Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mihail Atanassov | 1755 | 62.97% | 7 | 30.43% |
Liviu Dudau | 760 | 27.27% | 5 | 21.74% |
Shawn Guo | 103 | 3.70% | 1 | 4.35% |
Brian Starkey | 53 | 1.90% | 1 | 4.35% |
Maarten Lankhorst | 34 | 1.22% | 1 | 4.35% |
Ayan Halder | 33 | 1.18% | 1 | 4.35% |
Laurent Pinchart | 27 | 0.97% | 3 | 13.04% |
Arnd Bergmann | 12 | 0.43% | 1 | 4.35% |
Jose Abreu | 7 | 0.25% | 1 | 4.35% |
Thomas Gleixner | 2 | 0.07% | 1 | 4.35% |
Daniel Vetter | 1 | 0.04% | 1 | 4.35% |
Total | 2787 | 23 |
// SPDX-License-Identifier: GPL-2.0-only /* * (C) COPYRIGHT 2016 ARM Limited. All rights reserved. * Author: Liviu Dudau <Liviu.Dudau@arm.com> * * ARM Mali DP500/DP550/DP650 driver (crtc operations) */ #include <drm/drmP.h> #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_crtc.h> #include <drm/drm_probe_helper.h> #include <linux/clk.h> #include <linux/pm_runtime.h> #include <video/videomode.h> #include "malidp_drv.h" #include "malidp_hw.h" static enum drm_mode_status malidp_crtc_mode_valid(struct drm_crtc *crtc, const struct drm_display_mode *mode) { struct malidp_drm *malidp = crtc_to_malidp_device(crtc); struct malidp_hw_device *hwdev = malidp->dev; /* * check that the hardware can drive the required clock rate, * but skip the check if the clock is meant to be disabled (req_rate = 0) */ long rate, req_rate = mode->crtc_clock * 1000; if (req_rate) { rate = clk_round_rate(hwdev->pxlclk, req_rate); if (rate != req_rate) { DRM_DEBUG_DRIVER("pxlclk doesn't support %ld Hz\n", req_rate); return MODE_NOCLOCK; } } return MODE_OK; } static void malidp_crtc_atomic_enable(struct drm_crtc *crtc, struct drm_crtc_state *old_state) { struct malidp_drm *malidp = crtc_to_malidp_device(crtc); struct malidp_hw_device *hwdev = malidp->dev; struct videomode vm; int err = pm_runtime_get_sync(crtc->dev->dev); if (err < 0) { DRM_DEBUG_DRIVER("Failed to enable runtime power management: %d\n", err); return; } drm_display_mode_to_videomode(&crtc->state->adjusted_mode, &vm); clk_prepare_enable(hwdev->pxlclk); /* We rely on firmware to set mclk to a sensible level. */ clk_set_rate(hwdev->pxlclk, crtc->state->adjusted_mode.crtc_clock * 1000); hwdev->hw->modeset(hwdev, &vm); hwdev->hw->leave_config_mode(hwdev); drm_crtc_vblank_on(crtc); } static void malidp_crtc_atomic_disable(struct drm_crtc *crtc, struct drm_crtc_state *old_state) { struct malidp_drm *malidp = crtc_to_malidp_device(crtc); struct malidp_hw_device *hwdev = malidp->dev; int err; /* always disable planes on the CRTC that is being turned off */ drm_atomic_helper_disable_planes_on_crtc(old_state, false); drm_crtc_vblank_off(crtc); hwdev->hw->enter_config_mode(hwdev); clk_disable_unprepare(hwdev->pxlclk); err = pm_runtime_put(crtc->dev->dev); if (err < 0) { DRM_DEBUG_DRIVER("Failed to disable runtime power management: %d\n", err); } } static const struct gamma_curve_segment { u16 start; u16 end; } segments[MALIDP_COEFFTAB_NUM_COEFFS] = { /* sector 0 */ { 0, 0 }, { 1, 1 }, { 2, 2 }, { 3, 3 }, { 4, 4 }, { 5, 5 }, { 6, 6 }, { 7, 7 }, { 8, 8 }, { 9, 9 }, { 10, 10 }, { 11, 11 }, { 12, 12 }, { 13, 13 }, { 14, 14 }, { 15, 15 }, /* sector 1 */ { 16, 19 }, { 20, 23 }, { 24, 27 }, { 28, 31 }, /* sector 