, DivId, Level, FuncCntl3, FuncCntl4, DynRm, DynRm1 Did, Padding,ForActivity, ForThrottle, UpHyst, DownHyst, DownHyst, Throttle */ { 0x100ea446, 0x00, 0x03, 0x3200, 0, 0, 0, 0, 0, 0, 0x01, 0x01, 0x0a, 0x00, 0x00, 0x00, { 0x30750000, 0x3000, 0, 0x2600, 0, 0, 0x0004, 0x8f02, 0xffff, 0x2f00, 0x300e, 0x2700 } }, { 0x400ea446, 0x01, 0x04, 0x3200, 0, 0, 0, 0, 0, 0, 0x01, 0x01, 0x0a, 0x00, 0x00, 0x00, { 0x409c0000, 0x2000, 0, 0x1e00, 1, 1, 0x0004, 0x8300, 0xffff, 0x1f00, 0xcb5e, 0x1a00 } }, { 0x740ea446, 0x01, 0x00, 0x3200, 0, 0, 0, 0, 0, 0, 0x01, 0x01, 0x0a, 0x00, 0x00, 0x00, { 0x50c30000, 0x2800, 0, 0x2000, 1, 1, 0x0004, 0x0c02, 0xffff, 0x2700, 0x6433, 0x2100 } }, { 0xa40ea446, 0x01, 0x00, 0x3200, 0, 0, 0, 0, 0, 0, 0x01, 0x01, 0x0a, 0x00, 0x00, 0x00, { 0x60ea0000, 0x3000, 0, 0x2600, 1, 1, 0x0004, 0x8f02, 0xffff, 0x2f00, 0x300e, 0x2700 } }, { 0xd80ea446, 0x01, 0x00, 0x3200, 0, 0, 0, 0, 0, 0, 0x01, 0x01, 0x0a, 0x00, 0x00, 0x00, { 0x70110100, 0x3800, 0, 0x2c00, 1, 1, 0x0004, 0x1203, 0xffff, 0x3600, 0xc9e2, 0x2e00 } }, { 0x3c0fa446, 0x01, 0x00, 0x3200, 0, 0, 0, 0, 0, 0, 0x01, 0x01, 0x0a, 0x00, 0x00, 0x00, { 0x80380100, 0x2000, 0, 0x1e00, 2, 1, 0x0004, 0x8300, 0xffff, 0x1f00, 0xcb5e, 0x1a00 } }, { 0x6c0fa446, 0x01, 0x00, 0x3200, 0, 0, 0, 0, 0, 0, 0x01, 0x01, 0x0a, 0x00, 0x00, 0x00, { 0x905f0100, 0x2400, 0, 0x1e00, 2, 1, 0x0004, 0x8901, 0xffff, 0x2300, 0x314c, 0x1d00 } }, { 0xa00fa446, 0x01, 0x00, 0x3200, 0, 0, 0, 0, 0, 0, 0x01, 0x01, 0x0a, 0x00, 0x00, 0x00, { 0xa0860100, 0x2800, 0, 0x2000, 2, 1, 0x0004, 0x0c02, 0xffff, 0x2700, 0x6433, 0x2100 } } }; static const SMU74_Discrete_MemoryLevel avfs_memory_level_polaris10 = { 0x100ea446, 0, 0x30750000, 0x01, 0x01, 0x01, 0x00, 0x00, 0x64, 0x00, 0x00, 0x1f00, 0x00, 0x00}; static int polaris10_perform_btc(struct pp_hwmgr *hwmgr) { int result = 0; struct smu7_smumgr *smu_data = (struct smu7_smumgr *)(hwmgr->smu_backend); if (0 != smu_data->avfs_btc_param) { if (0 != smu7_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_PerformBtc, smu_data->avfs_btc_param)) { pr_info("[AVFS][SmuPolaris10_PerformBtc] PerformBTC SMU msg failed"); result = -1; } } if (smu_data->avfs_btc_param > 1) { /* Soft-Reset to reset the engine before loading uCode */ /* halt */ cgs_write_register(hwmgr->device, mmCP_MEC_CNTL, 0x50000000); /* reset everything */ cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0xffffffff); cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0); } return result; } static int polaris10_setup_graphics_level_structure(struct pp_hwmgr *hwmgr) { uint32_t vr_config; uint32_t dpm_table_start; uint16_t u16_boot_mvdd; uint32_t graphics_level_address, vr_config_address, graphics_level_size; graphics_level_size = sizeof(avfs_graphics_level_polaris10); u16_boot_mvdd = PP_HOST_TO_SMC_US(1300 * VOLTAGE_SCALE); PP_ASSERT_WITH_CODE(0 == smu7_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU74_Firmware_Header, DpmTable), &dpm_table_start, 0x40000), "[AVFS][Polaris10_SetupGfxLvlStruct] SMU could not communicate starting address of DPM table", return -1); /* Default value for VRConfig = VR_MERGED_WITH_VDDC + VR_STATIC_VOLTAGE(VDDCI) */ vr_config = 0x01000500; /* Real value:0x50001 */ vr_config_address = dpm_table_start + offsetof(SMU74_Discrete_DpmTable, VRConfig); PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_address, (uint8_t *)&vr_config, sizeof(uint32_t), 0x40000), "[AVFS][Polaris10_SetupGfxLvlStruct] Problems copying VRConfig value over to SMC", return -1); graphics_level_address = dpm_table_start + offsetof(SMU74_Discrete_DpmTable, GraphicsLevel); PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, graphics_level_address, (uint8_t *)(&avfs_graphics_level_polaris10), graphics_level_size, 0x40000), "[AVFS][Polaris10_SetupGfxLvlStruct] Copying of SCLK DPM table failed!", return -1); graphics_level_address = dpm_table_start + offsetof(SMU74_Discrete_DpmTable, MemoryLevel); PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, graphics_level_address, (uint8_t *)(&avfs_memory_level_polaris10), sizeof(avfs_memory_level_polaris10), 0x40000), "[AVFS][Polaris10_SetupGfxLvlStruct] Copying of MCLK DPM table failed!", return -1); /* MVDD Boot value - neccessary for getting rid of the hang that occurs during Mclk DPM enablement */ graphics_level_address = dpm_table_start + offsetof(SMU74_Discrete_DpmTable, BootMVdd); PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, graphics_level_address, (uint8_t *)(&u16_boot_mvdd), sizeof(u16_boot_mvdd), 0x40000), "[AVFS][Polaris10_SetupGfxLvlStruct] Copying of DPM table failed!", return -1); return 0; } static int polaris10_avfs_event_mgr(struct pp_hwmgr *hwmgr) { struct smu7_smumgr *smu_data = (struct smu7_smumgr *)(hwmgr->smu_backend); if (!hwmgr->avfs_supported) return 0; PP_ASSERT_WITH_CODE(0 == polaris10_setup_graphics_level_structure(hwmgr), "[AVFS][Polaris10_AVFSEventMgr] Could not Copy Graphics Level table over to SMU", return -EINVAL); if (smu_data->avfs_btc_param > 1) { pr_info("[AVFS][Polaris10_AVFSEventMgr] AC BTC has not been successfully verified on Fiji. There may be in this setting."); PP_ASSERT_WITH_CODE(0 == smu7_setup_pwr_virus(hwmgr), "[AVFS][Polaris10_AVFSEventMgr] Could not setup Pwr Virus for AVFS ", return -EINVAL); } PP_ASSERT_WITH_CODE(0 == polaris10_perform_btc(hwmgr), "[AVFS][Polaris10_AVFSEventMgr] Failure at SmuPolaris10_PerformBTC. AVFS Disabled", return -EINVAL); return 0; } static int polaris10_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr) { int result = 0; /* Wait for smc boot up */ /* PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(smumgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0) */ /* Assert reset */ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 1); result = smu7_upload_smu_firmware_image(hwmgr); if (result != 0) return result; /* Clear status */ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMU_STATUS, 0); PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0); /* De-assert reset */ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 0); PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS, INTERRUPTS_ENABLED, 1); /* Call Test SMU message with 0x20000 offset to trigger SMU start */ smu7_send_msg_to_smc_offset(hwmgr); /* Wait done bit to be set */ /* Check pass/failed indicator */ PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, SMU_STATUS, SMU_DONE, 0); if (1 != PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMU_STATUS, SMU_PASS)) PP_ASSERT_WITH_CODE(false, "SMU Firmware start failed!", return -1); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixFIRMWARE_FLAGS, 0); PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 1); PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 0); /* Wait for firmware to initialize */ PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1); return result; } static int polaris10_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr) { int result = 0; /* wait for smc boot up */ PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0); /* Clear firmware interrupt enable flag */ /* PHM_WRITE_VFPF_INDIRECT_FIELD(pSmuMgr, SMC_IND, SMC_SYSCON_MISC_CNTL, pre_fetcher_en, 1); */ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixFIRMWARE_FLAGS, 0); PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 1); result = smu7_upload_smu_firmware_image(hwmgr); if (result != 0) return result; /* Set smc instruct start point at 0x0 */ smu7_program_jump_on_start(hwmgr); PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0); PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 0); /* Wait for firmware to initialize */ PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1); return result; } static int polaris10_start_smu(struct pp_hwmgr *hwmgr) { int result = 0; struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); /* Only start SMC if SMC RAM is not running */ if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) { smu_data->protected_mode = (uint8_t) (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_MODE)); smu_data->smu7_data.security_hard_key = (uint8_t) (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_SEL)); /* Check if SMU is running in protected mode */ if (smu_data->protected_mode == 0) result = polaris10_start_smu_in_non_protection_mode(hwmgr); else result = polaris10_start_smu_in_protection_mode(hwmgr); if (result != 0) PP_ASSERT_WITH_CODE(0, "Failed to load SMU ucode.", return result); polaris10_avfs_event_mgr(hwmgr); } /* Setup SoftRegsStart here for register lookup in case DummyBackEnd is used and ProcessFirmwareHeader is not executed */ smu7_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU74_Firmware_Header, SoftRegisters), &(smu_data->smu7_data.soft_regs_start), 0x40000); result = smu7_request_smu_load_fw(hwmgr); return result; } static bool polaris10_is_hw_avfs_present(struct pp_hwmgr *hwmgr) { uint32_t efuse; efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMU_EFUSE_0 + (49*4)); efuse &= 0x00000001; if (efuse) return true; return false; } static int polaris10_smu_init(struct pp_hwmgr *hwmgr) { struct polaris10_smumgr *smu_data; smu_data = kzalloc(sizeof(struct polaris10_smumgr), GFP_KERNEL); if (smu_data == NULL) return -ENOMEM; hwmgr->smu_backend = smu_data; if (smu7_init(hwmgr)) { kfree(smu_data); return -EINVAL; } return 0; } static int polaris10_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr, struct phm_ppt_v1_clock_voltage_dependency_table *dep_table, uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd) { uint32_t i; uint16_t vddci; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); *voltage = *mvdd = 0; /* clock - voltage dependency table is empty table */ if (dep_table->count == 0) return -EINVAL; for (i = 0; i < dep_table->count; i++) { /* find first sclk bigger than request */ if (dep_table->entries[i].clk >= clock) { *voltage |= (dep_table->entries[i].