Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Russell King | 6019 | 63.09% | 62 | 60.19% |
Rob Clark | 1913 | 20.05% | 1 | 0.97% |
Jean-François Moine | 834 | 8.74% | 18 | 17.48% |
Jyri Sarha | 553 | 5.80% | 2 | 1.94% |
Sebastian Hesselbarth | 134 | 1.40% | 2 | 1.94% |
Laura Abbott | 28 | 0.29% | 1 | 0.97% |
Peter Rosin | 18 | 0.19% | 2 | 1.94% |
Kees Cook | 12 | 0.13% | 1 | 0.97% |
Ville Syrjälä | 7 | 0.07% | 2 | 1.94% |
Daniel Vetter | 5 | 0.05% | 3 | 2.91% |
Laurent Pinchart | 4 | 0.04% | 2 | 1.94% |
Liviu Dudau | 4 | 0.04% | 2 | 1.94% |
Julia Lawall | 3 | 0.03% | 1 | 0.97% |
David Herrmann | 2 | 0.02% | 1 | 0.97% |
Thomas Gleixner | 2 | 0.02% | 1 | 0.97% |
Arvind Yadav | 1 | 0.01% | 1 | 0.97% |
Shashank Sharma | 1 | 0.01% | 1 | 0.97% |
Total | 9540 | 103 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012 Texas Instruments * Author: Rob Clark <robdclark@gmail.com> */ #include <linux/component.h> #include <linux/gpio/consumer.h> #include <linux/hdmi.h> #include <linux/module.h> #include <linux/platform_data/tda9950.h> #include <linux/irq.h> #include <sound/asoundef.h> #include <sound/hdmi-codec.h> #include <drm/drmP.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_edid.h> #include <drm/drm_of.h> #include <drm/drm_probe_helper.h> #include <drm/i2c/tda998x.h> #include <media/cec-notifier.h> #define DBG(fmt, ...) DRM_DEBUG(fmt"\n", ##__VA_ARGS__) enum { AUDIO_ROUTE_I2S, AUDIO_ROUTE_SPDIF, AUDIO_ROUTE_NUM }; struct tda998x_audio_route { u8 ena_aclk; u8 mux_ap; u8 aip_clksel; }; struct tda998x_audio_settings { const struct tda998x_audio_route *route; struct hdmi_audio_infoframe cea; unsigned int sample_rate; u8 status[5]; u8 ena_ap; u8 i2s_format; u8 cts_n; }; struct tda998x_priv { struct i2c_client *cec; struct i2c_client *hdmi; struct mutex mutex; u16 rev; u8 cec_addr; u8 current_page; bool is_on; bool supports_infoframes; bool sink_has_audio; enum hdmi_quantization_range rgb_quant_range; u8 vip_cntrl_0; u8 vip_cntrl_1; u8 vip_cntrl_2; unsigned long tmds_clock; struct tda998x_audio_settings audio; struct platform_device *audio_pdev; struct mutex audio_mutex; struct mutex edid_mutex; wait_queue_head_t wq_edid; volatile int wq_edid_wait; struct work_struct detect_work; struct timer_list edid_delay_timer; wait_queue_head_t edid_delay_waitq; bool edid_delay_active; struct drm_encoder encoder; struct drm_bridge bridge; struct drm_connector connector; u8 audio_port_enable[AUDIO_ROUTE_NUM]; struct tda9950_glue cec_glue; struct gpio_desc *calib; struct cec_notifier *cec_notify; }; #define conn_to_tda998x_priv(x) \ container_of(x, struct tda998x_priv, connector) #define enc_to_tda998x_priv(x) \ container_of(x, struct tda998x_priv, encoder) #define bridge_to_tda998x_priv(x) \ container_of(x, struct tda998x_priv, bridge) /* The TDA9988 series of devices use a paged register scheme.. to simplify * things we encode the page # in upper bits of the register #. To read/ * write a given register, we need to make sure CURPAGE register is set * appropriately. Which implies reads/writes are not atomic. Fun! */ #define REG(page, addr) (((page) << 8) | (addr)) #define REG2ADDR(reg) ((reg) & 0xff) #define REG2PAGE(reg) (((reg) >> 8) & 0xff) #define REG_CURPAGE 0xff /* write */ /* Page 00h: General Control */ #define REG_VERSION_LSB REG(0x00, 0x00) /* read */ #define REG_MAIN_CNTRL0 REG(0x00, 0x01) /* read/write */ # define MAIN_CNTRL0_SR (1 << 0) # define MAIN_CNTRL0_DECS (1 << 1) # define MAIN_CNTRL0_DEHS (1 << 2) # define MAIN_CNTRL0_CECS (1 << 3) # define MAIN_CNTRL0_CEHS (1 << 4) # define MAIN_CNTRL0_SCALER (1 << 7) #define REG_VERSION_MSB REG(0x00, 0x02) /* read */ #define REG_SOFTRESET REG(0x00, 0x0a) /* write */ # define SOFTRESET_AUDIO (1 << 0) # define SOFTRESET_I2C_MASTER (1 << 1) #define REG_DDC_DISABLE REG(0x00, 0x0b) /* read/write */ #define REG_CCLK_ON REG(0x00, 0x0c) /* read/write */ #define REG_I2C_MASTER REG(0x00, 0x0d) /* read/write */ # define I2C_MASTER_DIS_MM (1 << 0) # define I2C_MASTER_DIS_FILT (1 << 1) # define I2C_MASTER_APP_STRT_LAT (1 << 2) #define REG_FEAT_POWERDOWN REG(0x00, 0x0e) /* read/write */ # define FEAT_POWERDOWN_PREFILT BIT(0) # define FEAT_POWERDOWN_CSC BIT(1) # define FEAT_POWERDOWN_SPDIF (1 << 3) #define REG_INT_FLAGS_0 REG(0x00, 0x0f) /* read/write */ #define REG_INT_FLAGS_1 REG(0x00, 0x10) /* read/write */ #define REG_INT_FLAGS_2 REG(0x00, 0x11) /* read/write */ # define INT_FLAGS_2_EDID_BLK_RD (1 << 1) #define REG_ENA_ACLK REG(0x00, 0x16) /* read/write */ #define REG_ENA_VP_0 REG(0x00, 0x18) /* read/write */ #define REG_ENA_VP_1 REG(0x00, 0x19) /* read/write */ #define REG_ENA_VP_2 REG(0x00, 0x1a) /* read/write */ #define REG_ENA_AP REG(0x00, 0x1e) /* read/write */ #define REG_VIP_CNTRL_0 REG(0x00, 0x20) /* write */ # define VIP_CNTRL_0_MIRR_A (1 << 7) # define VIP_CNTRL_0_SWAP_A(x) (((x) & 7) << 4) # define VIP_CNTRL_0_MIRR_B (1 << 3) # define VIP_CNTRL_0_SWAP_B(x) (((x) & 7) << 0) #define REG_VIP_CNTRL_1 REG(0x00, 0x21) /* write */ # define VIP_CNTRL_1_MIRR_C (1 << 7) # define VIP_CNTRL_1_SWAP_C(x) (((x) & 7) << 4) # define VIP_CNTRL_1_MIRR_D (1 << 3) # define VIP_CNTRL_1_SWAP_D(x) (((x) & 7) << 0) #define REG_VIP_CNTRL_2 REG(0x00, 0x22) /* write */ # define VIP_CNTRL_2_MIRR_E (1 << 7) # define VIP_CNTRL_2_SWAP_E(x) (((x) & 7) << 4) # define VIP_CNTRL_2_MIRR_F (1 << 3) # define VIP_CNTRL_2_SWAP_F(x) (((x) & 7) << 0) #define REG_VIP_CNTRL_3 REG(0x00, 0x23) /* write */ # define VIP_CNTRL_3_X_TGL (1 << 0) # define VIP_CNTRL_3_H_TGL (1 << 1) # define VIP_CNTRL_3_V_TGL (1 << 2) # define VIP_CNTRL_3_EMB (1 << 3) # define VIP_CNTRL_3_SYNC_DE (1 << 4) # define VIP_CNTRL_3_SYNC_HS (1 << 5) # define VIP_CNTRL_3_DE_INT (1 << 6) # define VIP_CNTRL_3_EDGE (1 << 7) #define REG_VIP_CNTRL_4 REG(0x00, 0x24) /* write */ # define VIP_CNTRL_4_BLC(x) (((x) & 3) << 0) # define VIP_CNTRL_4_BLANKIT(x) (((x) & 3) << 2) # define VIP_CNTRL_4_CCIR656 (1 << 4) # define VIP_CNTRL_4_656_ALT (1 << 5) # define VIP_CNTRL_4_TST_656 (1 << 6) # define VIP_CNTRL_4_TST_PAT (1 << 7) #define REG_VIP_CNTRL_5 REG(0x00, 0x25) /* write */ # define VIP_CNTRL_5_CKCASE (1 << 0) # define VIP_CNTRL_5_SP_CNT(x) (((x) & 3) << 1) #define REG_MUX_AP REG(0x00, 0x26) /* read/write */ # define MUX_AP_SELECT_I2S 0x64 # define MUX_AP_SELECT_SPDIF 0x40 #define REG_MUX_VP_VIP_OUT REG(0x00, 0x27) /* read/write */ #define REG_MAT_CONTRL REG(0x00, 0x80) /* write */ # define MAT_CONTRL_MAT_SC(x) (((x) & 3) << 0) # define MAT_CONTRL_MAT_BP (1 << 2) #define REG_VIDFORMAT REG(0x00, 0xa0) /* write */ #define REG_REFPIX_MSB REG(0x00, 0xa1) /* write */ #define REG_REFPIX_LSB REG(0x00, 0xa2) /* write */ #define REG_REFLINE_MSB REG(0x00, 0xa3) /* write */ #define REG_REFLINE_LSB REG(0x00, 0xa4) /* write */ #define REG_NPIX_MSB REG(0x00, 0xa5) /* write */ #define REG_NPIX_LSB REG(0x00, 0xa6) /* write */ #define REG_NLINE_MSB REG(0x00, 0xa7) /* write */ #define REG_NLINE_LSB REG(0x00, 0xa8) /* write */ #define REG_VS_LINE_STRT_1_MSB REG(0x00, 0xa9) /* write */ #define REG_VS_LINE_STRT_1_LSB REG(0x00, 0xaa) /* write */ #define REG_VS_PIX_STRT_1_MSB REG(0x00, 0xab) /* write */ #define REG_VS_PIX_STRT_1_LSB REG(0x00, 0xac) /* write */ #define REG_VS_LINE_END_1_MSB REG(0x00, 0xad) /* write */ #define REG_VS_LINE_END_1_LSB REG(0x00, 0xae) /* write */ #define REG_VS_PIX_END_1_MSB REG(0x00, 0xaf) /* write */ #define REG_VS_PIX_END_1_LSB REG(0x00, 0xb0) /* write */ #define REG_VS_LINE_STRT_2_MSB REG(0x00, 0xb1) /* write */ #define REG_VS_LINE_STRT_2_LSB REG(0x00, 0xb2) /* write */ #define REG_VS_PIX_STRT_2_MSB REG(0x00, 0xb3) /* write */ #define REG_VS_PIX_STRT_2_LSB REG(0x00, 0xb4) /* write */ #define REG_VS_LINE_END_2_MSB REG(0x00, 0xb5) /* write */ #define REG_VS_LINE_END_2_LSB REG(0x00, 0xb6) /* write */ #define REG_VS_PIX_END_2_MSB REG(0x00, 0xb7) /* write */ #define REG_VS_PIX_END_2_LSB REG(0x00, 0xb8) /* write */ #define REG_HS_PIX_START_MSB REG(0x00, 0xb9) /* write */ #define REG_HS_PIX_START_LSB REG(0x00, 0xba) /* write */ #define REG_HS_PIX_STOP_MSB REG(0x00, 0xbb) /* write */ #define REG_HS_PIX_STOP_LSB REG(0x00, 0xbc) /* write */ #define REG_VWIN_START_1_MSB REG(0x00, 0xbd) /* write */ #define REG_VWIN_START_1_LSB REG(0x00, 0xbe) /* write */ #define REG_VWIN_END_1_MSB REG(0x00, 0xbf) /* write */ #define REG_VWIN_END_1_LSB REG(0x00, 0xc0) /* write */ #define REG_VWIN_START_2_MSB REG(0x00, 0xc1) /* write */ #define REG_VWIN_START_2_LSB REG(0x00, 0xc2) /* write */ #define REG_VWIN_END_2_MSB REG(0x00, 0xc3) /* write */ #define REG_VWIN_END_2_LSB REG(0x00, 0xc4) /* write */ #define REG_DE_START_MSB REG(0x00, 0xc5) /* write */ #define REG_DE_START_LSB REG(0x00, 0xc6) /* write */ #define REG_DE_STOP_MSB REG(0x00, 0xc7) /* write */ #define REG_DE_STOP_LSB REG(0x00, 0xc8) /* write */ #define REG_TBG_CNTRL_0 REG(0x00, 0xca) /* write */ # define TBG_CNTRL_0_TOP_TGL (1 << 0) # define TBG_CNTRL_0_TOP_SEL (1 << 1) # define TBG_CNTRL_0_DE_EXT (1 << 2) # define TBG_CNTRL_0_TOP_EXT (1 << 3) # define TBG_CNTRL_0_FRAME_DIS (1 << 5) # define TBG_CNTRL_0_SYNC_MTHD (1 << 6) # define TBG_CNTRL_0_SYNC_ONCE (1 << 7) #define REG_TBG_CNTRL_1 REG(0x00, 0xcb) /* write */ # define TBG_CNTRL_1_H_TGL (1 << 0) # define TBG_CNTRL_1_V_TGL (1 << 1) # define TBG_CNTRL_1_TGL_EN (1 << 2) # define TBG_CNTRL_1_X_EXT (1 << 3) # define TBG_CNTRL_1_H_EXT (1 << 4) # define TBG_CNTRL_1_V_EXT (1 << 5) # define TBG_CNTRL_1_DWIN_DIS (1 << 6) #define REG_ENABLE_SPACE REG(0x00, 0xd6) /* write */ #define REG_HVF_CNTRL_0 REG(0x00, 0xe4) /* write */ # define HVF_CNTRL_0_SM (1 << 7) # define HVF_CNTRL_0_RWB (1 << 6) # define HVF_CNTRL_0_PREFIL(x) (((x) & 3) << 2) # define HVF_CNTRL_0_INTPOL(x) (((x) & 3) << 0) #define REG_HVF_CNTRL_1 REG(0x00, 0xe5) /* write */ # define HVF_CNTRL_1_FOR (1 << 0) # define HVF_CNTRL_1_YUVBLK (1 << 1) # define HVF_CNTRL_1_VQR(x) (((x) & 3) << 2) # define HVF_CNTRL_1_PAD(x) (((x) & 3) << 4) # define HVF_CNTRL_1_SEMI_PLANAR (1 << 6) #define REG_RPT_CNTRL REG(0x00, 0xf0) /* write */ # define RPT_CNTRL_REPEAT(x) ((x) & 15) #define REG_I2S_FORMAT REG(0x00, 0xfc) /* read/write */ # define I2S_FORMAT_PHILIPS (0 << 0) # define I2S_FORMAT_LEFT_J (2 << 0) # define I2S_FORMAT_RIGHT_J (3 << 0) #define REG_AIP_CLKSEL REG(0x00, 0xfd) /* write */ # define AIP_CLKSEL_AIP_SPDIF (0 << 3) # define AIP_CLKSEL_AIP_I2S (1 << 3) # define AIP_CLKSEL_FS_ACLK (0 << 0) # define AIP_CLKSEL_FS_MCLK (1 << 0) # define AIP_CLKSEL_FS_FS64SPDIF (2 << 0) /* Page 02h: PLL settings */ #define REG_PLL_SERIAL_1 REG(0x02, 0x00) /* read/write */ # define PLL_SERIAL_1_SRL_FDN (1 << 0) # define PLL_SERIAL_1_SRL_IZ(x) (((x) & 3) << 1) # define PLL_SERIAL_1_SRL_MAN_IZ (1 << 6) #define REG_PLL_SERIAL_2 REG(0x02, 0x01) /* read/write */ # define PLL_SERIAL_2_SRL_NOSC(x) ((x) << 0) # define PLL_SERIAL_2_SRL_PR(x) (((x) & 0xf) << 4) #define REG_PLL_SERIAL_3 REG(0x02, 0x02) /* read/write */ # define PLL_SERIAL_3_SRL_CCIR (1 << 0) # define PLL_SERIAL_3_SRL_DE (1 << 2) # define PLL_SERIAL_3_SRL_PXIN_SEL (1 << 4) #define REG_SERIALIZER REG(0x02, 0x03) /* read/write */ #define REG_BUFFER_OUT REG(0x02, 0x04) /* read/write */ #define REG_PLL_SCG1 REG(0x02, 0x05) /* read/write */ #define REG_PLL_SCG2 REG(0x02, 0x06) /* read/write */ #define REG_PLL_SCGN1 REG(0x02, 0x07) /* read/write */ #define REG_PLL_SCGN2 REG(0x02, 0x08) /* read/write */ #define REG_PLL_SCGR1 REG(0x02, 0x09) /* read/write */ #define REG_PLL_SCGR2 REG(0x02, 0x0a) /* read/write */ #define REG_AUDIO_DIV REG(0x02, 0x0e) /* read/write */ # define AUDIO_DIV_SERCLK_1 0 # define AUDIO_DIV_SERCLK_2 1 # define AUDIO_DIV_SERCLK_4 2 # define AUDIO_DIV_SERCLK_8 3 # define AUDIO_DIV_SERCLK_16 4 # define AUDIO_DIV_SERCLK_32 5 #define REG_SEL_CLK REG(0x02, 0x11) /* read/write */ # define SEL_CLK_SEL_CLK1 (1 << 0) # define SEL_CLK_SEL_VRF_CLK(x) (((x) & 3) << 1) # define SEL_CLK_ENA_SC_CLK (1 << 3) #define REG_ANA_GENERAL REG(0x02, 0x12) /* read/write */ /* Page 09h: EDID Control */ #define REG_EDID_DATA_0 REG(0x09, 0x00) /* read */ /* next 127 successive registers are the EDID block */ #define REG_EDID_CTRL REG(0x09, 0xfa) /* read/write */ #define REG_DDC_ADDR REG(0x09, 0xfb) /* read/write */ #define REG_DDC_OFFS REG(0x09, 0xfc) /* read/write */ #define REG_DDC_SEGM_ADDR REG(0x09, 0xfd) /* read/write */ #define REG_DDC_SEGM REG(0x09, 0xfe) /* read/write */ /* Page 10h: information frames and packets */ #define REG_IF1_HB0 REG(0x10, 0x20) /* read/write */ #define REG_IF2_HB0 REG(0x10, 0x40) /* read/write */ #define REG_IF3_HB0 REG(0x10, 0x60) /* read/write */ #define REG_IF4_HB0 REG(0x10, 0x80) /* read/write */ #define REG_IF5_HB0 REG(0x10, 0xa0) /* read/write */ /* Page 11h: audio settings and content info packets */ #define REG_AIP_CNTRL_0 REG(0x11, 0x00) /* read/write */ # define AIP_CNTRL_0_RST_FIFO (1 << 0) # define AIP_CNTRL_0_SWAP (1 << 1) # define AIP_CNTRL_0_LAYOUT (1 << 2) # define AIP_CNTRL_0_ACR_MAN (1 << 5) # define AIP_CNTRL_0_RST_CTS (1 << 6) #define REG_CA_I2S REG(0x11, 0x01) /* read/write */ # define CA_I2S_CA_I2S(x) (((x) & 31) << 0) # define CA_I2S_HBR_CHSTAT (1 << 6) #define REG_LATENCY_RD REG(0x11, 0x04) /* read/write */ #define REG_ACR_CTS_0 REG(0x11, 0x05) /* read/write */ #define REG_ACR_CTS_1 REG(0x11, 0x06) /* read/write */ #define REG_ACR_CTS_2 REG(0x11, 0x07) /* read/write */ #define REG_ACR_N_0 REG(0x11, 0x08) /* read/write */ #define REG_ACR_N_1 REG(0x11, 0x09) /* read/write */ #define REG_ACR_N_2 REG(0x11, 0x0a) /* read/write */ #define REG_CTS_N REG(0x11, 0x0c) /* read/write */ # define CTS_N_K(x) (((x) & 7) << 0) # define CTS_N_M(x) (((x) & 3) << 4) #define REG_ENC_CNTRL REG(0x11, 0x0d) /* read/write */ # define ENC_CNTRL_RST_ENC (1 << 0) # define ENC_CNTRL_RST_SEL (1 << 1) # define ENC_CNTRL_CTL_CODE(x) (((x) & 3) << 2) #define REG_DIP_FLAGS REG(0x11, 0x0e) /* read/write */ # define DIP_FLAGS_ACR (1 << 0) # define DIP_FLAGS_GC (1 << 1) #define REG_DIP_IF_FLAGS REG(0x11, 0x0f) /* read/write */ # define DIP_IF_FLAGS_IF1 (1 << 1) # define DIP_IF_FLAGS_IF2 (1 << 2) # define DIP_IF_FLAGS_IF3 (1 << 3) # define DIP_IF_FLAGS_IF4 (1 << 4) # define DIP_IF_FLAGS_IF5 (1 << 5) #define REG_CH_STAT_B(x) REG(0x11, 0x14 + (x)) /* read/write */ /* Page 12h: HDCP and OTP */ #define REG_TX3 REG(0x12, 0x9a) /* read/write */ #define REG_TX4 REG(0x12, 0x9b) /* read/write */ # define TX4_PD_RAM (1 << 1) #define REG_TX33 REG(0x12, 0xb8) /* read/write */ # define TX33_HDMI (1 << 1) /* Page 13h: Gamut related metadata packets */ /* CEC registers: (not paged) */ #define REG_CEC_INTSTATUS 0xee /* read */ # define CEC_INTSTATUS_CEC (1 << 0) # define CEC_INTSTATUS_HDMI (1 << 1) #define REG_CEC_CAL_XOSC_CTRL1 0xf2 # define CEC_CAL_XOSC_CTRL1_ENA_CAL BIT(0) #define REG_CEC_DES_FREQ2 0xf5 # define CEC_DES_FREQ2_DIS_AUTOCAL BIT(7) #define REG_CEC_CLK 0xf6 # define CEC_CLK_FRO 0x11 #define REG_CEC_FRO_IM_CLK_CTRL 0xfb /* read/write */ # define CEC_FRO_IM_CLK_CTRL_GHOST_DIS (1 << 7) # define CEC_FRO_IM_CLK_CTRL_ENA_OTP (1 << 6) # define CEC_FRO_IM_CLK_CTRL_IMCLK_SEL (1 << 1) # define CEC_FRO_IM_CLK_CTRL_FRO_DIV (1 << 0) #define REG_CEC_RXSHPDINTENA 0xfc /* read/write */ #define REG_CEC_RXSHPDINT 0xfd /* read */ # define CEC_RXSHPDINT_RXSENS BIT(0) # define CEC_RXSHPDINT_HPD BIT(1) #define REG_CEC_RXSHPDLEV 0xfe /* read */ # define CEC_RXSHPDLEV_RXSENS (1 << 0) # define CEC_RXSHPDLEV_HPD (1 << 1) #define REG_CEC_ENAMODS 0xff /* read/write */ # define CEC_ENAMODS_EN_CEC_CLK (1 << 7) # define CEC_ENAMODS_DIS_FRO (1 << 6) # define CEC_ENAMODS_DIS_CCLK (1 << 5) # define CEC_ENAMODS_EN_RXSENS (1 << 2) # define CEC_ENAMODS_EN_HDMI (1 << 1) # define CEC_ENAMODS_EN_CEC (1 << 0) /* Device versions: */ #define TDA9989N2 0x0101 #define TDA19989 0x0201 #define TDA19989N2 0x0202 #define TDA19988 0x0301 static void cec_write(struct tda998x_priv *priv, u16 addr, u8 val) { u8 buf[] = {addr, val}; struct i2c_msg msg = { .addr = priv->cec_addr, .len = 2, .buf = buf, }; int ret; ret = i2c_transfer(priv->hdmi->adapter, &msg, 1); if (ret < 0) dev_err(&priv->hdmi->dev, "Error %d writing to cec:0x%x\n", ret, addr); } static u8 cec_read(struct tda998x_priv *priv, u8 addr) { u8 val; struct i2c_msg msg[2] = { { .addr = priv->cec_addr, .len = 1, .buf = &addr, }, { .addr = priv->cec_addr, .flags = I2C_M_RD, .len = 1, .buf = &val, }, }; int ret; ret = i2c_transfer(priv->hdmi->adapter, msg, ARRAY_SIZE(msg)); if (ret < 0) { dev_err(&priv->hdmi->dev, "Error %d reading from cec:0x%x\n", ret, addr); val = 0; } return val; } static void cec_enamods(struct tda998x_priv *priv, u8 mods, bool enable) { int val = cec_read(priv, REG_CEC_ENAMODS); if (val < 0) return; if (enable) val |= mods; else val &= ~mods; cec_write(priv, REG_CEC_ENAMODS, val); } static void tda998x_cec_set_calibration(struct tda998x_priv *priv, bool enable) { if (enable) { u8 val; cec_write(priv, 0xf3, 0xc0); cec_write(priv, 0xf4, 0xd4); /* Enable automatic calibration mode */ val = cec_read(priv, REG_CEC_DES_FREQ2); val &= ~CEC_DES_FREQ2_DIS_AUTOCAL; cec_write(priv, REG_CEC_DES_FREQ2, val); /* Enable free running oscillator */ cec_write(priv, REG_CEC_CLK, CEC_CLK_FRO); cec_enamods(priv, CEC_ENAMODS_DIS_FRO, false); cec_write(priv, REG_CEC_CAL_XOSC_CTRL1, CEC_CAL_XOSC_CTRL1_ENA_CAL); } else { cec_write(priv, REG_CEC_CAL_XOSC_CTRL1, 0); } } /* * Calibration for the internal oscillator: we need to set calibration mode, * and then pulse the IRQ line low for a 10ms ± 1% period. */ static void tda998x_cec_calibration(struct tda998x_priv *priv) { struct gpio_desc *calib = priv->calib; mutex_lock(&priv->edid_mutex); if (priv->hdmi->irq > 0) disable_irq(priv->hdmi->irq); gpiod_direction_output(calib, 1); tda998x_cec_set_calibration(priv, true); local_irq_disable(); gpiod_set_value(calib, 0); mdelay(10); gpiod_set_value(calib, 1); local_irq_enable(); tda998x_cec_set_calibration(priv, false); gpiod_direction_input(calib); if (priv->hdmi->irq > 0) enable_irq(priv->hdmi->irq); mutex_unlock(&priv->edid_mutex); } static int tda998x_cec_hook_init(void *data) { struct tda998x_priv *priv = data; struct gpio_desc *calib; calib = gpiod_get(&priv->hdmi->dev, "nxp,calib", GPIOD_ASIS); if (IS_ERR(calib)) { dev_warn(&priv->hdmi->dev, "failed to get calibration gpio: %ld\n", PTR_ERR(calib)); return PTR_ERR(calib); } priv->calib = calib; return 0; } static void tda998x_cec_hook_exit(void *data) { struct tda998x_priv *priv = data; gpiod_put(priv->calib); priv->calib = NULL; } static int tda998x_cec_hook_open(void *data) { struct tda998x_priv *priv = data; cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, true); tda998x_cec_calibration(priv); return 0; } static void tda998x_cec_hook_release(void *data) { struct tda998x_priv *priv = data; cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, false); } static int set_page(struct tda998x_priv *priv, u16 reg) { if (REG2PAGE(reg) != priv->current_page) { struct i2c_client *client = priv->hdmi; u8 buf[] = { REG_CURPAGE, REG2PAGE(reg) }; int ret = i2c_master_send(client, buf, sizeof(buf)); if (ret < 0) { dev_err(&client->dev, "%s %04x err %d\n", __func__, reg, ret); return ret; } priv->current_page = REG2PAGE(reg); } return 0; } static int reg_read_range(struct tda998x_priv *priv, u16 reg, char *buf, int cnt) { struct i2c_client *client = priv->hdmi; u8 addr = REG2ADDR(reg); int ret; mutex_lock(&priv->mutex); ret = set_page(priv, reg); if (ret < 0) goto out; ret = i2c_master_send(client, &addr, sizeof(addr)); if (ret < 0) goto fail; ret = i2c_master_recv(client, buf, cnt); if (ret < 0) goto fail; goto out; fail: dev_err(&client->dev, "Error %d reading from 0x%x\n", ret, reg); out: mutex_unlock(&priv->mutex); return ret; } #define MAX_WRITE_RANGE_BUF 32 static void reg_write_range(struct tda998x_priv *priv, u16 reg, u8 *p, int cnt) { struct i2c_client *client = priv->hdmi; /* This is the maximum size of the buffer passed in */ u8 buf[MAX_WRITE_RANGE_BUF + 1]; int ret; if (cnt > MAX_WRITE_RANGE_BUF) { dev_err(&client->dev, "Fixed write buffer too small (%d)\n", MAX_WRITE_RANGE_BUF); return; } buf[0] = REG2ADDR(reg); memcpy(&buf[1], p, cnt); mutex_lock(&priv->mutex); ret = set_page(priv, reg); if (ret < 0) goto out; ret = i2c_master_send(client, buf, cnt + 1); if (ret < 0) dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg); out: mutex_unlock(&priv->mutex); } static int reg_read(struct tda998x_priv *priv, u16 reg) { u8 val = 0; int ret; ret = reg_read_range(priv, reg, &val, sizeof(val)); if (ret < 0) return ret; return val; } static void reg_write(struct tda998x_priv *priv, u16 reg, u8 val) { struct i2c_client *client = priv->hdmi; u8 buf[] = {REG2ADDR(reg), val}; int ret; mutex_lock(&priv->mutex); ret = set_page(priv, reg); if (ret < 0) goto out; ret = i2c_master_send(client, buf, sizeof(buf)); if (ret < 0) dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg); out: mutex_unlock(&priv->mutex); } static void reg_write16(struct tda998x_priv *priv, u16 reg, u16 val) { struct i2c_client *client = priv->hdmi; u8 buf[] = {REG2ADDR(reg), val >> 8, val}; int ret; mutex_lock(&priv->mutex); ret = set_page(priv, reg); if (ret < 0) goto out; ret = i2c_master_send(client, buf, sizeof(buf)); if (ret < 0) dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg); out: mutex_unlock(&priv->mutex); } static void reg_set(struct tda998x_priv *priv, u16 reg, u8 val) { int old_val; old_val = reg_read(priv, reg); if (old_val >= 0) reg_write(priv, reg, old_val | val); } static void reg_clear(struct tda998x_priv *priv, u16 reg, u8 val) { int old_val; old_val = reg_read(priv, reg); if (old_val >= 0) reg_write(priv, reg, old_val & ~val); } static void tda998x_reset(struct tda998x_priv *priv) { /* reset audio and i2c master: */ reg_write(priv, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER); msleep(50); reg_write(priv, REG_SOFTRESET, 0); msleep(50); /* reset transmitter: */ reg_set(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR); reg_clear(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR); /* PLL registers common configuration */ reg_write(priv, REG_PLL_SERIAL_1, 0x00); reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(1)); reg_write(priv, REG_PLL_SERIAL_3, 0x00); reg_write(priv, REG_SERIALIZER, 0x00); reg_write(priv, REG_BUFFER_OUT, 0x00); reg_write(priv, REG_PLL_SCG1, 0x00); reg_write(priv, REG_AUDIO_DIV, AUDIO_DIV_SERCLK_8); reg_write(priv, REG_SEL_CLK, SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK); reg_write(priv, REG_PLL_SCGN1, 0xfa); reg_write(priv, REG_PLL_SCGN2, 0x00); reg_write(priv, REG_PLL_SCGR1, 