2 */ { 32, 39 }, { 40, 47 }, { 48, 55 }, { 56, 63 }, /* sector 3 */ { 64, 79 }, { 80, 95 }, { 96, 111 }, { 112, 127 }, /* sector 4 */ { 128, 159 }, { 160, 191 }, { 192, 223 }, { 224, 255 }, /* sector 5 */ { 256, 319 }, { 320, 383 }, { 384, 447 }, { 448, 511 }, /* sector 6 */ { 512, 639 }, { 640, 767 }, { 768, 895 }, { 896, 1023 }, { 1024, 1151 }, { 1152, 1279 }, { 1280, 1407 }, { 1408, 1535 }, { 1536, 1663 }, { 1664, 1791 }, { 1792, 1919 }, { 1920, 2047 }, { 2048, 2175 }, { 2176, 2303 }, { 2304, 2431 }, { 2432, 2559 }, { 2560, 2687 }, { 2688, 2815 }, { 2816, 2943 }, { 2944, 3071 }, { 3072, 3199 }, { 3200, 3327 }, { 3328, 3455 }, { 3456, 3583 }, { 3584, 3711 }, { 3712, 3839 }, { 3840, 3967 }, { 3968, 4095 }, }; #define DE_COEFTAB_DATA(a, b) ((((a) & 0xfff) << 16) | (((b) & 0xfff))) static void malidp_generate_gamma_table(struct drm_property_blob *lut_blob, u32 coeffs[MALIDP_COEFFTAB_NUM_COEFFS]) { struct drm_color_lut *lut = (struct drm_color_lut *)lut_blob->data; int i; for (i = 0; i < MALIDP_COEFFTAB_NUM_COEFFS; ++i) { u32 a, b, delta_in, out_start, out_end; delta_in = segments[i].end - segments[i].start; /* DP has 12-bit internal precision for its LUTs. */ out_start = drm_color_lut_extract(lut[segments[i].start].green, 12); out_end = drm_color_lut_extract(lut[segments[i].end].green, 12); a = (delta_in == 0) ? 0 : ((out_end - out_start) * 256) / delta_in; b = out_start; coeffs[i] = DE_COEFTAB_DATA(a, b); } } /* * Check if there is a new gamma LUT and if it is of an acceptable size. Also, * reject any LUTs that use distinct red, green, and blue curves. */ static int malidp_crtc_atomic_check_gamma(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct malidp_crtc_state *mc = to_malidp_crtc_state(state); struct drm_color_lut *lut; size_t lut_size; int i; if (!state->color_mgmt_changed || !state->gamma_lut) return 0; if (crtc->state->gamma_lut && (crtc->state->gamma_lut->base.id == state->gamma_lut->base.id)) return 0; if (state->gamma_lut->length % sizeof(struct drm_color_lut)) return -EINVAL; lut_size = state->gamma_lut->length / sizeof(struct drm_color_lut); if (lut_size != MALIDP_GAMMA_LUT_SIZE) return -EINVAL; lut = (struct drm_color_lut *)state->gamma_lut->data; for (i = 0; i < lut_size; ++i) if (!((lut[i].red == lut[i].green) && (lut[i].red == lut[i].blue))) return -EINVAL; if (!state->mode_changed) { int ret; state->mode_changed = true; /* * Kerneldoc for drm_atomic_helper_check_modeset mandates that * it be invoked when the driver sets ->mode_changed. Since * changing the gamma LUT doesn't depend on any external * resources, it is safe to call it only once. */ ret = drm_atomic_helper_check_modeset(crtc->dev, state->state); if (ret) return ret; } malidp_generate_gamma_table(state->gamma_lut, mc->gamma_coeffs); return 0; } /* * Check if there is a new CTM and if it contains valid input. Valid here means * that the number is inside the representable range for a Q3.12 number, * excluding truncating the fractional part of the input data. * * The COLORADJ registers can be changed atomically. */ static int malidp_crtc_atomic_check_ctm(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct malidp_crtc_state *mc = to_malidp_crtc_state(state); struct