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control) *voltage |= (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT; else if (dep_table->entries[i].vddci) *voltage |= (dep_table->entries[i].vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; else { vddci = phm_find_closest_vddci(&(data->vddci_voltage_table), (dep_table->entries[i].vddc - (uint16_t)VDDC_VDDCI_DELTA)); *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; } if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE; else if (dep_table->entries[i].mvdd) *mvdd = (uint32_t) dep_table->entries[i].mvdd * VOLTAGE_SCALE; *voltage |= 1 << PHASES_SHIFT; return 0; } } /* sclk is bigger than max sclk in the dependence table */ *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control) *voltage |= (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT; else if (dep_table->entries[i-1].vddci) { vddci = phm_find_closest_vddci(&(data->vddci_voltage_table), (dep_table->entries[i].vddc - (uint16_t)VDDC_VDDCI_DELTA)); *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; } if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE; else if (dep_table->entries[i].mvdd) *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE; return 0; } static uint16_t scale_fan_gain_settings(uint16_t raw_setting) { uint32_t tmp; tmp = raw_setting * 4096 / 100; return (uint16_t)tmp; } static int polaris10_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr) { struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); const struct polaris10_pt_defaults *defaults = smu_data->power_tune_defaults; SMU74_Discrete_DpmTable *table = &(smu_data->smc_state_table); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table; struct pp_advance_fan_control_parameters *fan_table = &hwmgr->thermal_controller.advanceFanControlParameters; int i, j, k; const uint16_t *pdef1; const uint16_t *pdef2; table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128)); table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128)); PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255, "Target Operating Temp is out of Range!", ); table->TemperatureLimitEdge = PP_HOST_TO_SMC_US( cac_dtp_table->usTargetOperatingTemp * 256); table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US( cac_dtp_table->usTemperatureLimitHotspot * 256); table->FanGainEdge = PP_HOST_TO_SMC_US( scale_fan_gain_settings(fan_table->usFanGainEdge)); table->FanGainHotspot = PP_HOST_TO_SMC_US( scale_fan_gain_settings(fan_table->usFanGainHotspot)); pdef1 = defaults->BAPMTI_R; pdef2 = defaults->BAPMTI_RC; for (i = 0; i < SMU74_DTE_ITERATIONS; i++) { for (j = 0; j < SMU74_DTE_SOURCES; j++) { for (k = 0; k < SMU74_DTE_SINKS; k++) { table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*pdef1); table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*pdef2); pdef1++; pdef2++; } } } return 0; } static int polaris10_populate_svi_load_line(struct pp_hwmgr *hwmgr) { struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); const struct polaris10_pt_defaults *defaults = smu_data->power_tune_defaults; smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn; smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC; smu_data->power_tune_table.SviLoadLineTrimVddC = 3; smu_data->power_tune_table.SviLoadLineOffsetVddC = 0; return 0; } static int polaris10_populate_tdc_limit(struct pp_hwmgr *hwmgr) { uint16_t tdc_limit; struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); const struct polaris10_pt_defaults *defaults = smu_data->power_tune_defaults; tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128); smu_data->power_tune_table.TDC_VDDC_PkgLimit = CONVERT_FROM_HOST_TO_SMC_US(tdc_limit); smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc = defaults->TDC_VDDC_ThrottleReleaseLimitPerc; smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt; return 0; } static int polaris10_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset) { struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); const struct polaris10_pt_defaults *defaults = smu_data->power_tune_defaults; uint32_t temp; if (smu7_read_smc_sram_dword(hwmgr, fuse_table_offset + offsetof(SMU74_Discrete_PmFuses, TdcWaterfallCtl), (uint32_t *)&temp, SMC_RAM_END)) PP_ASSERT_WITH_CODE(false, "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!", return -EINVAL); else { smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl; smu_data->power_tune_table.LPMLTemperatureMin = (uint8_t)((temp >> 16) & 0xff); smu_data->power_tune_table.LPMLTemperatureMax = (uint8_t)((temp >> 8) & 0xff); smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff); } return 0; } static int polaris10_populate_temperature_scaler(struct pp_hwmgr *hwmgr) { int i; struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); /* Currently not used. Set all to zero. */ for (i = 0; i < 16; i++) smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0; return 0; } static int polaris10_populate_fuzzy_fan(struct pp_hwmgr *hwmgr) { struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); /* TO DO move to hwmgr */ if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15)) || 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity) hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity = hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity; smu_data->power_tune_table.FuzzyFan_PwmSetDelta = PP_HOST_TO_SMC_US( hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity); return 0; } static int polaris10_populate_gnb_lpml(struct pp_hwmgr *hwmgr) { int i; struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); /* Currently not used. Set all to zero. */ for (i = 0; i < 16; i++) smu_data->power_tune_table.GnbLPML[i] = 0; return 0; } static int polaris10_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr) { struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd; uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd; struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table; hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256); lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256); smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd = CONVERT_FROM_HOST_TO_SMC_US(hi_sidd); smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd = CONVERT_FROM_HOST_TO_SMC_US(lo_sidd); return 0; } static int polaris10_populate_pm_fuses(struct pp_hwmgr *hwmgr) { struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); uint32_t pm_fuse_table_offset; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PowerContainment)) { if (smu7_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU74_Firmware_Header, PmFuseTable), &pm_fuse_table_offset, SMC_RAM_END)) PP_ASSERT_WITH_CODE(false, "Attempt to get pm_fuse_table_offset Failed!", return -EINVAL); if (polaris10_populate_svi_load_line(hwmgr)) PP_ASSERT_WITH_CODE(false, "Attempt to populate SviLoadLine Failed!", return -EINVAL); if (polaris10_populate_tdc_limit(hwmgr)) PP_ASSERT_WITH_CODE(false, "Attempt to populate TDCLimit Failed!", return -EINVAL); if (polaris10_populate_dw8(hwmgr, pm_fuse_table_offset)) PP_ASSERT_WITH_CODE(false, "Attempt to populate TdcWaterfallCtl, " "LPMLTemperature Min and Max Failed!", return -EINVAL); if (0 != polaris10_populate_temperature_scaler(hwmgr)) PP_ASSERT_WITH_CODE(false, "Attempt to populate LPMLTemperatureScaler Failed!", return -EINVAL); if (polaris10_populate_fuzzy_fan(hwmgr)) PP_ASSERT_WITH_CODE(false, "Attempt to populate Fuzzy Fan Control parameters Failed!", return -EINVAL); if (polaris10_populate_gnb_lpml(hwmgr)) PP_ASSERT_WITH_CODE(false, "Attempt to populate GnbLPML Failed!", return -EINVAL); if (polaris10_populate_bapm_vddc_base_leakage_sidd(hwmgr)) PP_ASSERT_WITH_CODE(false, "Attempt to populate BapmVddCBaseLeakage Hi and Lo " "Sidd Failed!", return -EINVAL); if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset, (uint8_t *)&smu_data->power_tune_table, (sizeof(struct SMU74_Discrete_PmFuses) - 92), SMC_RAM_END)) PP_ASSERT_WITH_CODE(false, "Attempt to download PmFuseTable Failed!", return -EINVAL); } return 0; } static int polaris10_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr, SMU74_Discrete_DpmTable *table) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); uint32_t count, level; if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { count = data->mvdd_voltage_table.count; if (count > SMU_MAX_SMIO_LEVELS) count = SMU_MAX_SMIO_LEVELS; for (level = 0; level < count; level++) { table->SmioTable2.Pattern[level].Voltage = PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE); /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/ table->SmioTable2.Pattern[level].Smio = (uint8_t) level; table->Smio[level] |= data->mvdd_voltage_table.entries[level].smio_low; } table->SmioMask2 = data->mvdd_voltage_table.mask_low; table->MvddLevelCount = (uint32_t) PP_HOST_TO_SMC_UL(count); } return 0; } static int polaris10_populate_smc_vddci_table(struct pp_hwmgr *hwmgr, struct SMU74_Discrete_DpmTable *table) { uint32_t count, level; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); count = data->vddci_voltage_table.count; if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { if (count > SMU_MAX_SMIO_LEVELS) count = SMU_MAX_SMIO_LEVELS; for (level = 0; level < count; ++level) { table->SmioTable1.Pattern[level].Voltage = PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[level].value * VOLTAGE_SCALE); table->SmioTable1.Pattern[level].Smio = (uint8_t) level; table->Smio[level] |= data->vddci_voltage_table.entries[level].smio_low; } } table->SmioMask1 = data->vddci_voltage_table.mask_low; return 0; } static int polaris10_populate_cac_table(struct pp_hwmgr *hwmgr, struct SMU74_Discrete_DpmTable *table) { uint32_t count; uint8_t index; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_voltage_lookup_table *lookup_table = table_info->vddc_lookup_table; /* tables is already swapped, so in order to use the value from it, * we need to swap it back. * We are populating vddc CAC data to BapmVddc table * in split and merged mode */ for (count = 0; count < lookup_table->count; count++) { index = phm_get_voltage_index(lookup_table, data->vddc_voltage_table.entries[count].value); table->BapmVddcVidLoSidd[count] = convert_to_vid(lookup_table->entries[index].us_cac_low); table->BapmVddcVidHiSidd[count] = convert_to_vid(lookup_table->entries[index].us_cac_mid); table->BapmVddcVidHiSidd2[count] = convert_to_vid(lookup_table->entries[index].us_cac_high); } return 0; } static int polaris10_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, struct SMU74_Discrete_DpmTable *table) { polaris10_populate_smc_vddci_table(hwmgr, table); polaris10_populate_smc_mvdd_table(hwmgr, table); polaris10_populate_cac_table(hwmgr, table); return 0; } static int polaris10_populate_ulv_level(struct pp_hwmgr *hwmgr, struct SMU74_Discrete_Ulv *state) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); state->CcPwrDynRm = 0; state->CcPwrDynRm1 = 0; state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset; state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset * VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1); if (hwmgr->chip_id == CHIP_POLARIS12 || hwmgr->is_kicker) state->VddcPhase = data->vddc_phase_shed_control ^ 0x3; else state->VddcPhase = (data->vddc_phase_shed_control) ? 