Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Patrik Jakobsson | 3719 | 95.51% | 14 | 46.67% |
Peter Rosin | 74 | 1.90% | 1 | 3.33% |
Ville Syrjälä | 21 | 0.54% | 3 | 10.00% |
Sam Ravnborg | 17 | 0.44% | 1 | 3.33% |
Daniel Vetter | 15 | 0.39% | 3 | 10.00% |
Daniel Stone | 14 | 0.36% | 1 | 3.33% |
Gustavo A. R. Silva | 12 | 0.31% | 1 | 3.33% |
Matt Roper | 6 | 0.15% | 1 | 3.33% |
Jani Nikula | 5 | 0.13% | 1 | 3.33% |
Maarten Lankhorst | 4 | 0.10% | 1 | 3.33% |
Thomas Zimmermann | 3 | 0.08% | 1 | 3.33% |
Gustavo Padovan | 2 | 0.05% | 1 | 3.33% |
Thomas Gleixner | 2 | 0.05% | 1 | 3.33% |
Total | 3894 | 30 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright © 2006-2011 Intel Corporation * * Authors: * Eric Anholt <eric@anholt.net> * Patrik Jakobsson <patrik.r.jakobsson@gmail.com> */ #include <linux/delay.h> #include <linux/highmem.h> #include <drm/drm_crtc.h> #include <drm/drm_fourcc.h> #include <drm/drm_vblank.h> #include "framebuffer.h" #include "gma_display.h" #include "psb_drv.h" #include "psb_intel_drv.h" #include "psb_intel_reg.h" /** * Returns whether any output on the specified pipe is of the specified type */ bool gma_pipe_has_type(struct drm_crtc *crtc, int type) { struct drm_device *dev = crtc->dev; struct drm_mode_config *mode_config = &dev->mode_config; struct drm_connector *l_entry; list_for_each_entry(l_entry, &mode_config->connector_list, head) { if (l_entry->encoder && l_entry->encoder->crtc == crtc) { struct gma_encoder *gma_encoder = gma_attached_encoder(l_entry); if (gma_encoder->type == type) return true; } } return false; } void gma_wait_for_vblank(struct drm_device *dev) { /* Wait for 20ms, i.e. one cycle at 50hz. */ mdelay(20); } int gma_pipe_set_base(struct drm_crtc *crtc, int x, int y, struct drm_framebuffer *old_fb) { struct drm_device *dev = crtc->dev; struct drm_psb_private *dev_priv = dev->dev_private; struct gma_crtc *gma_crtc = to_gma_crtc(crtc); struct drm_framebuffer *fb = crtc->primary->fb; struct gtt_range *gtt; int pipe = gma_crtc->pipe; const struct psb_offset *map = &dev_priv->regmap[pipe]; unsigned long start, offset; u32 dspcntr; int ret = 0; if (!gma_power_begin(dev, true)) return 0; /* no fb bound */ if (!fb) { dev_err(dev->dev, "No FB bound\n"); goto gma_pipe_cleaner; } gtt = to_gtt_range(fb->obj[0]); /* We are displaying this buffer, make sure it is actually loaded into the GTT */ ret = psb_gtt_pin(gtt); if (ret < 0) goto gma_pipe_set_base_exit; start = gtt->offset; offset = y * fb->pitches[0] + x * fb->format->cpp[0]; REG_WRITE(map->stride, fb->pitches[0]); dspcntr = REG_READ(map->cntr); dspcntr &= ~DISPPLANE_PIXFORMAT_MASK; switch (fb->format->cpp[0] * 8) { case 8: dspcntr |= DISPPLANE_8BPP; break; case 16: if (fb->format->depth == 15) dspcntr |= DISPPLANE_15_16BPP; else dspcntr |= DISPPLANE_16BPP; break; case 24: case 32: dspcntr |= DISPPLANE_32BPP_NO_ALPHA; break; default: dev_err(dev->dev, "Unknown color depth\n"); ret = -EINVAL; goto gma_pipe_set_base_exit; } REG_WRITE(map->cntr, dspcntr); dev_dbg(dev->dev, "Writing base %08lX %08lX %d %d\n", start, offset, x, y); /* FIXME: Investigate whether this really is the base for psb and why the linear offset is named base for the other chips. map->surf should be the base and map->linoff the offset for all chips */ if (IS_PSB(dev)) { REG_WRITE(map->base, offset + start); REG_READ(map->base); } else { REG_WRITE(map->base, offset); REG_READ(map->base); REG_WRITE(map->surf, start); REG_READ(map->surf); } gma_pipe_cleaner: /* If there was a previous display we can now unpin it */ if (old_fb) psb_gtt_unpin(to_gtt_range(old_fb->obj[0])); gma_pipe_set_base_exit: gma_power_end(dev); return ret; } /* Loads the palette/gamma unit for the CRTC with the prepared values */ void gma_crtc_load_lut(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_psb_private *dev_priv = dev->dev_private; struct gma_crtc *gma_crtc = to_gma_crtc(crtc); const struct psb_offset *map = &dev_priv->regmap[gma_crtc->pipe]; int palreg = map->palette; u16 *r, *g, *b; int i; /* The clocks have to be on to load the palette. */ if (!crtc->enabled) return; r = crtc->gamma_store; g = r + crtc->gamma_size; b = g + crtc->gamma_size; if (gma_power_begin(dev, false)) { for (i = 0; i < 256; i++) { REG_WRITE(palreg + 4 * i, (((*r++ >> 8) + gma_crtc->lut_adj[i]) << 16) | (((*g++ >> 8) + gma_crtc->lut_adj[i]) << 8) | ((*b++ >> 8) + gma_crtc->lut_adj[i])); } gma_power_end(dev); } else { for (i = 0; i < 256; i++) { /* FIXME: Why pipe[0] and not pipe[..._crtc->pipe]? */ dev_priv->regs.pipe[0].palette[i] = (((*r++ >> 8) + gma_crtc->lut_adj[i]) << 16) | (((*g++ >> 8) + gma_crtc->lut_adj[i]) << 8) | ((*b++ >> 8) + gma_crtc->lut_adj[i]); } } } int gma_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green, u16 *blue, u32 size, struct drm_modeset_acquire_ctx *ctx) { gma_crtc_load_lut(crtc); return 0; } /** * Sets the power management mode of the pipe and plane. * * This code should probably grow support for turning the cursor off and back * on appropriately at the same time as we're turning the pipe off/on. */ void gma_crtc_dpms(struct drm_crtc *crtc, int mode) { struct drm_device *dev = crtc->dev; struct drm_psb_private *dev_priv = dev->dev_private; struct gma_crtc *gma_crtc = to_gma_crtc(crtc); int pipe = gma_crtc->pipe; const struct psb_offset *map = &dev_priv->regmap[pipe]; u32 temp; /* XXX: When our outputs are all unaware of DPMS modes other than off * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC. */ if (IS_CDV(dev)) dev_priv->ops->disable_sr(dev); switch (mode) { case DRM_MODE_DPMS_ON: case DRM_MODE_DPMS_STANDBY: case DRM_MODE_DPMS_SUSPEND: if (gma_crtc->active) break; gma_crtc->active = true; /* Enable the DPLL */ temp = REG_READ(map->dpll); if ((temp & DPLL_VCO_ENABLE) == 0) { REG_WRITE(map->dpll, temp); REG_READ(map->dpll); /* Wait for the clocks to stabilize. */ udelay(150); REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE); REG_READ(map->dpll); /* Wait for the clocks to stabilize. */ udelay(150); REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE); REG_READ(map->dpll); /* Wait for the clocks to stabilize. */ udelay(150); } /* Enable the plane */ temp = REG_READ(map->cntr); if ((temp & DISPLAY_PLANE_ENABLE) == 0) { REG_WRITE(map->cntr, temp | DISPLAY_PLANE_ENABLE); /* Flush the plane changes */ REG_WRITE(map->base, REG_READ(map->base)); } udelay(150); /* Enable the pipe */ temp = REG_READ(map->conf); if ((temp & PIPEACONF_ENABLE) == 0) REG_WRITE(map->conf, temp | PIPEACONF_ENABLE); temp = REG_READ(map->status); temp &= ~(0xFFFF); temp |= PIPE_FIFO_UNDERRUN; REG_WRITE(map->status, temp); REG_READ(map->status); gma_crtc_load_lut(crtc); /* Give the overlay scaler a chance to enable * if it's on this pipe */ /* psb_intel_crtc_dpms_video(crtc, true); TODO */ break; case DRM_MODE_DPMS_OFF: if (!gma_crtc->active) break; gma_crtc->active = false; /* Give the overlay scaler a chance to disable * if it's on this pipe */ /* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */ /* Disable the VGA plane that we never use */ REG_WRITE(VGACNTRL, VGA_DISP_DISABLE); /* Turn off vblank interrupts */ drm_crtc_vblank_off(crtc); /* Wait for vblank for the disable to take effect */ gma_wait_for_vblank(dev); /* Disable plane */ temp = REG_READ(map->cntr); if ((temp & DISPLAY_PLANE_ENABLE) != 0) { REG_WRITE(map->cntr, temp & ~DISPLAY_PLANE_ENABLE); /* Flush the plane changes */ REG_WRITE(map->base, REG_READ(map->base)); REG_READ(map->base); } /* Disable pipe */ temp = REG_READ(map->conf); if ((temp & PIPEACONF_ENABLE) != 0) { REG_WRITE(map->conf, temp & ~PIPEACONF_ENABLE); REG_READ(map->conf); } /* Wait for vblank for the disable to take effect. */ gma_wait_for_vblank(dev); udelay(150); /* Disable