Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Seung-Woo Kim | 2120 | 31.85% | 2 | 1.72% |
Andrzej Hajda | 1240 | 18.63% | 22 | 18.97% |
Sean Paul | 719 | 10.80% | 3 | 2.59% |
Marek Szyprowski | 656 | 9.86% | 17 | 14.66% |
Gustavo Padovan | 531 | 7.98% | 11 | 9.48% |
Tobias Jakobi | 410 | 6.16% | 16 | 13.79% |
Rahul Sharma | 282 | 4.24% | 10 | 8.62% |
Joonyoung Shim | 199 | 2.99% | 6 | 5.17% |
Christoph Manszewski | 163 | 2.45% | 4 | 3.45% |
Inki Dae | 133 | 2.00% | 5 | 4.31% |
Prathyush K | 83 | 1.25% | 2 | 1.72% |
Sam Ravnborg | 25 | 0.38% | 1 | 0.86% |
Alban Browaeys | 21 | 0.32% | 1 | 0.86% |
Ville Syrjälä | 18 | 0.27% | 2 | 1.72% |
Sachin Kamat | 12 | 0.18% | 4 | 3.45% |
Shirish S | 12 | 0.18% | 1 | 0.86% |
Daniel Drake | 10 | 0.15% | 1 | 0.86% |
Sjoerd Simons | 7 | 0.11% | 1 | 0.86% |
Arvind Yadav | 5 | 0.08% | 1 | 0.86% |
Thomas Gleixner | 2 | 0.03% | 1 | 0.86% |
Tomasz Stanislawski | 2 | 0.03% | 1 | 0.86% |
Arnd Bergmann | 2 | 0.03% | 1 | 0.86% |
Daniel Stone | 2 | 0.03% | 1 | 0.86% |
Dan Carpenter | 1 | 0.02% | 1 | 0.86% |
Krzysztof Kozlowski | 1 | 0.02% | 1 | 0.86% |
Total | 6656 | 116 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2011 Samsung Electronics Co.Ltd * Authors: * Seung-Woo Kim <sw0312.kim@samsung.com> * Inki Dae <inki.dae@samsung.com> * Joonyoung Shim <jy0922.shim@samsung.com> * * Based on drivers/media/video/s5p-tv/mixer_reg.c */ #include <linux/clk.h> #include <linux/component.h> #include <linux/delay.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/kernel.h> #include <linux/ktime.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/regulator/consumer.h> #include <linux/spinlock.h> #include <linux/wait.h> #include <drm/drm_fourcc.h> #include <drm/drm_vblank.h> #include <drm/exynos_drm.h> #include "exynos_drm_crtc.h" #include "exynos_drm_drv.h" #include "exynos_drm_fb.h" #include "exynos_drm_plane.h" #include "regs-mixer.h" #include "regs-vp.h" #define MIXER_WIN_NR 3 #define VP_DEFAULT_WIN 2 /* * Mixer color space conversion coefficient triplet. * Used for CSC from RGB to YCbCr. * Each coefficient is a 10-bit fixed point number with * sign and no integer part, i.e. * [0:8] = fractional part (representing a value y = x / 2^9) * [9] = sign * Negative values are encoded with two's complement. */ #define MXR_CSC_C(x) ((int)((x) * 512.0) & 0x3ff) #define MXR_CSC_CT(a0, a1, a2) \ ((MXR_CSC_C(a0) << 20) | (MXR_CSC_C(a1) << 10) | (MXR_CSC_C(a2) << 0)) /* YCbCr value, used for mixer background color configuration. */ #define MXR_YCBCR_VAL(y, cb, cr) (((y) << 16) | ((cb) << 8) | ((cr) << 0)) /* The pixelformats that are natively supported by the mixer. */ #define MXR_FORMAT_RGB565 4 #define MXR_FORMAT_ARGB1555 5 #define MXR_FORMAT_ARGB4444 6 #define MXR_FORMAT_ARGB8888 7 enum mixer_version_id { MXR_VER_0_0_0_16, MXR_VER_16_0_33_0, MXR_VER_128_0_0_184, }; enum mixer_flag_bits { MXR_BIT_POWERED, MXR_BIT_VSYNC, MXR_BIT_INTERLACE, MXR_BIT_VP_ENABLED, MXR_BIT_HAS_SCLK, }; static const uint32_t mixer_formats[] = { DRM_FORMAT_XRGB4444, DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555, DRM_FORMAT_ARGB1555, DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888, DRM_FORMAT_ARGB8888, }; static const uint32_t vp_formats[] = { DRM_FORMAT_NV12, DRM_FORMAT_NV21, }; struct mixer_context { struct platform_device *pdev; struct device *dev; struct drm_device *drm_dev; struct exynos_drm_crtc *crtc; struct exynos_drm_plane planes[MIXER_WIN_NR]; unsigned long flags; int irq; void __iomem *mixer_regs; void __iomem *vp_regs; spinlock_t reg_slock; struct clk *mixer; struct clk *vp; struct clk *hdmi; struct clk *sclk_mixer; struct clk *sclk_hdmi; struct clk *mout_mixer; enum mixer_version_id mxr_ver; int scan_value; }; struct mixer_drv_data { enum mixer_version_id version; bool is_vp_enabled; bool has_sclk; }; static const struct exynos_drm_plane_config plane_configs[MIXER_WIN_NR] = { { .zpos = 0, .type = DRM_PLANE_TYPE_PRIMARY, .pixel_formats = mixer_formats, .num_pixel_formats = ARRAY_SIZE(mixer_formats), .capabilities = EXYNOS_DRM_PLANE_CAP_DOUBLE | EXYNOS_DRM_PLANE_CAP_ZPOS | EXYNOS_DRM_PLANE_CAP_PIX_BLEND | EXYNOS_DRM_PLANE_CAP_WIN_BLEND, }, { .zpos = 1, .type = DRM_PLANE_TYPE_CURSOR, .pixel_formats = mixer_formats, .num_pixel_formats = ARRAY_SIZE(mixer_formats), .capabilities = EXYNOS_DRM_PLANE_CAP_DOUBLE | EXYNOS_DRM_PLANE_CAP_ZPOS | EXYNOS_DRM_PLANE_CAP_PIX_BLEND | EXYNOS_DRM_PLANE_CAP_WIN_BLEND, }, { .zpos = 2, .type = DRM_PLANE_TYPE_OVERLAY, .pixel_formats = vp_formats, .num_pixel_formats = ARRAY_SIZE(vp_formats), .capabilities = EXYNOS_DRM_PLANE_CAP_SCALE | EXYNOS_DRM_PLANE_CAP_ZPOS | EXYNOS_DRM_PLANE_CAP_TILE | EXYNOS_DRM_PLANE_CAP_WIN_BLEND, }, }; static const u8 filter_y_horiz_tap8[] = { 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 2, 4, 5, 6, 6, 6, 6, 6, 5, 5, 4, 3, 2, 1, 1, 0, -6, -12, -16, -18, -20, -21, -20, -20, -18, -16, -13, -10, -8, -5, -2, 127, 126, 125, 121, 114, 107, 99, 89, 79, 68, 57, 46, 35, 25, 16, 8, }; static const u8 filter_y_vert_tap4[] = { 0, -3, -6, -8, -8, -8, -8, -7, -6, -5, -4, -3, -2, -1, -1, 0, 127, 126, 124, 118, 111, 102, 92, 81, 70, 59, 48, 37, 27, 19, 11, 5, 0, 5, 11, 19, 27, 37, 48, 59, 70, 81, 92, 102, 111, 118, 124, 126, 0, 0, -1, -1, -2, -3, -4, -5, -6, -7, -8, -8, -8, -8, -6, -3, }; static const u8 filter_cr_horiz_tap4[] = { 0, -3, -6, -8, -8, -8, -8, -7, -6, -5, -4, -3, -2, -1, -1, 0, 127, 126, 124, 118, 111, 102, 92, 81, 70, 59, 48, 37, 27, 19, 11, 5, }; static inline u32 vp_reg_read(struct mixer_context *ctx, u32 reg_id) { return readl(ctx->vp_regs + reg_id); } static inline void vp_reg_write(struct mixer_context *ctx, u32 reg_id, u32 val) { writel(val, ctx->vp_regs + reg_id); } static inline void vp_reg_writemask(struct mixer_context *ctx, u32 reg_id, u32 val, u32 mask) { u32 old = vp_reg_read(ctx, reg_id); val = (val & mask) | (old & ~mask); writel(val, ctx->vp_regs + reg_id); } static inline u32 mixer_reg_read(struct mixer_context *ctx, u32 reg_id) { return readl(ctx->mixer_regs + reg_id); } static inline void mixer_reg_write(struct mixer_context *ctx, u32 reg_id, u32 val) { writel(val, ctx->mixer_regs + reg_id); } static inline void mixer_reg_writemask(struct mixer_context *ctx, u32 reg_id, u32 val, u32 mask) { u32 old = mixer_reg_read(ctx, reg_id); val = (val & mask) | (old & ~mask); writel(val, ctx->mixer_regs + reg_id); } static void mixer_regs_dump(struct mixer_context *ctx) { #define DUMPREG(reg_id) \ do { \ DRM_DEV_DEBUG_KMS(ctx->dev, #reg_id " = %08x\n", \ (u32)readl(ctx->mixer_regs + reg_id)); \ } while (0) DUMPREG(MXR_STATUS); DUMPREG(MXR_CFG); DUMPREG(MXR_INT_EN); DUMPREG(MXR_INT_STATUS); DUMPREG(MXR_LAYER_CFG); DUMPREG(MXR_VIDEO_CFG); DUMPREG(MXR_GRAPHIC0_CFG); DUMPREG(MXR_GRAPHIC0_BASE); DUMPREG(MXR_GRAPHIC0_SPAN); DUMPREG(MXR_GRAPHIC0_WH); DUMPREG(MXR_GRAPHIC0_SXY); DUMPREG(MXR_GRAPHIC0_DXY); DUMPREG(MXR_GRAPHIC1_CFG); DUMPREG(MXR_GRAPHIC1_BASE); DUMPREG(MXR_GRAPHIC1_SPAN); DUMPREG(MXR_GRAPHIC1_WH); DUMPREG(MXR_GRAPHIC1_SXY); DUMPREG(MXR_GRAPHIC1_DXY); #undef DUMPREG } static void vp_regs_dump(struct mixer_context *ctx) { #define DUMPREG(reg_id) \ do { \ DRM_DEV_DEBUG_KMS(ctx->dev, #reg_id " = %08x\n", \ (u32) readl(ctx->vp_regs + reg_id)); \ } while (0) DUMPREG(VP_ENABLE); DUMPREG(VP_SRESET); DUMPREG(VP_SHADOW_UPDATE); DUMPREG(VP_FIELD_ID); DUMPREG(VP_MODE); DUMPREG(VP_IMG_SIZE_Y); DUMPREG(VP_IMG_SIZE_C); DUMPREG(VP_PER_RATE_CTRL); DUMPREG(VP_TOP_Y_PTR); DUMPREG(VP_BOT_Y_PTR); DUMPREG(VP_TOP_C_PTR); DUMPREG(VP_BOT_C_PTR); DUMPREG(VP_ENDIAN_MODE); DUMPREG(VP_SRC_H_POSITION); DUMPREG(VP_SRC_V_POSITION); DUMPREG(VP_SRC_WIDTH); DUMPREG(VP_SRC_HEIGHT); DUMPREG(VP_DST_H_POSITION); DUMPREG(VP_DST_V_POSITION); DUMPREG(VP_DST_WIDTH); DUMPREG(VP_DST_HEIGHT); DUMPREG(VP_H_RATIO); DUMPREG(VP_V_RATIO); #undef DUMPREG } static inline void vp_filter_set(struct mixer_context *ctx, int reg_id, const u8 *data, unsigned int size) { /* assure 4-byte align */ BUG_ON(size & 3); for (; size; size -= 4, reg_id += 4, data += 4) { u32 val = (data[0] << 24) | (data[1] << 16) | (data[2] << 8) | data[3]; vp_reg_write(ctx, reg_id, val); } } static void vp_default_filter(struct mixer_context *ctx) { vp_filter_set(ctx, VP_POLY8_Y0_LL, filter_y_horiz_tap8, sizeof(filter_y_horiz_tap8)); vp_filter_set(ctx, VP_POLY4_Y0_LL, filter_y_vert_tap4, sizeof(filter_y_vert_tap4)); vp_filter_set(ctx, VP_POLY4_C0_LL, filter_cr_horiz_tap4, sizeof(filter_cr_horiz_tap4)); } static void mixer_cfg_gfx_blend(struct mixer_context *ctx, unsigned int win, unsigned int