0 : 1; CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm); CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1); CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset); return 0; } static int polaris10_populate_ulv_state(struct pp_hwmgr *hwmgr, struct SMU74_Discrete_DpmTable *table) { return polaris10_populate_ulv_level(hwmgr, &table->Ulv); } static int polaris10_populate_smc_link_level(struct pp_hwmgr *hwmgr, struct SMU74_Discrete_DpmTable *table) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); struct smu7_dpm_table *dpm_table = &data->dpm_table; int i; /* Index (dpm_table->pcie_speed_table.count) * is reserved for PCIE boot level. */ for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { table->LinkLevel[i].PcieGenSpeed = (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width( dpm_table->pcie_speed_table.dpm_levels[i].param1); table->LinkLevel[i].EnabledForActivity = 1; table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff); table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5); table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30); } smu_data->smc_state_table.LinkLevelCount = (uint8_t)dpm_table->pcie_speed_table.count; /* To Do move to hwmgr */ data->dpm_level_enable_mask.pcie_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); return 0; } static void polaris10_get_sclk_range_table(struct pp_hwmgr *hwmgr, SMU74_Discrete_DpmTable *table) { struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); uint32_t i, ref_clk; struct pp_atom_ctrl_sclk_range_table range_table_from_vbios = { { {0} } }; ref_clk = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev); if (0 == atomctrl_get_smc_sclk_range_table(hwmgr, &range_table_from_vbios)) { for (i = 0; i < NUM_SCLK_RANGE; i++) { table->SclkFcwRangeTable[i].vco_setting = range_table_from_vbios.entry[i].ucVco_setting; table->SclkFcwRangeTable[i].postdiv = range_table_from_vbios.entry[i].ucPostdiv; table->SclkFcwRangeTable[i].fcw_pcc = range_table_from_vbios.entry[i].usFcw_pcc; table->SclkFcwRangeTable[i].fcw_trans_upper = range_table_from_vbios.entry[i].usFcw_trans_upper; table->SclkFcwRangeTable[i].fcw_trans_lower = range_table_from_vbios.entry[i].usRcw_trans_lower; CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc); CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper); CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower); } return; } for (i = 0; i < NUM_SCLK_RANGE; i++) { smu_data->range_table[i].trans_lower_frequency = (ref_clk * Range_Table[i].fcw_trans_lower) >> Range_Table[i].postdiv; smu_data->range_table[i].trans_upper_frequency = (ref_clk * Range_Table[i].fcw_trans_upper) >> Range_Table[i].postdiv; table->SclkFcwRangeTable[i].vco_setting = Range_Table[i].vco_setting; table->SclkFcwRangeTable[i].postdiv = Range_Table[i].postdiv; table->SclkFcwRangeTable[i].fcw_pcc = Range_Table[i].fcw_pcc; table->SclkFcwRangeTable[i].fcw_trans_upper = Range_Table[i].fcw_trans_upper; table->SclkFcwRangeTable[i].fcw_trans_lower = Range_Table[i].fcw_trans_lower; CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc); CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper); CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower); } } static int polaris10_calculate_sclk_params(struct pp_hwmgr *hwmgr, uint32_t clock, SMU_SclkSetting *sclk_setting) { struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); const SMU74_Discrete_DpmTable *table = &(smu_data->smc_state_table); struct pp_atomctrl_clock_dividers_ai dividers; uint32_t ref_clock; uint32_t pcc_target_percent, pcc_target_freq, ss_target_percent, ss_target_freq; uint8_t i; int result; uint64_t temp; sclk_setting->SclkFrequency = clock; /* get the engine clock dividers for this clock value */ result = atomctrl_get_engine_pll_dividers_ai(hwmgr, clock, ÷rs); if (result == 0) { sclk_setting->Fcw_int = dividers.usSclk_fcw_int; sclk_setting->Fcw_frac = dividers.usSclk_fcw_frac; sclk_setting->Pcc_fcw_int = dividers.usPcc_fcw_int; sclk_setting->PllRange = dividers.ucSclkPllRange; sclk_setting->Sclk_slew_rate = 0x400; sclk_setting->Pcc_up_slew_rate = dividers.usPcc_fcw_slew_frac; sclk_setting->Pcc_down_slew_rate = 0xffff; sclk_setting->SSc_En = dividers.ucSscEnable; sclk_setting->Fcw1_int = dividers.usSsc_fcw1_int; sclk_setting->Fcw1_frac = dividers.usSsc_fcw1_frac; sclk_setting->Sclk_ss_slew_rate = dividers.usSsc_fcw_slew_frac; return result; } ref_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev); for (i = 0; i < NUM_SCLK_RANGE; i++) { if (clock > smu_data->range_table[i].trans_lower_frequency && clock <= smu_data->range_table[i].trans_upper_frequency) { sclk_setting->PllRange = i; break; } } sclk_setting->Fcw_int = (uint16_t)((clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / ref_clock); temp = clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv; temp <<= 0x10; do_div(temp, ref_clock); sclk_setting->Fcw_frac = temp & 0xffff; pcc_target_percent = 10; /* Hardcode 10% for now. */ pcc_target_freq = clock - (clock * pcc_target_percent / 100); sclk_setting->Pcc_fcw_int = (uint16_t)((pcc_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / ref_clock); ss_target_percent = 2; /* Hardcode 2% for now. */ sclk_setting->SSc_En = 0; if (ss_target_percent) { sclk_setting->SSc_En = 1; ss_target_freq = clock - (clock * ss_target_percent / 100); sclk_setting->Fcw1_int = (uint16_t)((ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / ref_clock); temp = ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv; temp <<= 0x10; do_div(temp, ref_clock); sclk_setting->Fcw1_frac = temp & 0xffff; } return 0; } static int polaris10_populate_single_graphic_level(struct pp_hwmgr *hwmgr, uint32_t clock, struct SMU74_Discrete_GraphicsLevel *level) { int result; /* PP_Clocks minClocks; */ uint32_t mvdd; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); SMU_SclkSetting curr_sclk_setting = { 0 }; phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL; result = polaris10_calculate_sclk_params(hwmgr, clock, &curr_sclk_setting); if (hwmgr->od_enabled) vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_sclk; else vdd_dep_table = table_info->vdd_dep_on_sclk; /* populate graphics levels */ result = polaris10_get_dependency_volt_by_clk(hwmgr, vdd_dep_table, clock, &level->MinVoltage, &mvdd); PP_ASSERT_WITH_CODE((0 == result), "can not find VDDC voltage value for " "VDDC engine clock dependency table", return result); level->ActivityLevel = data->current_profile_setting.sclk_activity; level->CcPwrDynRm = 0; level->CcPwrDynRm1 = 0; level->EnabledForActivity = 0; level->EnabledForThrottle = 1; level->UpHyst = data->current_profile_setting.sclk_up_hyst; level->DownHyst = data->current_profile_setting.sclk_down_hyst; level->VoltageDownHyst = 0; level->PowerThrottle = 0; data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) level->DeepSleepDivId = smu7_get_sleep_divider_id_from_clock(clock, hwmgr->display_config->min_core_set_clock_in_sr); /* Default to slow, highest DPM level will be * set to PPSMC_DISPLAY_WATERMARK_LOW later. */ if (data->update_up_hyst) level->UpHyst = (uint8_t)data->up_hyst; if (data->update_down_hyst) level->DownHyst = (uint8_t)data->down_hyst; level->SclkSetting = curr_sclk_setting; CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage); CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm); CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1); CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel); CONVERT_FROM_HOST_TO_SMC_UL(level->SclkSetting.SclkFrequency); CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_int); CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_frac); CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_fcw_int); CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_slew_rate); CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_up_slew_rate); CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_down_slew_rate); CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_int); CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_frac); CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_ss_slew_rate); return 0; } static int polaris10_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend); struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); struct smu7_dpm_table *dpm_table = &hw_data->dpm_table; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table; uint8_t pcie_entry_cnt = (uint8_t) hw_data->dpm_table.pcie_speed_table.count; int result = 0; uint32_t array = smu_data->smu7_data.dpm_table_start + offsetof(SMU74_Discrete_DpmTable, GraphicsLevel); uint32_t array_size = sizeof(struct SMU74_Discrete_GraphicsLevel) * SMU74_MAX_LEVELS_GRAPHICS; struct SMU74_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel; uint32_t i, max_entry; uint8_t hightest_pcie_level_enabled = 0, lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0, count = 0; polaris10_get_sclk_range_table(hwmgr, &(smu_data->smc_state_table)); for (i = 0; i < dpm_table->sclk_table.count; i++) { result = polaris10_populate_single_graphic_level(hwmgr, dpm_table->sclk_table.dpm_levels[i].value, &(smu_data->smc_state_table.GraphicsLevel[i])); if (result) return result; /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */ if (i > 1) levels[i].DeepSleepDivId = 0; } if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SPLLShutdownSupport)) smu_data->smc_state_table.GraphicsLevel[0].SclkSetting.SSc_En = 0; smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1; smu_data->smc_state_table.GraphicsDpmLevelCount = (uint8_t)dpm_table->sclk_table.count; hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); if (pcie_table != NULL) { PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt), "There must be 1 or more PCIE levels defined in PPTable.", return -EINVAL); max_entry = pcie_entry_cnt - 1; for (i = 0; i < dpm_table->sclk_table.count; i++) levels[i].pcieDpmLevel = (uint8_t) ((i < max_entry) ? i : max_entry); } else { while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask && ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask & (1 << (hightest_pcie_level_enabled + 1))) != 0)) hightest_pcie_level_enabled++; while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask && ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask & (1 << lowest_pcie_level_enabled)) == 0)) lowest_pcie_level_enabled++; while ((count < hightest_pcie_level_enabled) && ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask & (1 << (lowest_pcie_level_enabled + 1 + count))) == 0)) count++; mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) < hightest_pcie_level_enabled ? (lowest_pcie_level_enabled + 1 + count) : hightest_pcie_level_enabled; /* set pcieDpmLevel to hightest_pcie_level_enabled */ for (i = 2; i < dpm_table->sclk_table.count; i++) levels[i].pcieDpmLevel = hightest_pcie_level_enabled; /* set pcieDpmLevel to lowest_pcie_level_enabled */ levels[0].pcieDpmLevel = lowest_pcie_level_enabled; /* set pcieDpmLevel to mid_pcie_level_enabled */ levels[1].pcieDpmLevel = mid_pcie_level_enabled; } /* level count will send to smc once at init smc table and never change */ result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels, (uint32_t)array_size, SMC_RAM_END); return result; } static int polaris10_populate_single_memory_level(struct pp_hwmgr *hwmgr, uint32_t clock, struct SMU74_Discrete_MemoryLevel *mem_level) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); int result = 0; uint32_t mclk_stutter_mode_threshold = 40000; phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL; if (hwmgr->od_enabled) vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_mclk; else vdd_dep_table = table_info->vdd_dep_on_mclk; if (vdd_dep_table) { result = polaris10_get_dependency_volt_by_clk(hwmgr, vdd_dep_table, clock, &mem_level->MinVoltage, &mem_level->MinMvdd); PP_ASSERT_WITH_CODE((0 == result), "can not find MinVddc voltage value from memory " "VDDC voltage dependency table", return result); } mem_level->MclkFrequency = clock; mem_level->EnabledForThrottle = 1; mem_level->EnabledForActivity = 0; mem_level->UpHyst = data->current_profile_setting.mclk_up_hyst; mem_level->DownHyst = data->current_profile_setting.mclk_down_hyst; mem_level->VoltageDownHyst = 0; mem_level->ActivityLevel = data->current_profile_setting.mclk_activity; mem_level->StutterEnable = false; mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; data->display_timing.num_existing_displays = hwmgr->display_config->num_display; data->display_timing.vrefresh = hwmgr->display_config->vrefresh; if (mclk_stutter_mode_threshold && (clock <= mclk_stutter_mode_threshold) && (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, STUTTER_ENABLE) & 0x1)) mem_level->StutterEnable = true; if (!result) { CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd); CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency); CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel); CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage); } return result; } static int polaris10_populate_all_memory_levels(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend); struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); struct smu7_dpm_table *dpm_table = &hw_data->dpm_table; int result; /* populate MCLK dpm table to SMU7 */ uint32_t array = smu_data->smu7_data.dpm_table_start + offsetof(SMU74_Discrete_DpmTable, MemoryLevel); uint32_t array_size = sizeof(SMU74_Discrete_MemoryLevel) * SMU74_MAX_LEVELS_MEMORY; struct SMU74_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel; uint32_t i; for (i = 0; i < dpm_table->mclk_table.count; i++) { PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value), "can not populate memory level as memory clock is zero", return -EINVAL); result = polaris10_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value, &levels[i]); if (i == dpm_table->mclk_table.count - 1) { levels[i].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH; levels[i].EnabledForActivity = 1; } if (result) return result; } /* In order to prevent MC activity from stutter mode to push DPM up, * the UVD change complements this by putting the MCLK in * a higher state by default such that we are not affected by * up threshold or and MCLK DPM latency. */ levels[0].ActivityLevel = 0x1f; CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel); smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count; hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); /* level count will send to smc once at init smc table and never change */ result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels, (uint32_t)array_size, SMC_RAM_END); return result; } static int polaris10_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk, SMIO_Pattern *smio_pat) { const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); uint32_t i = 0; if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) { /* find mvdd value which clock is more than request */ for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) { if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) { smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value; break; } } PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count, "MVDD Voltage is outside the supported range.", return -EINVAL); } else return -EINVAL; return 0; } static int polaris10_populate_smc_acpi_level(struct pp_hwmgr *hwmgr, SMU74_Discrete_DpmTable *table) { int result = 0; uint32_t sclk_frequency; const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); SMIO_Pattern vol_level; uint32_t mvdd; table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC; /* Get MinVoltage and Frequency from DPM0, * already converted to SMC_UL */ sclk_frequency = data->vbios_boot_state.sclk_bootup_value; result = polaris10_get_dependency_volt_by_clk(hwmgr, table_info->vdd_dep_on_sclk, sclk_frequency, &table->ACPILevel.MinVoltage, &mvdd); PP_ASSERT_WITH_CODE((0 == result), "Cannot find ACPI VDDC voltage value " "in Clock Dependency Table", ); result = polaris10_calculate_sclk_params(hwmgr, sclk_frequency, &(table->ACPILevel.SclkSetting)); PP_ASSERT_WITH_CODE(result == 0, "Error retrieving Engine Clock dividers from VBIOS.", return result); table->ACPILevel.DeepSleepDivId = 0; table->ACPILevel.CcPwrDynRm = 0; table->ACPILevel.CcPwrDynRm1 = 0; CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkSetting.SclkFrequency); CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_int); CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_frac); CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_fcw_int); CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_slew_rate); CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_up_slew_rate); CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_down_slew_rate); CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_int); CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_frac); CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_ss_slew_rate); /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */ table->MemoryACPILevel.MclkFrequency = data->vbios_boot_state.mclk_bootup_value; result = polaris10_get_dependency_volt_by_clk(hwmgr, table_info->vdd_dep_on_mclk, table->MemoryACPILevel.MclkFrequency, &table->MemoryACPILevel.MinVoltage, &mvdd); PP_ASSERT_WITH_CODE((0 == result), "Cannot find ACPI VDDCI voltage value " "in Clock Dependency Table", ); if (!((SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) || (data->mclk_dpm_key_disabled))) polaris10_populate_mvdd_value(hwmgr, data->dpm_table.mclk_table.dpm_levels[0].value, &vol_level); if (0 == polaris10_populate_mvdd_value(hwmgr, 0, &vol_level)) table->MemoryACPILevel.MinMvdd = PP_HOST_TO_SMC_UL(vol_level.Voltage); else table->MemoryACPILevel.MinMvdd = 0; table->MemoryACPILevel.StutterEnable = false; table->MemoryACPILevel.EnabledForThrottle = 0; table->MemoryACPILevel.EnabledForActivity = 0; table->MemoryACPILevel.UpHyst = 0; table->MemoryACPILevel.DownHyst = 100; table->MemoryACPILevel.VoltageDownHyst = 0; table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity); CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency); CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage); return result; } static int polaris10_populate_smc_vce_level(struct pp_hwmgr *hwmgr, SMU74_Discrete_DpmTable *table) { int result = -EINVAL; uint8_t count; struct pp_atomctrl_clock_dividers_vi dividers; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = table_info->mm_dep_table; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); uint32_t vddci; table->VceLevelCount = (uint8_t)(mm_table->count); table->VceBootLevel = 0; for (count = 0; count < table->VceLevelCount; count++) { table->VceLevel[count].Frequency = mm_table->entries[count].eclk; table->VceLevel[count].MinVoltage = 0; table->VceLevel[count].MinVoltage |= (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table), mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA; else vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT; table->VceLevel[count].MinVoltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT; /*retrieve divider value for VBIOS */ result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, table->VceLevel[count].Frequency, ÷rs); PP_ASSERT_WITH_CODE((0 == result), "can not find divide id for VCE engine clock", return result); table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider; CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency); CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage); } return result; } static int polaris10_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr, int32_t eng_clock, int32_t mem_clock, SMU74_Discrete_MCArbDramTimingTableEntry *arb_regs) { uint32_t dram_timing; uint32_t dram_timing2; uint32_t burst_time; int result; result = atomctrl_set_engine_dram_timings_rv770(hwmgr, eng_clock, mem_clock); PP_ASSERT_WITH_CODE(result == 0, "Error calling VBIOS to set DRAM_TIMING.", return result); dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0); arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing); arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2); arb_regs->McArbBurstTime = (uint8_t)burst_time; return 0; } static int polaris10_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend); struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); struct SMU74_Discrete_MCArbDramTimingTable arb_regs; uint32_t i, j; int result = 0; for (i = 0; i < hw_data->dpm_table.sclk_table.count; i++) { for (j = 0; j < hw_data->dpm_table.mclk_table.count; j++) { result = polaris10_populate_memory_timing_parameters(hwmgr, hw_data->dpm_table.sclk_table.dpm_levels[i].value, hw_data->dpm_table.mclk_table.dpm_levels[j].value, &arb_regs.entries[i][j]); if (result == 0) result = atomctrl_set_ac_timing_ai(hwmgr, hw_data->dpm_table.mclk_table.dpm_levels[j].value, j); if (result != 0) return result; } } result = smu7_copy_bytes_to_smc( hwmgr, smu_data->smu7_data.arb_table_start, (uint8_t *)&arb_regs, sizeof(SMU74_Discrete_MCArbDramTimingTable), SMC_RAM_END); return result; } static int polaris10_populate_smc_uvd_level(struct pp_hwmgr *hwmgr, struct SMU74_Discrete_DpmTable *table) { int result = -EINVAL; uint8_t count; struct pp_atomctrl_clock_dividers_vi dividers; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = table_info->mm_dep_table; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); uint32_t vddci; table->UvdLevelCount = (uint8_t)(mm_table->count); table->UvdBootLevel = 0; for (count = 0; count < table->UvdLevelCount; count++) { table->UvdLevel[count].MinVoltage = 0; table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk; table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk; table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table), mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA; else vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT; table->UvdLevel[count].MinVoltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT; /* retrieve divider value for VBIOS */ result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, table->UvdLevel[count].VclkFrequency, ÷rs); PP_ASSERT_WITH_CODE((0 == result), "can not find divide id for Vclk clock", return result); table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider; result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, table->UvdLevel[count].DclkFrequency, ÷rs); PP_ASSERT_WITH_CODE((0 == result), "can not find divide id for Dclk clock", return result); table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider; CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency); CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency); CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage); } return result; } static int polaris10_populate_smc_boot_level(struct pp_hwmgr *hwmgr, struct SMU74_Discrete_DpmTable *table) { int result = 0; struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); table->GraphicsBootLevel = 0; table->MemoryBootLevel = 0; /* find boot level from dpm table */ result = phm_find_boot_level(&(data->dpm_table.sclk_table), data->vbios_boot_state.sclk_bootup_value, (uint32_t *)&(table->GraphicsBootLevel)); result = phm_find_boot_level(&(data->dpm_table.mclk_table), data->vbios_boot_state.mclk_bootup_value, (uint32_t *)&(table->MemoryBootLevel)); table->BootVddc = data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE; table->BootVddci = data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE; table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE; CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc); CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci); CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd); return 0; } static int polaris10_populate_smc_initailial_state(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend); struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); uint8_t count, level; count = (uint8_t)(table_info->vdd_dep_on_sclk->count); for (level = 0; level < count; level++) { if (table_info->vdd_dep_on_sclk->entries[level].clk >= hw_data->vbios_boot_state.sclk_bootup_value) { smu_data->smc_state_table.GraphicsBootLevel = level; break; } } count = (uint8_t)(table_info->vdd_dep_on_mclk->count); for (level = 0; level < count; level++) { if (table_info->vdd_dep_on_mclk->entries[level].clk >= hw_data->vbios_boot_state.mclk_bootup_value) { smu_data->smc_state_table.MemoryBootLevel = level; break; } } return 0; } static int polaris10_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr) { uint32_t ro, efuse, volt_without_cks, volt_with_cks, value, max, min; struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); uint8_t i, stretch_amount, volt_offset = 0; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = table_info->vdd_dep_on_sclk; stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount; /* Read SMU_Eefuse to read and calculate RO and determine * if the part is SS or FF. if RO >= 1660MHz, part is FF. */ efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMU_EFUSE_0 + (67 * 4)); efuse &= 0xFF000000; efuse = efuse >> 24; if (hwmgr->chip_id == CHIP_POLARIS10) { if (hwmgr->is_kicker) { min = 1200; max = 2500; } else { min = 1000; max = 2300; } } else if (hwmgr->chip_id == CHIP_POLARIS11) { if (hwmgr->is_kicker) { min = 900; max = 2100; } else { min = 1100; max = 2100; } } else { min = 1100; max = 2100; } ro = efuse * (max - min) / 255 + min; /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */ for (i = 0; i < sclk_table->count; i++) { smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |= sclk_table->entries[i].cks_enable << i; if (hwmgr->chip_id == CHIP_POLARIS10) { volt_without_cks = (uint32_t)((2753594000U + (sclk_table->entries[i].clk/100) * 136418 - (ro - 70) * 1000000) / \ (2424180 - (sclk_table->entries[i].clk/100) * 1132925/1000)); volt_with_cks = (uint32_t)((2797202000U + sclk_table->entries[i].clk/100 * 3232 - (ro - 65) * 1000000) / \ (2522480 - sclk_table->entries[i].clk/100 * 115764/100)); } else { volt_without_cks = (uint32_t)((2416794800U + (sclk_table->entries[i].clk/100) * 1476925/10 - (ro - 50) * 1000000) / \ (2625416 - (sclk_table->entries[i].clk/100) * (12586807/10000))); volt_with_cks = (uint32_t)((2999656000U - sclk_table->entries[i].clk/100 * 392803 - (ro - 44) * 1000000) / \ (3422454 - sclk_table->entries[i].clk/100 * (18886376/10000))); } if (volt_without_cks >= volt_with_cks) volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks + sclk_table->entries[i].cks_voffset) * 100 + 624) / 625); smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset; } smu_data->smc_state_table.LdoRefSel = (table_info->cac_dtp_table->ucCKS_LDO_REFSEL != 0) ? table_info->cac_dtp_table->ucCKS_LDO_REFSEL : 6; /* Populate CKS Lookup Table */ if (stretch_amount == 0 || stretch_amount > 5) { phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ClockStretcher); PP_ASSERT_WITH_CODE(false, "Stretch Amount in PPTable not supported", return -EINVAL); } value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL); value &= 0xFFFFFFFE; cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value); return 0; } static int polaris10_populate_vr_config(struct pp_hwmgr *hwmgr, struct SMU74_Discrete_DpmTable *table) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); uint16_t config; config = VR_MERGED_WITH_VDDC; table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT); /* Set Vddc Voltage Controller */ if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { config = VR_SVI2_PLANE_1; table->VRConfig |= config; } else { PP_ASSERT_WITH_CODE(false, "VDDC should be on SVI2 control in merged mode!", ); } /* Set Vddci Voltage Controller */ if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { config = VR_SVI2_PLANE_2; /* only in merged mode */ table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { config = VR_SMIO_PATTERN_1; table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); } else { config = VR_STATIC_VOLTAGE; table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); } /* Set Mvdd Voltage Controller */ if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) { config = VR_SVI2_PLANE_2; table->VRConfig |= (config << VRCONF_MVDD_SHIFT); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, smu_data->smu7_data.soft_regs_start + offsetof(SMU74_SoftRegisters, AllowMvddSwitch), 0x1); } else { config = VR_STATIC_VOLTAGE; table->VRConfig |= (config << VRCONF_MVDD_SHIFT); } return 0; } static int polaris10_populate_avfs_parameters(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); struct amdgpu_device *adev = hwmgr->adev; SMU74_Discrete_DpmTable *table = &(smu_data->smc_state_table); int result = 0; struct pp_atom_ctrl__avfs_parameters avfs_params = {0}; AVFS_meanNsigma_t AVFS_meanNsigma = { {0} }; AVFS_Sclk_Offset_t AVFS_SclkOffset = { {0} }; uint32_t tmp, i; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)hwmgr->pptable; struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = table_info->vdd_dep_on_sclk; if (!hwmgr->avfs_supported) return 0; result = atomctrl_get_avfs_information(hwmgr, &avfs_params); if (0 == result) { if (((adev->pdev->device == 0x67ef) && ((adev->pdev->revision == 0xe0) || (adev->pdev->revision == 