DPLL */ temp = REG_READ(map->dpll); if ((temp & DPLL_VCO_ENABLE) != 0) { REG_WRITE(map->dpll, temp & ~DPLL_VCO_ENABLE); REG_READ(map->dpll); } /* Wait for the clocks to turn off. */ udelay(150); break; } if (IS_CDV(dev)) dev_priv->ops->update_wm(dev, crtc); /* Set FIFO watermarks */ REG_WRITE(DSPARB, 0x3F3E); } int gma_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv, uint32_t handle, uint32_t width, uint32_t height) { struct drm_device *dev = crtc->dev; struct drm_psb_private *dev_priv = dev->dev_private; struct gma_crtc *gma_crtc = to_gma_crtc(crtc); int pipe = gma_crtc->pipe; uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR; uint32_t base = (pipe == 0) ? CURABASE : CURBBASE; uint32_t temp; size_t addr = 0; struct gtt_range *gt; struct gtt_range *cursor_gt = gma_crtc->cursor_gt; struct drm_gem_object *obj; void *tmp_dst, *tmp_src; int ret = 0, i, cursor_pages; /* If we didn't get a handle then turn the cursor off */ if (!handle) { temp = CURSOR_MODE_DISABLE; if (gma_power_begin(dev, false)) { REG_WRITE(control, temp); REG_WRITE(base, 0); gma_power_end(dev); } /* Unpin the old GEM object */ if (gma_crtc->cursor_obj) { gt = container_of(gma_crtc->cursor_obj, struct gtt_range, gem); psb_gtt_unpin(gt); drm_gem_object_put_unlocked(gma_crtc->cursor_obj); gma_crtc->cursor_obj = NULL; } return 0; } /* Currently we only support 64x64 cursors */ if (width != 64 || height != 64) { dev_dbg(dev->dev, "We currently only support 64x64 cursors\n"); return -EINVAL; } obj = drm_gem_object_lookup(file_priv, handle); if (!obj) { ret = -ENOENT; goto unlock; } if (obj->size < width * height * 4) { dev_dbg(dev->dev, "Buffer is too small\n"); ret = -ENOMEM; goto unref_cursor; } gt = container_of(obj, struct gtt_range, gem); /* Pin the memory into the GTT */ ret = psb_gtt_pin(gt); if (ret) { dev_err(dev->dev, "Can not pin down handle 0x%x\n", handle); goto unref_cursor; } if (dev_priv->ops->cursor_needs_phys) { if (cursor_gt == NULL) { dev_err(dev->dev, "No hardware cursor mem available"); ret = -ENOMEM; goto unref_cursor; } /* Prevent overflow */ if (gt->npage > 4) cursor_pages = 4; else cursor_pages = gt->npage; /* Copy the cursor to cursor mem */ tmp_dst = dev_priv->vram_addr + cursor_gt->offset; for (i = 0; i < cursor_pages; i++) { tmp_src = kmap(gt->pages[i]); memcpy(tmp_dst, tmp_src, PAGE_SIZE); kunmap(gt->pages[i]); tmp_dst += PAGE_SIZE; } addr = gma_crtc->cursor_addr; } else { addr = gt->offset; gma_crtc->cursor_addr = addr; } temp = 0; /* set the pipe for the cursor */ temp |= (pipe << 28); temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE; if (gma_power_begin(dev, false)) { REG_WRITE(control, temp); REG_WRITE(base, addr); gma_power_end(dev); } /* unpin the old bo */ if (gma_crtc->cursor_obj) { gt = container_of(gma_crtc->cursor_obj, struct gtt_range, gem); psb_gtt_unpin(gt); drm_gem_object_put_unlocked(gma_crtc->cursor_obj); } gma_crtc->cursor_obj = obj; unlock: return ret; unref_cursor: drm_gem_object_put_unlocked(obj); return ret; } int gma_crtc_cursor_move(struct drm_crtc *crtc, int x, int y) { struct drm_device *dev = crtc->dev; struct gma_crtc *gma_crtc = to_gma_crtc(crtc); int pipe = gma_crtc->pipe; uint32_t temp = 0; uint32_t addr; if (x < 0) { temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT); x = -x; } if (y < 0) { temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT); y = -y; } temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT); temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT); addr = gma_crtc->cursor_addr; if (gma_power_begin(dev, false)) { REG_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp); REG_WRITE((pipe == 0) ? CURABASE : CURBBASE, addr); gma_power_end(dev); } return 0; } void gma_crtc_prepare(struct drm_crtc *crtc) { const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF); } void