pixel_alpha, unsigned int alpha) { u32 win_alpha = alpha >> 8; u32 val; val = MXR_GRP_CFG_COLOR_KEY_DISABLE; /* no blank key */ switch (pixel_alpha) { case DRM_MODE_BLEND_PIXEL_NONE: break; case DRM_MODE_BLEND_COVERAGE: val |= MXR_GRP_CFG_PIXEL_BLEND_EN; break; case DRM_MODE_BLEND_PREMULTI: default: val |= MXR_GRP_CFG_BLEND_PRE_MUL; val |= MXR_GRP_CFG_PIXEL_BLEND_EN; break; } if (alpha != DRM_BLEND_ALPHA_OPAQUE) { val |= MXR_GRP_CFG_WIN_BLEND_EN; val |= win_alpha; } mixer_reg_writemask(ctx, MXR_GRAPHIC_CFG(win), val, MXR_GRP_CFG_MISC_MASK); } static void mixer_cfg_vp_blend(struct mixer_context *ctx, unsigned int alpha) { u32 win_alpha = alpha >> 8; u32 val = 0; if (alpha != DRM_BLEND_ALPHA_OPAQUE) { val |= MXR_VID_CFG_BLEND_EN; val |= win_alpha; } mixer_reg_write(ctx, MXR_VIDEO_CFG, val); } static bool mixer_is_synced(struct mixer_context *ctx) { u32 base, shadow; if (ctx->mxr_ver == MXR_VER_16_0_33_0 || ctx->mxr_ver == MXR_VER_128_0_0_184) return !(mixer_reg_read(ctx, MXR_CFG) & MXR_CFG_LAYER_UPDATE_COUNT_MASK); if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags) && vp_reg_read(ctx, VP_SHADOW_UPDATE)) return false; base = mixer_reg_read(ctx, MXR_CFG); shadow = mixer_reg_read(ctx, MXR_CFG_S); if (base != shadow) return false; base = mixer_reg_read(ctx, MXR_GRAPHIC_BASE(0)); shadow = mixer_reg_read(ctx, MXR_GRAPHIC_BASE_S(0)); if (base != shadow) return false; base = mixer_reg_read(ctx, MXR_GRAPHIC_BASE(1)); shadow = mixer_reg_read(ctx, MXR_GRAPHIC_BASE_S(1)); if (base != shadow) return false; return true; } static int mixer_wait_for_sync(struct mixer_context *ctx) { ktime_t timeout = ktime_add_us(ktime_get(), 100000); while (!mixer_is_synced(ctx)) { usleep_range(1000, 2000); if (ktime_compare(ktime_get(), timeout) > 0) return -ETIMEDOUT; } return 0; } static void mixer_disable_sync(struct mixer_context *ctx) { mixer_reg_writemask(ctx, MXR_STATUS, 0, MXR_STATUS_SYNC_ENABLE); } static void mixer_enable_sync(struct mixer_context *ctx) { if (ctx->mxr_ver == MXR_VER_16_0_33_0 || ctx->mxr_ver == MXR_VER_128_0_0_184) mixer_reg_writemask(ctx, MXR_CFG, ~0, MXR_CFG_LAYER_UPDATE); mixer_reg_writemask(ctx, MXR_STATUS, ~0, MXR_STATUS_SYNC_ENABLE); if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) vp_reg_write(ctx, VP_SHADOW_UPDATE, VP_SHADOW_UPDATE_ENABLE); } static void mixer_cfg_scan(struct mixer_context *ctx, int width, int height) { u32 val; /* choosing between interlace and progressive mode */ val = test_bit(MXR_BIT_INTERLACE, &ctx->flags) ? MXR_CFG_SCAN_INTERLACE : MXR_CFG_SCAN_PROGRESSIVE; if (ctx->mxr_ver == MXR_VER_128_0_0_184) mixer_reg_write(ctx, MXR_RESOLUTION, MXR_MXR_RES_HEIGHT(height) | MXR_MXR_RES_WIDTH(width)); else val |= ctx->scan_value; mixer_reg_writemask(ctx, MXR_CFG, val, MXR_CFG_SCAN_MASK); } static void mixer_cfg_rgb_fmt(struct mixer_context *ctx, struct drm_display_mode *mode) { enum hdmi_quantization_range range = drm_default_rgb_quant_range(mode); u32 val; if (mode->vdisplay < 720) { val = MXR_CFG_RGB601; } else { val = MXR_CFG_RGB709; /* Configure the BT.709 CSC matrix for full range RGB. */ mixer_reg_write(ctx, MXR_CM_COEFF_Y, MXR_CSC_CT( 0.184, 0.614, 0.063) | MXR_CM_COEFF_RGB_FULL); mixer_reg_write(ctx, MXR_CM_COEFF_CB, MXR_CSC_CT(-0.102, -0.338, 0.440)); mixer_reg_write(ctx, MXR_CM_COEFF_CR, MXR_CSC_CT( 0.440, -0.399, -0.040)); } if (range == HDMI_QUANTIZATION_RANGE_FULL) val |= MXR_CFG_QUANT_RANGE_FULL; else val |= MXR_CFG_QUANT_RANGE_LIMITED; mixer_reg_writemask(ctx, MXR_CFG, val, MXR_CFG_RGB_FMT_MASK); } static void mixer_cfg_layer(struct mixer_context *ctx, unsigned int win, unsigned int priority, bool enable) { u32 val = enable ? ~0 : 0; switch (win) { case 0: mixer_reg_writemask(ctx, MXR_CFG, val, MXR_CFG_GRP0_ENABLE); mixer_reg_writemask(ctx, MXR_LAYER_CFG, MXR_LAYER_CFG_GRP0_VAL(priority), MXR_LAYER_CFG_GRP0_MASK); break; case 1: mixer_reg_writemask(ctx, MXR_CFG, val, MXR_CFG_GRP1_ENABLE); mixer_reg_writemask(ctx, MXR_LAYER_CFG, MXR_LAYER_CFG_GRP1_VAL(priority), MXR_LAYER_CFG_GRP1_MASK); break; case VP_DEFAULT_WIN: if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) { vp_reg_writemask(ctx, VP_ENABLE, val, VP_ENABLE_ON); mixer_reg_writemask(ctx, MXR_CFG, val, MXR_CFG_VP_ENABLE); mixer_reg_writemask(ctx, MXR_LAYER_CFG, MXR_LAYER_CFG_VP_VAL(priority), MXR_LAYER_CFG_VP_MASK); } break; } } static void mixer_run(struct mixer_context *ctx) { mixer_reg_writemask(ctx, MXR_STATUS, ~0, MXR_STATUS_REG_RUN); } static void mixer_stop(struct mixer_context *ctx) { int timeout = 20; mixer_reg_writemask(ctx, MXR_STATUS, 0, MXR_STATUS_REG_RUN); while (!