0xe5))) || ((adev->pdev->device == 0x67ff) && ((adev->pdev->revision == 0xcf) || (adev->pdev->revision == 0xef) || (adev->pdev->revision == 0xff)))) { avfs_params.ucEnableApplyAVFS_CKS_OFF_Voltage = 1; if ((adev->pdev->device == 0x67ef && adev->pdev->revision == 0xe5) || (adev->pdev->device == 0x67ff && adev->pdev->revision == 0xef)) { if ((avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0 == 0xEA522DD3) && (avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1 == 0x5645A) && (avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2 == 0x33F9E) && (avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1 == 0xFFFFC5CC) && (avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2 == 0x1B1A) && (avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b == 0xFFFFFCED)) { avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0 = 0xF718F1D4; avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1 = 0x323FD; avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2 = 0x1E455; avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1 = 0; avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2 = 0; avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b = 0x23; } } } else if (hwmgr->chip_id == CHIP_POLARIS12 && !hwmgr->is_kicker) { avfs_params.ucEnableApplyAVFS_CKS_OFF_Voltage = 1; avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0 = 0xF6B024DD; avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1 = 0x3005E; avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2 = 0x18A5F; avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1 = 0x315; avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2 = 0xFED1; avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b = 0x3B; } else if (((adev->pdev->device == 0x67df) && ((adev->pdev->revision == 0xe0) || (adev->pdev->revision == 0xe3) || (adev->pdev->revision == 0xe4) || (adev->pdev->revision == 0xe5) || (adev->pdev->revision == 0xe7) || (adev->pdev->revision == 0xef))) || ((adev->pdev->device == 0x6fdf) && ((adev->pdev->revision == 0xef) || (adev->pdev->revision == 0xff)))) { avfs_params.ucEnableApplyAVFS_CKS_OFF_Voltage = 1; avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0 = 0xF843B66B; avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1 = 0x59CB5; avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2 = 0xFFFF287F; avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1 = 0; avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2 = 0xFF23; avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b = 0x58; } } if (0 == result) { table->BTCGB_VDROOP_TABLE[0].a0 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0); table->BTCGB_VDROOP_TABLE[0].a1 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1); table->BTCGB_VDROOP_TABLE[0].a2 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2); table->BTCGB_VDROOP_TABLE[1].a0 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0); table->BTCGB_VDROOP_TABLE[1].a1 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1); table->BTCGB_VDROOP_TABLE[1].a2 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2); table->AVFSGB_VDROOP_TABLE[0].m1 = PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1); table->AVFSGB_VDROOP_TABLE[0].m2 = PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSON_m2); table->AVFSGB_VDROOP_TABLE[0].b = PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b); table->AVFSGB_VDROOP_TABLE[0].m1_shift = 24; table->AVFSGB_VDROOP_TABLE[0].m2_shift = 12; table->AVFSGB_VDROOP_TABLE[1].m1 = PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1); table->AVFSGB_VDROOP_TABLE[1].m2 = PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2); table->AVFSGB_VDROOP_TABLE[1].b = PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b); table->AVFSGB_VDROOP_TABLE[1].m1_shift = 24; table->AVFSGB_VDROOP_TABLE[1].m2_shift = 12; table->MaxVoltage = PP_HOST_TO_SMC_US(avfs_params.usMaxVoltage_0_25mv); AVFS_meanNsigma.Aconstant[0] = PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant0); AVFS_meanNsigma.Aconstant[1] = PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant1); AVFS_meanNsigma.Aconstant[2] = PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant2); AVFS_meanNsigma.DC_tol_sigma = PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_DC_tol_sigma); AVFS_meanNsigma.Platform_mean = PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_mean); AVFS_meanNsigma.PSM_Age_CompFactor = PP_HOST_TO_SMC_US(avfs_params.usPSM_Age_ComFactor); AVFS_meanNsigma.Platform_sigma = PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_sigma); for (i = 0; i < NUM_VFT_COLUMNS; i++) { AVFS_meanNsigma.Static_Voltage_Offset[i] = (uint8_t)(sclk_table->entries[i].cks_voffset * 100 / 625); AVFS_SclkOffset.Sclk_Offset[i] = PP_HOST_TO_SMC_US((uint16_t)(sclk_table->entries[i].sclk_offset) / 100); } result = smu7_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU74_Firmware_Header, AvfsMeanNSigma), &tmp, SMC_RAM_END); smu7_copy_bytes_to_smc(hwmgr, tmp, (uint8_t *)&AVFS_meanNsigma, sizeof(AVFS_meanNsigma_t), SMC_RAM_END); result = smu7_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU74_Firmware_Header, AvfsSclkOffsetTable), &tmp, SMC_RAM_END); smu7_copy_bytes_to_smc(hwmgr, tmp, (uint8_t *)&AVFS_SclkOffset, sizeof(AVFS_Sclk_Offset_t), SMC_RAM_END); data->avfs_vdroop_override_setting = (avfs_params.ucEnableGB_VDROOP_TABLE_CKSON << BTCGB0_Vdroop_Enable_SHIFT) | (avfs_params.ucEnableGB_VDROOP_TABLE_CKSOFF << BTCGB1_Vdroop_Enable_SHIFT) | (avfs_params.ucEnableGB_FUSE_TABLE_CKSON << AVFSGB0_Vdroop_Enable_SHIFT) | (avfs_params.ucEnableGB_FUSE_TABLE_CKSOFF << AVFSGB1_Vdroop_Enable_SHIFT); data->apply_avfs_cks_off_voltage = (avfs_params.ucEnableApplyAVFS_CKS_OFF_Voltage == 1) ? true : false; } return result; } static int polaris10_init_arb_table_index(struct pp_hwmgr *hwmgr) { struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); uint32_t tmp; int result; /* This is a read-modify-write on the first byte of the ARB table. * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure * is the field 'current'. * This solution is ugly, but we never write the whole table only * individual fields in it. * In reality this field should not be in that structure * but in a soft register. */ result = smu7_read_smc_sram_dword(hwmgr, smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END); if (result) return result; tmp &= 0x00FFFFFF; tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24; return smu7_write_smc_sram_dword(hwmgr, smu_data->smu7_data.arb_table_start, tmp, SMC_RAM_END); } static void polaris10_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr) { struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); if (table_info && table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX && table_info->cac_dtp_table->usPowerTuneDataSetID) smu_data->power_tune_defaults = &polaris10_power_tune_data_set_array [table_info->cac_dtp_table->usPowerTuneDataSetID - 1]; else smu_data->power_tune_defaults = &polaris10_power_tune_data_set_array[0]; } static int polaris10_init_smc_table(struct pp_hwmgr *hwmgr) { int result; struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend); struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct SMU74_Discrete_DpmTable *table = &(smu_data->smc_state_table); uint8_t i; struct pp_atomctrl_gpio_pin_assignment gpio_pin; pp_atomctrl_clock_dividers_vi dividers; polaris10_initialize_power_tune_defaults(hwmgr); if (SMU7_VOLTAGE_CONTROL_NONE != hw_data->voltage_control) polaris10_populate_smc_voltage_tables(hwmgr, table); table->SystemFlags = 0; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_AutomaticDCTransition)) table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StepVddc)) table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC; if (hw_data->is_memory_gddr5) table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5; if (hw_data->ulv_supported && table_info->us_ulv_voltage_offset) { result = polaris10_populate_ulv_state(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize ULV state!", return result); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_ULV_PARAMETER, SMU7_CGULVPARAMETER_DFLT); } result = polaris10_populate_smc_link_level(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Link Level!", return result); result = polaris10_populate_all_graphic_levels(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Graphics Level!", return result); result = polaris10_populate_all_memory_levels(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Memory Level!", return result); result = polaris10_populate_smc_acpi_level(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize ACPI Level!", return result); result = polaris10_populate_smc_vce_level(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize VCE Level!", return result); /* Since only the initial state is completely set up at this point * (the other states are just copies of the boot state) we only * need to populate the ARB settings for the initial state. */ result = polaris10_program_memory_timing_parameters(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to Write ARB settings for the initial state.", return result); result = polaris10_populate_smc_uvd_level(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize UVD Level!", return result); result = polaris10_populate_smc_boot_level(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot Level!", return result); result = polaris10_populate_smc_initailial_state(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result); result = polaris10_populate_bapm_parameters_in_dpm_table(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ClockStretcher)) { result = polaris10_populate_clock_stretcher_data_table(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to populate Clock Stretcher Data Table!", return result); } result = polaris10_populate_avfs_parameters(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to populate AVFS Parameters!", return result;); table->CurrSclkPllRange = 0xff; table->GraphicsVoltageChangeEnable = 