0x5b); reg_write(priv, REG_PLL_SCGR2, 0x00); reg_write(priv, REG_PLL_SCG2, 0x10); /* Write the default value MUX register */ reg_write(priv, REG_MUX_VP_VIP_OUT, 0x24); } /* * The TDA998x has a problem when trying to read the EDID close to a * HPD assertion: it needs a delay of 100ms to avoid timing out while * trying to read EDID data. * * However, tda998x_connector_get_modes() may be called at any moment * after tda998x_connector_detect() indicates that we are connected, so * we need to delay probing modes in tda998x_connector_get_modes() after * we have seen a HPD inactive->active transition. This code implements * that delay. */ static void tda998x_edid_delay_done(struct timer_list *t) { struct tda998x_priv *priv = from_timer(priv, t, edid_delay_timer); priv->edid_delay_active = false; wake_up(&priv->edid_delay_waitq); schedule_work(&priv->detect_work); } static void tda998x_edid_delay_start(struct tda998x_priv *priv) { priv->edid_delay_active = true; mod_timer(&priv->edid_delay_timer, jiffies + HZ/10); } static int tda998x_edid_delay_wait(struct tda998x_priv *priv) { return wait_event_killable(priv->edid_delay_waitq, !priv->edid_delay_active); } /* * We need to run the KMS hotplug event helper outside of our threaded * interrupt routine as this can call back into our get_modes method, * which will want to make use of interrupts. */ static void tda998x_detect_work(struct work_struct *work) { struct tda998x_priv *priv = container_of(work, struct tda998x_priv, detect_work); struct drm_device *dev = priv->connector.dev; if (dev) drm_kms_helper_hotplug_event(dev); } /* * only 2 interrupts may occur: screen plug/unplug and EDID read */ static irqreturn_t tda998x_irq_thread(int irq, void *data) { struct tda998x_priv *priv = data; u8 sta, cec, lvl, flag0, flag1, flag2; bool handled = false; sta = cec_read(priv, REG_CEC_INTSTATUS); if (sta & CEC_INTSTATUS_HDMI) { cec = cec_read(priv, REG_CEC_RXSHPDINT); lvl = cec_read(priv, REG_CEC_RXSHPDLEV); flag0 = reg_read(priv, REG_INT_FLAGS_0); flag1 = reg_read(priv, REG_INT_FLAGS_1); flag2 = reg_read(priv, REG_INT_FLAGS_2); DRM_DEBUG_DRIVER( "tda irq sta %02x cec %02x lvl %02x f0 %02x f1 %02x f2 %02x\n", sta, cec, lvl, flag0, flag1, flag2); if (cec & CEC_RXSHPDINT_HPD) { if (lvl & CEC_RXSHPDLEV_HPD) { tda998x_edid_delay_start(priv); } else { schedule_work(&priv->detect_work); cec_notifier_set_phys_addr(priv->cec_notify, CEC_PHYS_ADDR_INVALID); } handled = true; } if ((flag2 & INT_FLAGS_2_EDID_BLK_RD) && priv->wq_edid_wait) { priv->wq_edid_wait = 0; wake_up(&priv->wq_edid); handled = true; } } return IRQ_RETVAL(handled); } static void tda998x_write_if(struct tda998x_priv *priv, u8 bit, u16 addr, union hdmi_infoframe *frame) { u8 buf[MAX_WRITE_RANGE_BUF]; ssize_t len; len = hdmi_infoframe_pack(frame, buf, sizeof(buf)); if (len < 0) { dev_err(&priv->hdmi->dev, "hdmi_infoframe_pack() type=0x%02x failed: %zd\n", frame->any.type, len); return; } reg_clear(priv, REG_DIP_IF_FLAGS, bit); reg_write_range(priv, addr, buf, len); reg_set(priv, REG_DIP_IF_FLAGS, bit); } static void tda998x_write_aif(struct tda998x_priv *priv, const struct hdmi_audio_infoframe *cea) { union hdmi_infoframe frame; frame.audio = *cea; tda998x_write_if(priv, DIP_IF_FLAGS_IF4, REG_IF4_HB0, &frame); } static void tda998x_write_avi(struct tda998x_priv *priv, const struct drm_display_mode *mode) { union hdmi_infoframe frame; drm_hdmi_avi_infoframe_from_display_mode(&frame.avi, &priv->connector, mode); frame.avi.quantization_range = HDMI_QUANTIZATION_RANGE_FULL; drm_hdmi_avi_infoframe_quant_range(&frame.avi, &priv->connector, mode, priv->rgb_quant_range); tda998x_write_if(priv, DIP_IF_FLAGS_IF2, REG_IF2_HB0, &frame); } static void tda998x_write_vsi(struct tda998x_priv *priv, const struct drm_display_mode *mode) { union hdmi_infoframe frame; if (drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi, &priv->connector, mode)) reg_clear(priv, REG_DIP_IF_FLAGS, DIP_IF_FLAGS_IF1); else tda998x_write_if(priv, DIP_IF_FLAGS_IF1, REG_IF1_HB0, &frame); } /* Audio support */ static const struct tda998x_audio_route tda998x_audio_route[AUDIO_ROUTE_NUM] = { [AUDIO_ROUTE_I2S] = { .ena_aclk = 1, .mux_ap = MUX_AP_SELECT_I2S, .aip_clksel = AIP_CLKSEL_AIP_I2S | AIP_CLKSEL_FS_ACLK, }, [AUDIO_ROUTE_SPDIF] = { .ena_aclk = 0, .mux_ap = MUX_AP_SELECT_SPDIF, .aip_clksel = AIP_CLKSEL_AIP_SPDIF | AIP_CLKSEL_FS_FS64SPDIF, }, }; /* Configure the TDA998x audio data and clock routing. */ static int