(mixer_reg_read(ctx, MXR_STATUS) & MXR_STATUS_REG_IDLE) && --timeout) usleep_range(10000, 12000); } static void mixer_commit(struct mixer_context *ctx) { struct drm_display_mode *mode = &ctx->crtc->base.state->adjusted_mode; mixer_cfg_scan(ctx, mode->hdisplay, mode->vdisplay); mixer_cfg_rgb_fmt(ctx, mode); mixer_run(ctx); } static void vp_video_buffer(struct mixer_context *ctx, struct exynos_drm_plane *plane) { struct exynos_drm_plane_state *state = to_exynos_plane_state(plane->base.state); struct drm_framebuffer *fb = state->base.fb; unsigned int priority = state->base.normalized_zpos + 1; unsigned long flags; dma_addr_t luma_addr[2], chroma_addr[2]; bool is_tiled, is_nv21; u32 val; is_nv21 = (fb->format->format == DRM_FORMAT_NV21); is_tiled = (fb->modifier == DRM_FORMAT_MOD_SAMSUNG_64_32_TILE); luma_addr[0] = exynos_drm_fb_dma_addr(fb, 0); chroma_addr[0] = exynos_drm_fb_dma_addr(fb, 1); if (test_bit(MXR_BIT_INTERLACE, &ctx->flags)) { if (is_tiled) { luma_addr[1] = luma_addr[0] + 0x40; chroma_addr[1] = chroma_addr[0] + 0x40; } else { luma_addr[1] = luma_addr[0] + fb->pitches[0]; chroma_addr[1] = chroma_addr[0] + fb->pitches[1]; } } else { luma_addr[1] = 0; chroma_addr[1] = 0; } spin_lock_irqsave(&ctx->reg_slock, flags); /* interlace or progressive scan mode */ val = (test_bit(MXR_BIT_INTERLACE, &ctx->flags) ? ~0 : 0); vp_reg_writemask(ctx, VP_MODE, val, VP_MODE_LINE_SKIP); /* setup format */ val = (is_nv21 ? VP_MODE_NV21 : VP_MODE_NV12); val |= (is_tiled ? VP_MODE_MEM_TILED : VP_MODE_MEM_LINEAR); vp_reg_writemask(ctx, VP_MODE, val, VP_MODE_FMT_MASK); /* setting size of input image */ vp_reg_write(ctx, VP_IMG_SIZE_Y, VP_IMG_HSIZE(fb->pitches[0]) | VP_IMG_VSIZE(fb->height)); /* chroma plane for NV12/NV21 is half the height of the luma plane */ vp_reg_write(ctx, VP_IMG_SIZE_C, VP_IMG_HSIZE(fb->pitches[1]) | VP_IMG_VSIZE(fb->height / 2)); vp_reg_write(ctx, VP_SRC_WIDTH, state->src.w); vp_reg_write(ctx, VP_SRC_H_POSITION, VP_SRC_H_POSITION_VAL(state->src.x)); vp_reg_write(ctx, VP_DST_WIDTH, state->crtc.w); vp_reg_write(ctx, VP_DST_H_POSITION, state->crtc.x); if (test_bit(MXR_BIT_INTERLACE, &ctx->flags)) { vp_reg_write(ctx, VP_SRC_HEIGHT, state->src.h / 2); vp_reg_write(ctx, VP_SRC_V_POSITION, state->src.y / 2); vp_reg_write(ctx, VP_DST_HEIGHT, state->crtc.h / 2); vp_reg_write(ctx, VP_DST_V_POSITION, state->crtc.y / 2); } else { vp_reg_write(ctx, VP_SRC_HEIGHT, state->src.h); vp_reg_write(ctx, VP_SRC_V_POSITION, state->src.y); vp_reg_write(ctx, VP_DST_HEIGHT, state->crtc.h); vp_reg_write(ctx, VP_DST_V_POSITION, state->crtc.y); } vp_reg_write(ctx, VP_H_RATIO, state->h_ratio); vp_reg_write(ctx, VP_V_RATIO, state->v_ratio); vp_reg_write(ctx, VP_ENDIAN_MODE, VP_ENDIAN_MODE_LITTLE); /* set buffer address to vp */ vp_reg_write(ctx, VP_TOP_Y_PTR, luma_addr[0]); vp_reg_write(ctx, VP_BOT_Y_PTR, luma_addr[1]); vp_reg_write(ctx, VP_TOP_C_PTR, chroma_addr[0]); vp_reg_write(ctx, VP_BOT_C_PTR, chroma_addr[1]); mixer_cfg_layer(ctx, plane->index, priority, true); mixer_cfg_vp_blend(ctx, state->base.alpha); spin_unlock_irqrestore(&ctx->reg_slock, flags); mixer_regs_dump(ctx); vp_regs_dump(ctx); } static void mixer_graph_buffer(struct mixer_context *ctx, struct exynos_drm_plane *plane) { struct exynos_drm_plane_state *state = to_exynos_plane_state(plane->base.state); struct drm_framebuffer *fb = state->base.fb; unsigned int priority = state->base.normalized_zpos + 1; unsigned long flags; unsigned int win = plane->index; unsigned int x_ratio = 0, y_ratio = 0; unsigned int dst_x_offset, dst_y_offset; unsigned int pixel_alpha; dma_addr_t dma_addr; unsigned int fmt; u32 val; if (fb->format->has_alpha) pixel_alpha = state->base.pixel_blend_mode; else pixel_alpha = DRM_MODE_BLEND_PIXEL_NONE; switch (fb->format->format) { case DRM_FORMAT_XRGB4444: case DRM_FORMAT_ARGB4444: fmt = MXR_FORMAT_ARGB4444; break; case DRM_FORMAT_XRGB1555: case DRM_FORMAT_ARGB1555: fmt = MXR_FORMAT_ARGB1555; break; case DRM_FORMAT_RGB565: fmt = MXR_FORMAT_RGB565; break; case DRM_FORMAT_XRGB8888: case DRM_FORMAT_ARGB8888: default: fmt = MXR_FORMAT_ARGB8888; break; } /* ratio is already checked by common plane code */ x_ratio = state->h_ratio == (1 << 15); y_ratio = state->v_ratio == (1 << 15); dst_x_offset = state->crtc.x; dst_y_offset = state->crtc.y; /* translate dma address base s.t. the source image offset is zero */ dma_addr = exynos_drm_fb_dma_addr(fb, 0) + (state->src.x * fb->format->cpp[0]) + (state->src.y * fb->pitches[0]); spin_lock_irqsave(&ctx->reg_slock, flags); /* setup format */ mixer_reg_writemask(ctx, MXR_GRAPHIC_CFG(win), MXR_GRP_CFG_FORMAT_VAL(fmt), MXR_GRP_CFG_FORMAT_MASK); /* setup geometry */ mixer_reg_write(ctx, MXR_GRAPHIC_SPAN(win), fb->pitches[0] / fb->format->cpp[0]); val = MXR_GRP_WH_WIDTH(state->src.w); val |= MXR_GRP_WH_HEIGHT(state->src.h); val |= MXR_GRP_WH_H_SCALE(x_ratio); val |= MXR_GRP_WH_V_SCALE(y_ratio); mixer_reg_write(ctx, MXR_GRAPHIC_WH(win), val); /* setup offsets in display image */ val = MXR_GRP_DXY_DX(dst_x_offset); val |= MXR_GRP_DXY_DY(dst_y_offset); mixer_reg_write(ctx, MXR_GRAPHIC_DXY(win), val); /* set buffer address to mixer */ mixer_reg_write(ctx, MXR_GRAPHIC_BASE(win), dma_addr); mixer_cfg_layer(ctx, win, priority, true); mixer_cfg_gfx_blend(ctx, win, pixel_alpha, state->base.alpha); spin_unlock_irqrestore(&ctx->reg_slock, flags); mixer_regs_dump(ctx); } static void vp_win_reset(struct mixer_context *ctx) { unsigned int tries = 100; vp_reg_write(ctx, VP_SRESET, VP_SRESET_PROCESSING); while (--tries) { /* waiting until VP_SRESET_PROCESSING is 0 */ if (~vp_reg_read(ctx, VP_SRESET) & VP_SRESET_PROCESSING) break; mdelay(10); } WARN(tries == 0, "failed to reset Video Processor\n"); } static void mixer_win_reset(struct mixer_context *ctx) { unsigned long flags; spin_lock_irqsave(&ctx->reg_slock, flags); mixer_reg_writemask(ctx, MXR_CFG, MXR_CFG_DST_HDMI, MXR_CFG_DST_MASK); /* set output in RGB888 mode */ mixer_reg_writemask(ctx, MXR_CFG, MXR_CFG_OUT_RGB888, MXR_CFG_OUT_MASK); /* 16 beat burst in DMA */ mixer_reg_writemask(ctx, MXR_STATUS, MXR_STATUS_16_BURST, MXR_STATUS_BURST_MASK); /* reset default layer priority */ mixer_reg_write(ctx, MXR_LAYER_CFG, 0); /* set all background colors to RGB (0,0,0) */ mixer_reg_write(ctx, MXR_BG_COLOR0, MXR_YCBCR_VAL(0, 128, 128)); mixer_reg_write(ctx, MXR_BG_COLOR1, MXR_YCBCR_VAL(0, 128, 128)); mixer_reg_write(ctx, MXR_BG_COLOR2, MXR_YCBCR_VAL(0, 128, 128)); if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) { /* configuration of Video Processor Registers */ vp_win_reset(ctx); vp_default_filter(ctx); } /* disable all layers */ mixer_reg_writemask(ctx, MXR_CFG, 0, MXR_CFG_GRP0_ENABLE); mixer_reg_writemask(ctx, MXR_CFG, 0, MXR_CFG_GRP1_ENABLE); if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) mixer_reg_writemask(ctx, MXR_CFG, 0, MXR_CFG_VP_ENABLE); /* set all source image offsets to zero */ mixer_reg_write(ctx, MXR_GRAPHIC_SXY(0), 0); mixer_reg_write(ctx, MXR_GRAPHIC_SXY(1), 0); spin_unlock_irqrestore(&ctx->reg_slock, flags); } static irqreturn_t mixer_irq_handler(int irq, void *arg) { struct mixer_context *ctx = arg; u32 val; spin_lock(&ctx->reg_slock); /* read interrupt status for handling and clearing flags for VSYNC */ val = mixer_reg_read(ctx, MXR_INT_STATUS); /* handling VSYNC */ if (val & MXR_INT_STATUS_VSYNC) { /* vsync interrupt use different bit for read and clear */ val |= MXR_INT_CLEAR_VSYNC; val &= ~MXR_INT_STATUS_VSYNC; /* interlace scan need to check shadow register */ if (test_bit(MXR_BIT_INTERLACE, &ctx->flags) && !mixer_is_synced(ctx)) goto out; drm_crtc_handle_vblank(&ctx->crtc->base); } out: /* clear interrupts */ mixer_reg_write(ctx, MXR_INT_STATUS, val); spin_unlock(&ctx->reg_slock); return IRQ_HANDLED; } static int mixer_resources_init(struct mixer_context *mixer_ctx) { struct device *dev = &mixer_ctx->pdev->dev; struct resource *res; int ret; spin_lock_init(&mixer_ctx->reg_slock); mixer_ctx->mixer = devm_clk_get(dev, "mixer"); if (IS_ERR(mixer_ctx->mixer)) { dev_err(dev, "failed to get clock 'mixer'\n"); return -ENODEV; } mixer_ctx->hdmi = devm_clk_get(dev, "hdmi"); if (IS_ERR(mixer_ctx->hdmi)) { dev_err(dev, "failed to get clock 'hdmi'\n"); return PTR_ERR(mixer_ctx->hdmi); } mixer_ctx->sclk_hdmi = devm_clk_get(dev, "sclk_hdmi"); if (IS_ERR(mixer_ctx->sclk_hdmi)) { dev_err(dev, "failed to get clock 'sclk_hdmi'\n"); return -ENODEV; } res = platform_get_resource(mixer_ctx->pdev, IORESOURCE_MEM, 0); if (res == NULL) { dev_err(dev, "get memory resource failed.