gma_crtc_commit(struct drm_crtc *crtc) { const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON); } void gma_crtc_disable(struct drm_crtc *crtc) { struct gtt_range *gt; const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF); if (crtc->primary->fb) { gt = to_gtt_range(crtc->primary->fb->obj[0]); psb_gtt_unpin(gt); } } void gma_crtc_destroy(struct drm_crtc *crtc) { struct gma_crtc *gma_crtc = to_gma_crtc(crtc); kfree(gma_crtc->crtc_state); drm_crtc_cleanup(crtc); kfree(gma_crtc); } int gma_crtc_set_config(struct drm_mode_set *set, struct drm_modeset_acquire_ctx *ctx) { struct drm_device *dev = set->crtc->dev; struct drm_psb_private *dev_priv = dev->dev_private; int ret; if (!dev_priv->rpm_enabled) return drm_crtc_helper_set_config(set, ctx); pm_runtime_forbid(&dev->pdev->dev); ret = drm_crtc_helper_set_config(set, ctx); pm_runtime_allow(&dev->pdev->dev); return ret; } /** * Save HW states of given crtc */ void gma_crtc_save(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_psb_private *dev_priv = dev->dev_private; struct gma_crtc *gma_crtc = to_gma_crtc(crtc); struct psb_intel_crtc_state *crtc_state = gma_crtc->crtc_state; const struct psb_offset *map = &dev_priv->regmap[gma_crtc->pipe]; uint32_t palette_reg; int i; if (!crtc_state) { dev_err(dev->dev, "No CRTC state found\n"); return; } crtc_state->saveDSPCNTR = REG_READ(map->cntr); crtc_state->savePIPECONF = REG_READ(map->conf); crtc_state->savePIPESRC = REG_READ(map->src); crtc_state->saveFP0 = REG_READ(map->fp0); crtc_state->saveFP1 = REG_READ(map->fp1); crtc_state->saveDPLL = REG_READ(map->dpll); crtc_state->saveHTOTAL = REG_READ(map->htotal); crtc_state->saveHBLANK = REG_READ(map->hblank); crtc_state->saveHSYNC = REG_READ(map->hsync); crtc_state->saveVTOTAL = REG_READ(map->vtotal); crtc_state->saveVBLANK = REG_READ(map->vblank); crtc_state->saveVSYNC = REG_READ(map->vsync); crtc_state->saveDSPSTRIDE = REG_READ(map->stride); /* NOTE: DSPSIZE DSPPOS only for psb */ crtc_state->saveDSPSIZE = REG_READ(map->size); crtc_state->saveDSPPOS = REG_READ(map->pos); crtc_state->saveDSPBASE = REG_READ(map->base); palette_reg = map->palette; for (i = 0; i < 256; ++i) crtc_state->savePalette[i] = REG_READ(palette_reg + (i << 2)); } /** * Restore HW states of given crtc */ void gma_crtc_restore(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_psb_private *dev_priv = dev->dev_private; struct gma_crtc *gma_crtc = to_gma_crtc(crtc); struct psb_intel_crtc_state *crtc_state = gma_crtc->crtc_state; const struct psb_offset *map = &dev_priv->regmap[gma_crtc->pipe]; uint32_t palette_reg; int i; if (!crtc_state) { dev_err(dev->dev, "No crtc state\n"); return; } if (crtc_state->saveDPLL & DPLL_VCO_ENABLE) { REG_WRITE(map->dpll, crtc_state->saveDPLL & ~DPLL_VCO_ENABLE); REG_READ(map->dpll); udelay(150); } REG_WRITE(map->fp0, crtc_state->saveFP0); REG_READ(map->fp0); REG_WRITE(map->fp1, crtc_state->saveFP1); REG_READ(map->fp1); REG_WRITE(map->dpll, crtc_state->saveDPLL); REG_READ(map->dpll); udelay(150); REG_WRITE(map->htotal, crtc_state->saveHTOTAL); REG_WRITE(map->hblank, crtc_state->saveHBLANK); REG_WRITE(map->hsync, crtc_state->saveHSYNC); REG_WRITE(map->vtotal, crtc_state->saveVTOTAL); REG_WRITE(map->vblank, crtc_state->saveVBLANK); REG_WRITE(map->vsync, crtc_state->saveVSYNC); REG_WRITE(map->stride, crtc_state->saveDSPSTRIDE); REG_WRITE(map->size, crtc_state->saveDSPSIZE); REG_WRITE(map->pos, crtc_state->saveDSPPOS); REG_WRITE(map->src, crtc_state->savePIPESRC); REG_WRITE(map->base, crtc_state->saveDSPBASE); REG_WRITE(map->conf, crtc_state->savePIPECONF); gma_wait_for_vblank(dev); REG_WRITE(map->cntr, crtc_state->saveDSPCNTR); REG_WRITE(map->base, crtc_state->saveDSPBASE); gma_wait_for_vblank(dev); palette_reg = map->palette; for (i = 0; i < 256; ++i) REG_WRITE(palette_reg + (i << 2), crtc_state->savePalette[i]); } void