tda998x_derive_routing(struct tda998x_priv *priv, struct tda998x_audio_settings *s, unsigned int route) { s->route = &tda998x_audio_route[route]; s->ena_ap = priv->audio_port_enable[route]; if (s->ena_ap == 0) { dev_err(&priv->hdmi->dev, "no audio configuration found\n"); return -EINVAL; } return 0; } /* * The audio clock divisor register controls a divider producing Audio_Clk_Out * from SERclk by dividing it by 2^n where 0 <= n <= 5. We don't know what * Audio_Clk_Out or SERclk are. We guess SERclk is the same as TMDS clock. * * It seems that Audio_Clk_Out must be the smallest value that is greater * than 128*fs, otherwise audio does not function. There is some suggestion * that 126*fs is a better value. */ static u8 tda998x_get_adiv(struct tda998x_priv *priv, unsigned int fs) { unsigned long min_audio_clk = fs * 128; unsigned long ser_clk = priv->tmds_clock * 1000; u8 adiv; for (adiv = AUDIO_DIV_SERCLK_32; adiv != AUDIO_DIV_SERCLK_1; adiv--) if (ser_clk > min_audio_clk << adiv) break; dev_dbg(&priv->hdmi->dev, "ser_clk=%luHz fs=%uHz min_aclk=%luHz adiv=%d\n", ser_clk, fs, min_audio_clk, adiv); return adiv; } /* * In auto-CTS mode, the TDA998x uses a "measured time stamp" counter to * generate the CTS value. It appears that the "measured time stamp" is * the number of TDMS clock cycles within a number of audio input clock * cycles defined by the k and N parameters defined below, in a similar * way to that which is set out in the CTS generation in the HDMI spec. * * tmdsclk ----> mts -> /m ---> CTS * ^ * sclk -> /k -> /N * * CTS = mts / m, where m is 2^M. * /k is a divider based on the K value below, K+1 for K < 4, or 8 for K >= 4 * /N is a divider based on the HDMI specified N value. * * This produces the following equation: * CTS = tmds_clock * k * N / (sclk * m) * * When combined with the sink-side equation, and realising that sclk is * bclk_ratio * fs, we end up with: * k = m * bclk_ratio / 128. * * Note: S/PDIF always uses a bclk_ratio of 64. */ static int tda998x_derive_cts_n(struct tda998x_priv *priv, struct tda998x_audio_settings *settings, unsigned int ratio) { switch (ratio) { case 16: settings->cts_n = CTS_N_M(3) | CTS_N_K(0); break; case 32: settings->cts_n = CTS_N_M(3) | CTS_N_K(1); break; case 48: settings->cts_n = CTS_N_M(3) | CTS_N_K(2); break; case 64: settings->cts_n = CTS_N_M(3) | CTS_N_K(3); break; case 128: settings->cts_n = CTS_N_M(0) | CTS_N_K(0); break; default: dev_err(&priv->hdmi->dev, "unsupported bclk ratio %ufs\n", ratio); return -EINVAL; } return 0; } static void tda998x_audio_mute(struct tda998x_priv *priv, bool on) { if (on) { reg_set(priv, REG_SOFTRESET, SOFTRESET_AUDIO); reg_clear(priv, REG_SOFTRESET, SOFTRESET_AUDIO); reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO); } else { reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO); } } static void tda998x_configure_audio(struct tda998x_priv *priv) { const struct tda998x_audio_settings *settings = &priv->audio; u8 buf[6], adiv; u32 n; /* If audio is not configured, there is nothing to do. */ if (settings->ena_ap == 0) return; adiv = tda998x_get_adiv(priv, settings->sample_rate); /* Enable audio ports */ reg_write(priv, REG_ENA_AP, settings->ena_ap); reg_write(priv, REG_ENA_ACLK, settings->route->ena_aclk); reg_write(priv, REG_MUX_AP, settings->route->mux_ap); reg_write(priv, REG_I2S_FORMAT, settings->i2s_format); reg_write(priv, REG_AIP_CLKSEL, settings->route->aip_clksel); reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_LAYOUT | AIP_CNTRL_0_ACR_MAN); /* auto CTS */ reg_write(priv, REG_CTS_N, settings->cts_n); reg_write(priv, REG_AUDIO_DIV, adiv); /* * This is the approximate value of N, which happens to be * the recommended values for non-coherent clocks. */ n = 128 * settings->sample_rate / 1000; /* Write the CTS and N values */ buf[0] = 0x44; buf[1] = 0x42; buf[2] = 0x01; buf[3] = n; buf[4] = n >> 8; buf[5] = n >> 16; reg_write_range(priv, REG_ACR_CTS_0, buf, 6); /* Reset CTS generator */ reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS); reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS); /* Write the channel status * The REG_CH_STAT_B-registers skip IEC958 AES2 byte, because * there is a separate register for each I2S wire. */ buf[0] = settings->status[0]; buf[1] = settings->status[1]; buf[2] = settings->status[3]; buf[3] = settings->status[4]; reg_write_range(priv, REG_CH_STAT_B(0), buf, 4); tda998x_audio_mute(priv, true); msleep(20); tda998x_audio_mute(priv, false); tda998x_write_aif(priv, &settings->cea); } static