1; table->GraphicsThermThrottleEnable = 1; table->GraphicsInterval = 1; table->VoltageInterval = 1; table->ThermalInterval = 1; table->TemperatureLimitHigh = table_info->cac_dtp_table->usTargetOperatingTemp * SMU7_Q88_FORMAT_CONVERSION_UNIT; table->TemperatureLimitLow = (table_info->cac_dtp_table->usTargetOperatingTemp - 1) * SMU7_Q88_FORMAT_CONVERSION_UNIT; table->MemoryVoltageChangeEnable = 1; table->MemoryInterval = 1; table->VoltageResponseTime = 0; table->PhaseResponseTime = 0; table->MemoryThermThrottleEnable = 1; table->PCIeBootLinkLevel = 0; table->PCIeGenInterval = 1; table->VRConfig = 0; result = polaris10_populate_vr_config(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to populate VRConfig setting!", return result); hw_data->vr_config = table->VRConfig; table->ThermGpio = 17; table->SclkStepSize = 0x4000; if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) { table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift; } else { table->VRHotGpio = SMU7_UNUSED_GPIO_PIN; phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_RegulatorHot); } if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID, &gpio_pin)) { table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_AutomaticDCTransition); } else { table->AcDcGpio = SMU7_UNUSED_GPIO_PIN; phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_AutomaticDCTransition); } /* Thermal Output GPIO */ if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin)) { phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ThermalOutGPIO); table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift; /* For porlarity read GPIOPAD_A with assigned Gpio pin * since VBIOS will program this register to set 'inactive state', * driver can then determine 'active state' from this and * program SMU with correct polarity */ table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) & (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0; table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY; /* if required, combine VRHot/PCC with thermal out GPIO */ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_RegulatorHot) && phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_CombinePCCWithThermalSignal)) table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT; } else { table->ThermOutGpio = 17; table->ThermOutPolarity = 1; table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE; } /* Populate BIF_SCLK levels into SMC DPM table */ for (i = 0; i <= hw_data->dpm_table.pcie_speed_table.count; i++) { result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, smu_data->bif_sclk_table[i], ÷rs); PP_ASSERT_WITH_CODE((result == 0), "Can not find DFS divide id for Sclk", return result); if (i == 0) table->Ulv.BifSclkDfs = PP_HOST_TO_SMC_US((USHORT)(dividers.pll_post_divider)); else table->LinkLevel[i-1].BifSclkDfs = PP_HOST_TO_SMC_US((USHORT)(dividers.pll_post_divider)); } for (i = 0; i < SMU74_MAX_ENTRIES_SMIO; i++) table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]); CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags); CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig); CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1); CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2); CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize); CONVERT_FROM_HOST_TO_SMC_UL(table->CurrSclkPllRange); CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh); CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow); CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime); CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime); /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ result = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.dpm_table_start + offsetof(SMU74_Discrete_DpmTable, SystemFlags), (uint8_t *)&(table->SystemFlags), sizeof(SMU74_Discrete_DpmTable) - 3 * sizeof(SMU74_PIDController), SMC_RAM_END); PP_ASSERT_WITH_CODE(0 == result, "Failed to upload dpm data to SMC memory!", return result); result = polaris10_init_arb_table_index(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to upload arb data to SMC memory!", return result); result = polaris10_populate_pm_fuses(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to populate PM fuses to SMC memory!", return result); return 0; } static int polaris10_program_mem_timing_parameters(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK)) return polaris10_program_memory_timing_parameters(hwmgr); return 0; } int polaris10_thermal_avfs_enable(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); if (!hwmgr->avfs_supported) return 0; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetGBDroopSettings, data->avfs_vdroop_override_setting); smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs); /* Apply avfs cks-off voltages to avoid the overshoot * when switching to the highest sclk frequency */ if (data->apply_avfs_cks_off_voltage) smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ApplyAvfsCksOffVoltage); return 0; } static int polaris10_thermal_setup_fan_table(struct pp_hwmgr *hwmgr) { struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); SMU74_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE }; uint32_t duty100; uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2; uint16_t fdo_min, slope1, slope2; uint32_t reference_clock; int res; uint64_t tmp64; if (hwmgr->thermal_controller.fanInfo.bNoFan) { phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); return 0; } if (smu_data->smu7_data.fan_table_start == 0) { phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); return 0; } duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100); if (duty100 == 0) { phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); return 0; } /* use hardware fan control */ if (hwmgr->thermal_controller.use_hw_fan_control) return 0; tmp64 = hwmgr->thermal_controller.advanceFanControlParameters. usPWMMin * duty100; do_div(tmp64, 10000); fdo_min = (uint16_t)tmp64; t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin; t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed; pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin; pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed; slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100); slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100); fan_table.TempMin = cpu_to_be16((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMin) / 100); fan_table.TempMed = cpu_to_be16((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMed) / 100); fan_table.TempMax = cpu_to_be16((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMax) / 100); fan_table.Slope1 = cpu_to_be16(slope1); fan_table.Slope2 = cpu_to_be16(slope2); fan_table.FdoMin = cpu_to_be16(fdo_min); fan_table.HystDown = cpu_to_be16(hwmgr-> thermal_controller.advanceFanControlParameters.ucTHyst); fan_table.HystUp = cpu_to_be16(1); fan_table.HystSlope = cpu_to_be16(1); fan_table.TempRespLim = cpu_to_be16(5); reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev); fan_table.RefreshPeriod = cpu_to_be32((hwmgr-> thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600); fan_table.FdoMax = cpu_to_be16((uint16_t)duty100); fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD( hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL); res = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END); if (!res && hwmgr->thermal_controller. advanceFanControlParameters.ucMinimumPWMLimit) res = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetFanMinPwm, hwmgr->thermal_controller. advanceFanControlParameters.ucMinimumPWMLimit); if (!res && hwmgr->thermal_controller. advanceFanControlParameters.ulMinFanSCLKAcousticLimit) res = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetFanSclkTarget, hwmgr->thermal_controller. advanceFanControlParameters.ulMinFanSCLKAcousticLimit); if (res) phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); return 0; } static int polaris10_update_uvd_smc_table(struct pp_hwmgr *hwmgr) { struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); uint32_t mm_boot_level_offset, mm_boot_level_value; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); smu_data->smc_state_table.UvdBootLevel = 0; if (table_info->mm_dep_table->count > 0) smu_data->smc_state_table.UvdBootLevel = (uint8_t) (table_info->mm_dep_table->count - 1); mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU74_Discrete_DpmTable, UvdBootLevel); mm_boot_level_offset /= 4; mm_boot_level_offset *= 4; mm_boot_level_value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset); mm_boot_level_value &= 0x00FFFFFF; mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24; cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDDPM) || phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_UVDDPM_SetEnabledMask, (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel)); return 0; } static int polaris10_update_vce_smc_table(struct pp_hwmgr *hwmgr) { struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); uint32_t mm_boot_level_offset, mm_boot_level_value; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) smu_data->smc_state_table.VceBootLevel = (uint8_t) (table_info->mm_dep_table->count - 1); else smu_data->smc_state_table.VceBootLevel = 0; mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU74_Discrete_DpmTable, VceBootLevel); mm_boot_level_offset /= 4; mm_boot_level_offset *= 4; mm_boot_level_value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset); mm_boot_level_value &= 0xFF00FFFF; mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16; cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_VCEDPM_SetEnabledMask, (uint32_t)1 << smu_data->smc_state_table.VceBootLevel); return 0; } static int polaris10_update_bif_smc_table(struct pp_hwmgr *hwmgr) { struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table; int max_entry, i; max_entry = (SMU74_MAX_LEVELS_LINK < pcie_table->count) ? SMU74_MAX_LEVELS_LINK : pcie_table->count; /* Setup BIF_SCLK levels */ for (i = 0; i < max_entry; i++) smu_data->bif_sclk_table[i] = pcie_table->entries[i].pcie_sclk; return 