\n"); return -ENXIO; } mixer_ctx->mixer_regs = devm_ioremap(dev, res->start, resource_size(res)); if (mixer_ctx->mixer_regs == NULL) { dev_err(dev, "register mapping failed.\n"); return -ENXIO; } res = platform_get_resource(mixer_ctx->pdev, IORESOURCE_IRQ, 0); if (res == NULL) { dev_err(dev, "get interrupt resource failed.\n"); return -ENXIO; } ret = devm_request_irq(dev, res->start, mixer_irq_handler, 0, "drm_mixer", mixer_ctx); if (ret) { dev_err(dev, "request interrupt failed.\n"); return ret; } mixer_ctx->irq = res->start; return 0; } static int vp_resources_init(struct mixer_context *mixer_ctx) { struct device *dev = &mixer_ctx->pdev->dev; struct resource *res; mixer_ctx->vp = devm_clk_get(dev, "vp"); if (IS_ERR(mixer_ctx->vp)) { dev_err(dev, "failed to get clock 'vp'\n"); return -ENODEV; } if (test_bit(MXR_BIT_HAS_SCLK, &mixer_ctx->flags)) { mixer_ctx->sclk_mixer = devm_clk_get(dev, "sclk_mixer"); if (IS_ERR(mixer_ctx->sclk_mixer)) { dev_err(dev, "failed to get clock 'sclk_mixer'\n"); return -ENODEV; } mixer_ctx->mout_mixer = devm_clk_get(dev, "mout_mixer"); if (IS_ERR(mixer_ctx->mout_mixer)) { dev_err(dev, "failed to get clock 'mout_mixer'\n"); return -ENODEV; } if (mixer_ctx->sclk_hdmi && mixer_ctx->mout_mixer) clk_set_parent(mixer_ctx->mout_mixer, mixer_ctx->sclk_hdmi); } res = platform_get_resource(mixer_ctx->pdev, IORESOURCE_MEM, 1); if (res == NULL) { dev_err(dev, "get memory resource failed.\n"); return -ENXIO; } mixer_ctx->vp_regs = devm_ioremap(dev, res->start, resource_size(res)); if (mixer_ctx->vp_regs == NULL) { dev_err(dev, "register mapping failed.\n"); return -ENXIO; } return 0; } static int mixer_initialize(struct mixer_context *mixer_ctx, struct drm_device *drm_dev) { int ret; mixer_ctx->drm_dev = drm_dev; /* acquire resources: regs, irqs, clocks */ ret = mixer_resources_init(mixer_ctx); if (ret) { DRM_DEV_ERROR(mixer_ctx->dev, "mixer_resources_init failed ret=%d\n", ret); return ret; } if (test_bit(MXR_BIT_VP_ENABLED, &mixer_ctx->flags)) { /* acquire vp resources: regs, irqs, clocks */ ret = vp_resources_init(mixer_ctx); if (ret) { DRM_DEV_ERROR(mixer_ctx->dev, "vp_resources_init failed ret=%d\n", ret); return ret; } } return exynos_drm_register_dma(drm_dev, mixer_ctx->dev); } static void mixer_ctx_remove(struct mixer_context *mixer_ctx) { exynos_drm_unregister_dma(mixer_ctx->drm_dev, mixer_ctx->dev); } static int mixer_enable_vblank(struct exynos_drm_crtc *crtc) { struct mixer_context *mixer_ctx = crtc->ctx; __set_bit(MXR_BIT_VSYNC, &mixer_ctx->flags); if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags)) return 0; /* enable vsync interrupt */ mixer_reg_writemask(mixer_ctx, MXR_INT_STATUS, ~0, MXR_INT_CLEAR_VSYNC); mixer_reg_writemask(mixer_ctx, MXR_INT_EN, ~0, MXR_INT_EN_VSYNC); return 0; } static void mixer_disable_vblank(struct exynos_drm_crtc *crtc) { struct mixer_context *mixer_ctx = crtc->ctx; __clear_bit(MXR_BIT_VSYNC, &mixer_ctx->flags); if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags)) return; /* disable vsync interrupt */ mixer_reg_writemask(mixer_ctx, MXR_INT_STATUS, ~0, MXR_INT_CLEAR_VSYNC); mixer_reg_writemask(mixer_ctx, MXR_INT_EN, 0, MXR_INT_EN_VSYNC); } static void mixer_atomic_begin(struct exynos_drm_crtc *crtc) { struct mixer_context *ctx = crtc->ctx; if (!test_bit(MXR_BIT_POWERED, &ctx->flags)) return; if (mixer_wait_for_sync(ctx)) dev_err(ctx->dev, "timeout waiting for VSYNC\n"); mixer_disable_sync(ctx); } static void mixer_update_plane(struct exynos_drm_crtc *crtc, struct exynos_drm_plane *plane) { struct mixer_context *mixer_ctx = crtc->ctx; DRM_DEV_DEBUG_KMS(mixer_ctx->dev, "win: %d\n", plane->index); if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags)) return; if (plane->index == VP_DEFAULT_WIN) vp_video_buffer(mixer_ctx, plane); else mixer_graph_buffer(mixer_ctx, plane); } static void mixer_disable_plane(struct exynos_drm_crtc *crtc, struct exynos_drm_plane *plane) { struct mixer_context *mixer_ctx = crtc->ctx; unsigned long flags; DRM_DEV_DEBUG_KMS(mixer_ctx->dev, "win: %d\n", plane->index); if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags)) return; spin_lock_irqsave(&mixer_ctx->reg_slock, flags); mixer_cfg_layer(mixer_ctx, plane->index, 0, false); spin_unlock_irqrestore(&mixer_ctx->reg_slock, flags); } static void mixer_atomic_flush(struct exynos_drm_crtc *crtc) { struct mixer_context *mixer_ctx = crtc->ctx; if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags)) return; mixer_enable_sync(mixer_ctx); exynos_crtc_handle_event(crtc); } static void mixer_enable(struct exynos_drm_crtc *crtc) { struct mixer_context *ctx = crtc->ctx; if (test_bit(MXR_BIT_POWERED, &ctx->flags)) return; pm_runtime_get_sync(ctx->dev); exynos_drm_pipe_clk_enable(crtc, true); mixer_disable_sync(ctx); mixer_reg_writemask(ctx, MXR_STATUS, ~0, MXR_STATUS_SOFT_RESET); if (test_bit(MXR_BIT_VSYNC, &ctx->flags)) { mixer_reg_writemask(ctx, MXR_INT_STATUS, ~0, MXR_INT_CLEAR_VSYNC); mixer_reg_writemask(ctx, MXR_INT_EN, ~0, MXR_INT_EN_VSYNC); } mixer_win_reset(ctx); mixer_commit(ctx); mixer_enable_sync(ctx); set_bit(MXR_BIT_POWERED, &ctx->flags); } static void mixer_disable(struct exynos_drm_crtc *crtc) { struct mixer_context *ctx = crtc->ctx; int i; if (!test_bit(MXR_BIT_POWERED, &ctx->flags)) return; mixer_stop(ctx); mixer_regs_dump(ctx); for (i = 0; i < MIXER_WIN_NR; i++) mixer_disable_plane(crtc, &ctx->planes[i]); exynos_drm_pipe_clk_enable(crtc, false); pm_runtime_put(ctx->dev); clear_bit(MXR_BIT_POWERED, &ctx->flags); } static int mixer_mode_valid(struct exynos_drm_crtc *crtc, const struct drm_display_mode *mode) { struct mixer_context *ctx = crtc->ctx; u32 w = mode->hdisplay, h = mode->vdisplay; DRM_DEV_DEBUG_KMS(ctx->dev, "xres=%d, yres=%d, refresh=%d, intl=%d\n", w, h, mode->vrefresh, !!(mode->flags & DRM_MODE_FLAG_INTERLACE)); if (ctx->mxr_ver == MXR_VER_128_0_0_184) return MODE_OK; if ((w >= 464 && w <= 720 && h >= 261 && h <= 576) || (w >= 1024 && w <= 1280 && h >= 576 && h <= 720) || (w >= 1664 && w <= 1920 && h >= 936 && h <= 1080)) return MODE_OK; if ((w == 1024 && h == 768) || (w == 1366 && h == 768) || (w == 1280 && h == 1024)) return MODE_OK; return MODE_BAD; } static bool mixer_mode_fixup(struct exynos_drm_crtc *crtc, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct mixer_context *ctx = crtc->ctx; int width = mode->hdisplay, height = mode->vdisplay, i; struct { int hdisplay, vdisplay, htotal, vtotal, scan_val; } static const modes[] = { { 720, 480, 858, 525, MXR_CFG_SCAN_NTSC | MXR_CFG_SCAN_SD }, { 720, 576, 864, 625, MXR_CFG_SCAN_PAL | MXR_CFG_SCAN_SD }, { 1280, 720, 1650, 750, MXR_CFG_SCAN_HD_720 | MXR_CFG_SCAN_HD }, { 1920, 1080, 2200, 1125, MXR_CFG_SCAN_HD_1080 | MXR_CFG_SCAN_HD } }; if (mode->flags & DRM_MODE_FLAG_INTERLACE) __set_bit(MXR_BIT_INTERLACE, &ctx->flags); else __clear_bit(MXR_BIT_INTERLACE, &ctx->flags); if (ctx->mxr_ver == MXR_VER_128_0_0_184) return true; for (i = 0; i < ARRAY_SIZE(modes); ++i) if (width <= modes[i].hdisplay && height <= modes[i].vdisplay) { ctx->scan_value = modes[i].scan_val; if (width < modes[i].hdisplay || height < modes[i].vdisplay) { adjusted_mode->hdisplay = modes[i].hdisplay; adjusted_mode->hsync_start = modes[i].hdisplay; adjusted_mode->hsync_end = modes[i].htotal; adjusted_mode->htotal = modes[i].htotal; adjusted_mode->vdisplay = modes[i].vdisplay; adjusted_mode->vsync_start = modes[i].vdisplay; adjusted_mode->vsync_end = modes[i].vtotal; adjusted_mode->vtotal = modes[i].vtotal; } return true; } return false; } static const struct exynos_drm_crtc_ops mixer_crtc_ops = { .enable = mixer_enable, .disable = mixer_disable, .enable_vblank = mixer_enable_vblank, .disable_vblank = mixer_disable_vblank, .atomic_begin = mixer_atomic_begin, .update_plane = mixer_update_plane, .disable_plane = mixer_disable_plane, .atomic_flush = mixer_atomic_flush, .mode_valid = mixer_mode_valid, .mode_fixup = mixer_mode_fixup, }; static const struct mixer_drv_data exynos5420_mxr_drv_data = { .version = MXR_VER_128_0_0_184, .is_vp_enabled = 0, }; static const struct mixer_drv_data exynos5250_mxr_drv_data = { .version = MXR_VER_16_0_33_0, .is_vp_enabled = 0, }; static const struct mixer_drv_data