drm_color_ctm *ctm; int i; if (!state->color_mgmt_changed) return 0; if (!state->ctm) return 0; if (crtc->state->ctm && (crtc->state->ctm->base.id == state->ctm->base.id)) return 0; /* * The size of the ctm is checked in * drm_atomic_replace_property_blob_from_id. */ ctm = (struct drm_color_ctm *)state->ctm->data; for (i = 0; i < ARRAY_SIZE(ctm->matrix); ++i) { /* Convert from S31.32 to Q3.12. */ s64 val = ctm->matrix[i]; u32 mag = ((((u64)val) & ~BIT_ULL(63)) >> 20) & GENMASK_ULL(14, 0); /* * Convert to 2s complement and check the destination's top bit * for overflow. NB: Can't check before converting or it'd * incorrectly reject the case: * sign == 1 * mag == 0x2000 */ if (val & BIT_ULL(63)) mag = ~mag + 1; if (!!(val & BIT_ULL(63)) != !!(mag & BIT(14))) return -EINVAL; mc->coloradj_coeffs[i] = mag; } return 0; } static int malidp_crtc_atomic_check_scaling(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct malidp_drm *malidp = crtc_to_malidp_device(crtc); struct malidp_hw_device *hwdev = malidp->dev; struct malidp_crtc_state *cs = to_malidp_crtc_state(state); struct malidp_se_config *s = &cs->scaler_config; struct drm_plane *plane; struct videomode vm; const struct drm_plane_state *pstate; u32 h_upscale_factor = 0; /* U16.16 */ u32 v_upscale_factor = 0; /* U16.16 */ u8 scaling = cs->scaled_planes_mask; int ret; if (!scaling) { s->scale_enable = false; goto mclk_calc; } /* The scaling engine can only handle one plane at a time. */ if (scaling & (scaling - 1)) return -EINVAL; drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) { struct malidp_plane *mp = to_malidp_plane(plane); u32 phase; if (!(mp->layer->id & scaling)) continue; /* * Convert crtc_[w|h] to U32.32, then divide by U16.16 src_[w|h] * to get the U16.16 result. */ h_upscale_factor = div_u64((u64)pstate->crtc_w << 32, pstate->src_w); v_upscale_factor = div_u64((u64)pstate->crtc_h << 32, pstate->src_h); s->enhancer_enable = ((h_upscale_factor >> 16) >= 2 || (v_upscale_factor >> 16) >= 2); if (pstate->rotation & MALIDP_ROTATED_MASK) { s->input_w = pstate->src_h >> 16; s->input_h = pstate->src_w >> 16; } else { s->input_w = pstate->src_w >> 16; s->input_h = pstate->src_h >> 16; } s->output_w = pstate->crtc_w; s->output_h = pstate->crtc_h; #define SE_N_PHASE 4 #define SE_SHIFT_N_PHASE 12 /* Calculate initial_phase and delta_phase for horizontal. */ phase = s->input_w; s->h_init_phase = ((phase << SE_N_PHASE) / s->output_w + 1) / 2; phase = s->input_w; phase <<= (SE_SHIFT_N_PHASE + SE_N_PHASE); s->h_delta_phase = phase / s->output_w; /* Same for vertical. */ phase = s->input_h; s->v_init_phase = ((phase << SE_N_PHASE) / s->output_h + 1) / 2; phase = s->input_h; phase <<= (SE_SHIFT_N_PHASE + SE_N_PHASE); s->v_delta_phase = phase / s->output_h; #undef SE_N_PHASE #undef SE_SHIFT_N_PHASE s->plane_src_id = mp->layer->id; } s->scale_enable = true; s->hcoeff = malidp_se_select_coeffs(h_upscale_factor); s->vcoeff = malidp_se_select_coeffs(v_upscale_factor); mclk_calc: drm_display_mode_to_videomode(&state->adjusted_mode, &vm); ret = hwdev->hw->se_calc_mclk(hwdev, s, &vm); if (ret < 0) return -EINVAL; return 0; } static int malidp_crtc_atomic_check(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct malidp_drm *malidp = crtc_to_malidp_device(crtc); struct malidp_hw_device *hwdev = malidp->dev; struct drm_plane *plane; const struct drm_plane_state *pstate; u32 rot_mem_free, rot_mem_usable; int rotated_planes = 0; int ret; /* * check if there is enough rotation memory available for planes * that need 90° and 270° rotion or planes that are compressed. * Each plane has set its required memory size in the ->plane_check() * callback, here we only make sure that the sums are less that the * total usable memory. * * The rotation memory allocation algorithm (for each plane): * a. If no more rotated or compressed planes exist, all remaining * rotate memory in the bank is available for use by the plane. * b. If other rotated or compressed planes exist, and plane's * layer ID is DE_VIDEO1, it can use all the memory from first bank * if secondary rotation memory bank is available, otherwise it can * use up to half the bank's memory. * c. If other rotated or compressed planes exist, and plane's layer ID * is not DE_VIDEO1, it can use half of the available memory. * * Note: this algorithm assumes that the order in which the planes are * checked always has DE_VIDEO1 plane first in the list if it is * rotated. Because that is how we create the planes in the first * place, under current DRM version things work, but if ever the order * in which drm_atomic_crtc_state_for_each_plane() iterates over planes * changes, we need to pre-sort the planes before validation. */ /* first count the number of rotated planes */ drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) { struct drm_framebuffer *fb = pstate->fb; if ((pstate->rotation & MALIDP_ROTATED_MASK) || fb->modifier) rotated_planes++; } rot_mem_free = hwdev->rotation_memory[0]; /* * if we have more than 1 plane using rotation memory, use the second * block of rotation memory as well */ if (rotated_planes > 1) rot_mem_free += hwdev->rotation_memory[1]; /* now validate the rotation memory requirements */ drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) { struct malidp_plane *mp = to_malidp_plane(plane); struct malidp_plane_state *ms = to_malidp_plane_state(pstate); struct drm_framebuffer *fb = pstate->fb; if ((pstate->rotation & MALIDP_ROTATED_MASK) || fb->modifier) { /* process current plane */ rotated_planes--; if (!rotated_planes) { /* no more rotated planes, we can use what's left */ rot_mem_usable = rot_mem_free; } else { if ((mp->layer->id != DE_VIDEO1) || (hwdev->rotation_memory[1] == 0)) rot_mem_usable = rot_mem_free / 2; else rot_mem_usable = hwdev->rotation_memory[0]; } rot_mem_free -= rot_mem_usable; if (ms->rotmem_size > rot_mem_usable) return -EINVAL; } } /* If only the writeback routing has changed, we don't need a modeset */ if (state->connectors_changed) { u32 old_mask = crtc->state->connector_mask; u32 new_mask = state->connector_mask; if ((old_mask ^ new_mask) == (1 << drm_connector_index(&malidp->mw_connector.base))) state->connectors_changed = false; } ret = malidp_crtc_atomic_check_gamma(crtc, state); ret = ret ? ret : malidp_crtc_atomic_check_ctm(crtc, state); ret = ret ? ret : malidp_crtc_atomic_check_scaling(crtc, state); return ret; } static const struct drm_crtc_helper_funcs