0; } static int polaris10_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type) { switch (type) { case SMU_UVD_TABLE: polaris10_update_uvd_smc_table(hwmgr); break; case SMU_VCE_TABLE: polaris10_update_vce_smc_table(hwmgr); break; case SMU_BIF_TABLE: polaris10_update_bif_smc_table(hwmgr); default: break; } return 0; } static int polaris10_update_sclk_threshold(struct pp_hwmgr *hwmgr) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); int result = 0; uint32_t low_sclk_interrupt_threshold = 0; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkThrottleLowNotification) && (data->low_sclk_interrupt_threshold != 0)) { low_sclk_interrupt_threshold = data->low_sclk_interrupt_threshold; CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold); result = smu7_copy_bytes_to_smc( hwmgr, smu_data->smu7_data.dpm_table_start + offsetof(SMU74_Discrete_DpmTable, LowSclkInterruptThreshold), (uint8_t *)&low_sclk_interrupt_threshold, sizeof(uint32_t), SMC_RAM_END); } PP_ASSERT_WITH_CODE((result == 0), "Failed to update SCLK threshold!", return result); result = polaris10_program_mem_timing_parameters(hwmgr); PP_ASSERT_WITH_CODE((result == 0), "Failed to program memory timing parameters!", ); return result; } static uint32_t polaris10_get_offsetof(uint32_t type, uint32_t member) { switch (type) { case SMU_SoftRegisters: switch (member) { case HandshakeDisables: return offsetof(SMU74_SoftRegisters, HandshakeDisables); case VoltageChangeTimeout: return offsetof(SMU74_SoftRegisters, VoltageChangeTimeout); case AverageGraphicsActivity: return offsetof(SMU74_SoftRegisters, AverageGraphicsActivity); case AverageMemoryActivity: return offsetof(SMU74_SoftRegisters, AverageMemoryActivity); case PreVBlankGap: return offsetof(SMU74_SoftRegisters, PreVBlankGap); case VBlankTimeout: return offsetof(SMU74_SoftRegisters, VBlankTimeout); case UcodeLoadStatus: return offsetof(SMU74_SoftRegisters, UcodeLoadStatus); case DRAM_LOG_ADDR_H: return offsetof(SMU74_SoftRegisters, DRAM_LOG_ADDR_H); case DRAM_LOG_ADDR_L: return offsetof(SMU74_SoftRegisters, DRAM_LOG_ADDR_L); case DRAM_LOG_PHY_ADDR_H: return offsetof(SMU74_SoftRegisters, DRAM_LOG_PHY_ADDR_H); case DRAM_LOG_PHY_ADDR_L: return offsetof(SMU74_SoftRegisters, DRAM_LOG_PHY_ADDR_L); case DRAM_LOG_BUFF_SIZE: return offsetof(SMU74_SoftRegisters, DRAM_LOG_BUFF_SIZE); } break; case SMU_Discrete_DpmTable: switch (member) { case UvdBootLevel: return offsetof(SMU74_Discrete_DpmTable, UvdBootLevel); case VceBootLevel: return offsetof(SMU74_Discrete_DpmTable, VceBootLevel); case LowSclkInterruptThreshold: return offsetof(SMU74_Discrete_DpmTable, LowSclkInterruptThreshold); } break; } pr_warn("can't get the offset of type %x member %x\n", type, member); return 0; } static uint32_t polaris10_get_mac_definition(uint32_t value) { switch (value) { case SMU_MAX_LEVELS_GRAPHICS: return SMU74_MAX_LEVELS_GRAPHICS; case SMU_MAX_LEVELS_MEMORY: return SMU74_MAX_LEVELS_MEMORY; case SMU_MAX_LEVELS_LINK: return SMU74_MAX_LEVELS_LINK; case SMU_MAX_ENTRIES_SMIO: return SMU74_MAX_ENTRIES_SMIO; case SMU_MAX_LEVELS_VDDC: return SMU74_MAX_LEVELS_VDDC; case SMU_MAX_LEVELS_VDDGFX: return SMU74_MAX_LEVELS_VDDGFX; case SMU_MAX_LEVELS_VDDCI: return SMU74_MAX_LEVELS_VDDCI; case SMU_MAX_LEVELS_MVDD: return SMU74_MAX_LEVELS_MVDD; case SMU_UVD_MCLK_HANDSHAKE_DISABLE: return SMU7_UVD_MCLK_HANDSHAKE_DISABLE; } pr_warn("can't get the mac of %x\n", value); return 0; } static int polaris10_process_firmware_header(struct pp_hwmgr *hwmgr) { struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); uint32_t tmp; int result; bool error = false; result = smu7_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU74_Firmware_Header, DpmTable), &tmp, SMC_RAM_END); if (0 == result) smu_data->smu7_data.dpm_table_start = tmp; error |= (0 != result); result = smu7_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU74_Firmware_Header, SoftRegisters), &tmp, SMC_RAM_END); if (!result) { data->soft_regs_start = tmp; smu_data->smu7_data.soft_regs_start = tmp; } error |= (0 != result); result = smu7_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU74_Firmware_Header, mcRegisterTable), &tmp, SMC_RAM_END); if (!result) smu_data->smu7_data.mc_reg_table_start = tmp; result = smu7_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU74_Firmware_Header, FanTable), &tmp, SMC_RAM_END); if (!result) smu_data->smu7_data.fan_table_start = tmp; error |= (0 != result); result = smu7_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU74_Firmware_Header, mcArbDramTimingTable), &tmp, SMC_RAM_END); if (!result) smu_data->smu7_data.arb_table_start = tmp; error |= (0 != result); result = smu7_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU74_Firmware_Header, Version), &tmp, SMC_RAM_END); if (!result) hwmgr->microcode_version_info.SMC = tmp; error |= (0 != result); return error ? -1 : 0; } static bool polaris10_is_dpm_running(struct pp_hwmgr *hwmgr) { return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON)) ? true : false; } static int polaris10_update_dpm_settings(struct pp_hwmgr *hwmgr, void *profile_setting) { struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *) (hwmgr->smu_backend); struct profile_mode_setting *setting; struct SMU74_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel; uint32_t array = smu_data->smu7_data.dpm_table_start + offsetof(SMU74_Discrete_DpmTable, GraphicsLevel); uint32_t mclk_array = smu_data->smu7_data.dpm_table_start + offsetof(SMU74_Discrete_DpmTable, MemoryLevel); struct SMU74_Discrete_MemoryLevel *mclk_levels = smu_data->smc_state_table.MemoryLevel; uint32_t i; uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp; if (profile_setting == NULL) return -EINVAL; setting = (struct profile_mode_setting *)profile_setting; if (setting->bupdate_sclk) { if (!data->sclk_dpm_key_disabled) smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel); for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) { if (levels[i].ActivityLevel != cpu_to_be16(setting->sclk_activity)) { levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity); clk_activity_offset = array + (sizeof(SMU74_Discrete_GraphicsLevel) * i) + offsetof(SMU74_Discrete_GraphicsLevel, ActivityLevel); offset = clk_activity_offset & ~0x3; tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset)); tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t)); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp)); } if (levels[i].UpHyst != setting->sclk_up_hyst || levels[i].DownHyst != setting->sclk_down_hyst) { levels[i].UpHyst = setting->sclk_up_hyst; levels[i].DownHyst = setting->sclk_down_hyst; up_hyst_offset = array + (sizeof(SMU74_Discrete_GraphicsLevel) * i) + offsetof(SMU74_Discrete_GraphicsLevel, UpHyst); down_hyst_offset = array + (sizeof(SMU74_Discrete_GraphicsLevel) * i) + offsetof(SMU74_Discrete_GraphicsLevel, DownHyst); offset = up_hyst_offset & ~0x3; tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset)); tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpHyst, sizeof(uint8_t)); tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownHyst, sizeof(uint8_t)); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp)); } } if (!data->sclk_dpm_key_disabled) smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel); } if (setting->bupdate_mclk) { if (!data->mclk_dpm_key_disabled) smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel); for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) { if (mclk_levels[i].ActivityLevel != cpu_to_be16(setting->mclk_activity)) { mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity); clk_activity_offset = mclk_array + (sizeof(SMU74_Discrete_MemoryLevel) * i) + offsetof(SMU74_Discrete_MemoryLevel, ActivityLevel); offset = clk_activity_offset & ~0x3; tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset)); tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t)); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp)); } if (mclk_levels[i].UpHyst != setting->mclk_up_hyst || mclk_levels[i].DownHyst != setting->mclk_down_hyst) { mclk_levels[i].UpHyst = setting->mclk_up_hyst; mclk_levels[i].DownHyst = setting->mclk_down_hyst; up_hyst_offset = mclk_array + (sizeof(SMU74_Discrete_MemoryLevel) * i) + offsetof(SMU74_Discrete_MemoryLevel, UpHyst); down_hyst_offset = mclk_array + (sizeof(SMU74_Discrete_MemoryLevel) * i) + offsetof(SMU74_Discrete_MemoryLevel, DownHyst); offset = up_hyst_offset & ~0x3; tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset)); tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpHyst, sizeof(uint8_t)); tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownHyst, sizeof(uint8_t)); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp)); } } if (!data->mclk_dpm_key_disabled) smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel); } return 0; } const struct pp_smumgr_func polaris10_smu_funcs = { .name = "polaris10_smu", .smu_init = polaris10_smu_init, .smu_fini = smu7_smu_fini, .start_smu = polaris10_start_smu, .check_fw_load_finish = smu7_check_fw_load_finish, .request_smu_load_fw = smu7_reload_firmware, .request_smu_load_specific_fw = NULL, .send_msg_to_smc = smu7_send_msg_to_smc, .send_msg_to_smc_with_parameter = smu7_send_msg_to_smc_with_parameter, .download_pptable_settings = NULL, .upload_pptable_settings = NULL, .update_smc_table = polaris10_update_smc_table, .get_offsetof = polaris10_get_offsetof, .process_firmware_header = polaris10_process_firmware_header, .init_smc_table = polaris10_init_smc_table, .update_sclk_threshold = polaris10_update_sclk_threshold, .thermal_avfs_enable = polaris10_thermal_avfs_enable, .thermal_setup_fan_table = polaris10_thermal_setup_fan_table, .populate_all_graphic_levels = polaris10_populate_all_graphic_levels, .populate_all_memory_levels = polaris10_populate_all_memory_levels, .get_mac_definition = polaris10_get_mac_definition, .is_dpm_running = polaris10_is_dpm_running, .is_hw_avfs_present = polaris10_is_hw_avfs_present, .update_dpm_settings = polaris10_update_dpm_settings, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1