exynos4212_mxr_drv_data = { .version = MXR_VER_0_0_0_16, .is_vp_enabled = 1, }; static const struct mixer_drv_data exynos4210_mxr_drv_data = { .version = MXR_VER_0_0_0_16, .is_vp_enabled = 1, .has_sclk = 1, }; static const struct of_device_id mixer_match_types[] = { { .compatible = "samsung,exynos4210-mixer", .data = &exynos4210_mxr_drv_data, }, { .compatible = "samsung,exynos4212-mixer", .data = &exynos4212_mxr_drv_data, }, { .compatible = "samsung,exynos5-mixer", .data = &exynos5250_mxr_drv_data, }, { .compatible = "samsung,exynos5250-mixer", .data = &exynos5250_mxr_drv_data, }, { .compatible = "samsung,exynos5420-mixer", .data = &exynos5420_mxr_drv_data, }, { /* end node */ } }; MODULE_DEVICE_TABLE(of, mixer_match_types); static int mixer_bind(struct device *dev, struct device *manager, void *data) { struct mixer_context *ctx = dev_get_drvdata(dev); struct drm_device *drm_dev = data; struct exynos_drm_plane *exynos_plane; unsigned int i; int ret; ret = mixer_initialize(ctx, drm_dev); if (ret) return ret; for (i = 0; i < MIXER_WIN_NR; i++) { if (i == VP_DEFAULT_WIN && !test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) continue; ret = exynos_plane_init(drm_dev, &ctx->planes[i], i, &plane_configs[i]); if (ret) return ret; } exynos_plane = &ctx->planes[DEFAULT_WIN]; ctx->crtc = exynos_drm_crtc_create(drm_dev, &exynos_plane->base, EXYNOS_DISPLAY_TYPE_HDMI, &mixer_crtc_ops, ctx); if (IS_ERR(ctx->crtc)) { mixer_ctx_remove(ctx); ret = PTR_ERR(ctx->crtc); goto free_ctx; } return 0; free_ctx: devm_kfree(dev, ctx); return ret; } static void mixer_unbind(struct device *dev, struct device *master, void *data) { struct mixer_context *ctx = dev_get_drvdata(dev); mixer_ctx_remove(ctx); } static const struct component_ops mixer_component_ops = { .bind = mixer_bind, .unbind = mixer_unbind, }; static int mixer_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; const struct mixer_drv_data *drv; struct mixer_context *ctx; int ret; ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) { DRM_DEV_ERROR(dev, "failed to alloc mixer context.\n"); return -ENOMEM; } drv = of_device_get_match_data(dev); ctx->pdev = pdev; ctx->dev = dev; ctx->mxr_ver = drv->version; if (drv->is_vp_enabled) __set_bit(MXR_BIT_VP_ENABLED, &ctx->flags); if (drv->has_sclk) __set_bit(MXR_BIT_HAS_SCLK, &ctx->flags); platform_set_drvdata(pdev, ctx); ret = component_add(&pdev->dev, &mixer_component_ops); if (!ret) pm_runtime_enable(dev); return ret; } static int mixer_remove(struct platform_device *pdev) { pm_runtime_disable(&pdev->dev); component_del(&pdev->dev, &mixer_component_ops); return 0; } static int __maybe_unused exynos_mixer_suspend(struct device *dev) { struct mixer_context *ctx = dev_get_drvdata(dev); clk_disable_unprepare(ctx->hdmi); clk_disable_unprepare(ctx->mixer); if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) { clk_disable_unprepare(ctx->vp); if (test_bit(MXR_BIT_HAS_SCLK, &ctx->flags)) clk_disable_unprepare(ctx->sclk_mixer); } return 0; } static int __maybe_unused exynos_mixer_resume(struct device *dev) { struct mixer_context *ctx = dev_get_drvdata(dev); int ret; ret = clk_prepare_enable(ctx->mixer); if (ret < 0) { DRM_DEV_ERROR(ctx->dev, "Failed to prepare_enable the mixer clk [%d]\n", ret); return ret; } ret = clk_prepare_enable(ctx->hdmi); if (ret < 0) { DRM_DEV_ERROR(dev, "Failed to prepare_enable the hdmi clk [%d]\n", ret); return ret; } if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) { ret = clk_prepare_enable(ctx->vp); if (ret < 0) { DRM_DEV_ERROR(dev, "Failed to prepare_enable the vp clk [%d]\n", ret); return ret; } if (test_bit(MXR_BIT_HAS_SCLK, &ctx->flags)) { ret = clk_prepare_enable(ctx->sclk_mixer); if (ret < 0) { DRM_DEV_ERROR(dev, "Failed to prepare_enable the " \ "sclk_mixer clk [%d]\n", ret); return ret; } } } return 0; } static const struct dev_pm_ops exynos_mixer_pm_ops = { SET_RUNTIME_PM_OPS(exynos_mixer_suspend, exynos_mixer_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) }; struct platform_driver mixer_driver = { .driver = { .name = "exynos-mixer", .owner = THIS_MODULE, .pm = &exynos_mixer_pm_ops, .of_match_table = mixer_match_types, }, .probe = mixer_probe, .remove = mixer_remove, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1