gma_encoder_prepare(struct drm_encoder *encoder) { const struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private; /* lvds has its own version of prepare see psb_intel_lvds_prepare */ encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF); } void gma_encoder_commit(struct drm_encoder *encoder) { const struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private; /* lvds has its own version of commit see psb_intel_lvds_commit */ encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON); } void gma_encoder_destroy(struct drm_encoder *encoder) { struct gma_encoder *intel_encoder = to_gma_encoder(encoder); drm_encoder_cleanup(encoder); kfree(intel_encoder); } /* Currently there is only a 1:1 mapping of encoders and connectors */ struct drm_encoder *gma_best_encoder(struct drm_connector *connector) { struct gma_encoder *gma_encoder = gma_attached_encoder(connector); return &gma_encoder->base; } void gma_connector_attach_encoder(struct gma_connector *connector, struct gma_encoder *encoder) { connector->encoder = encoder; drm_connector_attach_encoder(&connector->base, &encoder->base); } #define GMA_PLL_INVALID(s) { /* DRM_ERROR(s); */ return false; } bool gma_pll_is_valid(struct drm_crtc *crtc, const struct gma_limit_t *limit, struct gma_clock_t *clock) { if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) GMA_PLL_INVALID("p1 out of range"); if (clock->p < limit->p.min || limit->p.max < clock->p) GMA_PLL_INVALID("p out of range"); if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2) GMA_PLL_INVALID("m2 out of range"); if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1) GMA_PLL_INVALID("m1 out of range"); /* On CDV m1 is always 0 */ if (clock->m1 <= clock->m2 && clock->m1 != 0) GMA_PLL_INVALID("m1 <= m2 && m1 != 0"); if (clock->m < limit->m.min || limit->m.max < clock->m) GMA_PLL_INVALID("m out of range"); if (clock->n < limit->n.min || limit->n.max < clock->n) GMA_PLL_INVALID("n out of range"); if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) GMA_PLL_INVALID("vco out of range"); /* XXX: We may need to be checking "Dot clock" * depending on the multiplier, connector, etc., * rather than just a single range. */ if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) GMA_PLL_INVALID("dot out of range"); return true; } bool gma_find_best_pll(const struct gma_limit_t *limit, struct drm_crtc *crtc, int target, int refclk, struct gma_clock_t *best_clock) { struct drm_device *dev = crtc->dev; const struct gma_clock_funcs *clock_funcs = to_gma_crtc(crtc)->clock_funcs; struct gma_clock_t clock; int err = target; if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) && (REG_READ(LVDS) & LVDS_PORT_EN) != 0) { /* * For LVDS, if the panel is on, just rely on its current * settings for dual-channel. We haven't figured out how to * reliably set up different single/dual channel state, if we * even can. */ if ((REG_READ(LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP) clock.p2 = limit->p2.p2_fast; else clock.p2 = limit->p2.p2_slow; } else { if (target < limit->p2.dot_limit) clock.p2 = limit->p2.p2_slow; else clock.p2 = limit->p2.p2_fast; } memset(best_clock, 0, sizeof(*best_clock)); /* m1 is always 0 on CDV so the outmost loop will run just once */ for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { for (clock.m2 = limit->m2.min; (clock.m2 < clock.m1 || clock.m1 == 0) && clock.m2 <= limit->m2.max; clock.m2++) { for (clock.n = limit->n.min; clock.n <= limit->n.max; clock.n++) { for (clock.p1 = limit->p1.min; clock.p1 <= limit->p1.max; clock.p1++) { int this_err; clock_funcs->clock(refclk, &clock); if (!clock_funcs->pll_is_valid(crtc, limit, &clock)) continue; this_err = abs(clock.dot - target); if (this_err < err) { *best_clock = clock; err = this_err; } } } } } return err != target; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1