malidp_crtc_helper_funcs = { .mode_valid = malidp_crtc_mode_valid, .atomic_check = malidp_crtc_atomic_check, .atomic_enable = malidp_crtc_atomic_enable, .atomic_disable = malidp_crtc_atomic_disable, }; static struct drm_crtc_state *malidp_crtc_duplicate_state(struct drm_crtc *crtc) { struct malidp_crtc_state *state, *old_state; if (WARN_ON(!crtc->state)) return NULL; old_state = to_malidp_crtc_state(crtc->state); state = kmalloc(sizeof(*state), GFP_KERNEL); if (!state) return NULL; __drm_atomic_helper_crtc_duplicate_state(crtc, &state->base); memcpy(state->gamma_coeffs, old_state->gamma_coeffs, sizeof(state->gamma_coeffs)); memcpy(state->coloradj_coeffs, old_state->coloradj_coeffs, sizeof(state->coloradj_coeffs)); memcpy(&state->scaler_config, &old_state->scaler_config, sizeof(state->scaler_config)); state->scaled_planes_mask = 0; return &state->base; } static void malidp_crtc_destroy_state(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct malidp_crtc_state *mali_state = NULL; if (state) { mali_state = to_malidp_crtc_state(state); __drm_atomic_helper_crtc_destroy_state(state); } kfree(mali_state); } static void malidp_crtc_reset(struct drm_crtc *crtc) { struct malidp_crtc_state *state = kzalloc(sizeof(*state), GFP_KERNEL); if (crtc->state) malidp_crtc_destroy_state(crtc, crtc->state); __drm_atomic_helper_crtc_reset(crtc, &state->base); } static int malidp_crtc_enable_vblank(struct drm_crtc *crtc) { struct malidp_drm *malidp = crtc_to_malidp_device(crtc); struct malidp_hw_device *hwdev = malidp->dev; malidp_hw_enable_irq(hwdev, MALIDP_DE_BLOCK, hwdev->hw->map.de_irq_map.vsync_irq); return 0; } static void malidp_crtc_disable_vblank(struct drm_crtc *crtc) { struct malidp_drm *malidp = crtc_to_malidp_device(crtc); struct malidp_hw_device *hwdev = malidp->dev; malidp_hw_disable_irq(hwdev, MALIDP_DE_BLOCK, hwdev->hw->map.de_irq_map.vsync_irq); } static const struct drm_crtc_funcs malidp_crtc_funcs = { .gamma_set = drm_atomic_helper_legacy_gamma_set, .destroy = drm_crtc_cleanup, .set_config = drm_atomic_helper_set_config, .page_flip = drm_atomic_helper_page_flip, .reset = malidp_crtc_reset, .atomic_duplicate_state = malidp_crtc_duplicate_state, .atomic_destroy_state = malidp_crtc_destroy_state, .enable_vblank = malidp_crtc_enable_vblank, .disable_vblank = malidp_crtc_disable_vblank, }; int malidp_crtc_init(struct drm_device *drm) { struct malidp_drm *malidp = drm->dev_private; struct drm_plane *primary = NULL, *plane; int ret; ret = malidp_de_planes_init(drm); if (ret < 0) { DRM_ERROR("Failed to initialise planes\n"); return ret; } drm_for_each_plane(plane, drm) { if (plane->type == DRM_PLANE_TYPE_PRIMARY) { primary = plane; break; } } if (!primary) { DRM_ERROR("no primary plane found\n"); return -EINVAL; } ret = drm_crtc_init_with_planes(drm, &malidp->crtc, primary, NULL, &malidp_crtc_funcs, NULL); if (ret) return ret; drm_crtc_helper_add(&malidp->crtc, &malidp_crtc_helper_funcs); drm_mode_crtc_set_gamma_size(&malidp->crtc, MALIDP_GAMMA_LUT_SIZE); /* No inverse-gamma: it is per-plane. */ drm_crtc_enable_color_mgmt(&malidp->crtc, 0, true, MALIDP_GAMMA_LUT_SIZE); malidp_se_set_enh_coeffs(malidp->dev); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1