int tda998x_audio_hw_params(struct device *dev, void *data, struct hdmi_codec_daifmt *daifmt, struct hdmi_codec_params *params) { struct tda998x_priv *priv = dev_get_drvdata(dev); unsigned int bclk_ratio; bool spdif = daifmt->fmt == HDMI_SPDIF; int ret; struct tda998x_audio_settings audio = { .sample_rate = params->sample_rate, .cea = params->cea, }; memcpy(audio.status, params->iec.status, min(sizeof(audio.status), sizeof(params->iec.status))); switch (daifmt->fmt) { case HDMI_I2S: audio.i2s_format = I2S_FORMAT_PHILIPS; break; case HDMI_LEFT_J: audio.i2s_format = I2S_FORMAT_LEFT_J; break; case HDMI_RIGHT_J: audio.i2s_format = I2S_FORMAT_RIGHT_J; break; case HDMI_SPDIF: audio.i2s_format = 0; break; default: dev_err(dev, "%s: Invalid format %d\n", __func__, daifmt->fmt); return -EINVAL; } if (!spdif && (daifmt->bit_clk_inv || daifmt->frame_clk_inv || daifmt->bit_clk_master || daifmt->frame_clk_master)) { dev_err(dev, "%s: Bad flags %d %d %d %d\n", __func__, daifmt->bit_clk_inv, daifmt->frame_clk_inv, daifmt->bit_clk_master, daifmt->frame_clk_master); return -EINVAL; } ret = tda998x_derive_routing(priv, &audio, AUDIO_ROUTE_I2S + spdif); if (ret < 0) return ret; bclk_ratio = spdif ? 64 : params->sample_width * 2; ret = tda998x_derive_cts_n(priv, &audio, bclk_ratio); if (ret < 0) return ret; mutex_lock(&priv->audio_mutex); priv->audio = audio; if (priv->supports_infoframes && priv->sink_has_audio) tda998x_configure_audio(priv); mutex_unlock(&priv->audio_mutex); return 0; } static void tda998x_audio_shutdown(struct device *dev, void *data) { struct tda998x_priv *priv = dev_get_drvdata(dev); mutex_lock(&priv->audio_mutex); reg_write(priv, REG_ENA_AP, 0); priv->audio.ena_ap = 0; mutex_unlock(&priv->audio_mutex); } int tda998x_audio_digital_mute(struct device *dev, void *data, bool enable) { struct tda998x_priv *priv = dev_get_drvdata(dev); mutex_lock(&priv->audio_mutex); tda998x_audio_mute(priv, enable); mutex_unlock(&priv->audio_mutex); return 0; } static int tda998x_audio_get_eld(struct device *dev, void *data, uint8_t *buf, size_t len) { struct tda998x_priv *priv = dev_get_drvdata(dev); mutex_lock(&priv->audio_mutex); memcpy(buf, priv->connector.eld, min(sizeof(priv->connector.eld), len)); mutex_unlock(&priv->audio_mutex); return 0; } static const struct hdmi_codec_ops audio_codec_ops = { .hw_params = tda998x_audio_hw_params, .audio_shutdown = tda998x_audio_shutdown, .digital_mute = tda998x_audio_digital_mute, .get_eld = tda998x_audio_get_eld, }; static int tda998x_audio_codec_init(struct tda998x_priv *priv, struct device *dev) { struct hdmi_codec_pdata codec_data = { .ops = &audio_codec_ops, .max_i2s_channels = 2, }; if (priv->audio_port_enable[AUDIO_ROUTE_I2S]) codec_data.i2s = 1; if (priv->audio_port_enable[AUDIO_ROUTE_SPDIF]) codec_data.spdif = 1; priv->audio_pdev = platform_device_register_data( dev, HDMI_CODEC_DRV_NAME, PLATFORM_DEVID_AUTO, &codec_data, sizeof(codec_data)); return PTR_ERR_OR_ZERO(priv->audio_pdev); } /* DRM connector functions */ static enum drm_connector_status tda998x_connector_detect(struct drm_connector *connector, bool force) { struct tda998x_priv *priv = conn_to_tda998x_priv(connector); u8 val = cec_read(priv, REG_CEC_RXSHPDLEV); return (val & CEC_RXSHPDLEV_HPD) ? connector_status_connected : connector_status_disconnected; } static void tda998x_connector_destroy(struct drm_connector *connector) { drm_connector_cleanup(connector); } static const struct drm_connector_funcs tda998x_connector_funcs = { .reset = drm_atomic_helper_connector_reset, .fill_modes = drm_helper_probe_single_connector_modes, .detect = tda998x_connector_detect, .destroy = tda998x_connector_destroy, .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, }; static int read_edid_block(void *data, u8 *buf, unsigned int blk, size_t length) { struct tda998x_priv *priv = data; u8 offset, segptr; int ret, i; offset = (blk & 1) ? 128 : 0; segptr = blk / 2; mutex_lock(&priv->edid_mutex); reg_write(priv, REG_DDC_ADDR, 0xa0); reg_write(priv, REG_DDC_OFFS, offset); reg_write(priv, REG_DDC_SEGM_ADDR, 0x60); reg_write(priv, REG_DDC_SEGM, segptr); /* enable reading EDID: */ priv->wq_edid_wait = 1; reg_write(priv, REG_EDID_CTRL, 0x1); /* flag must be cleared by sw: */ reg_write(priv, REG_EDID_CTRL, 0x0); /* wait for block read to complete: */ if (priv->hdmi->irq) { i = wait_event_timeout(priv->wq_edid, !priv->wq_edid_wait, msecs_to_jiffies(100)); if (i < 0) { dev_err(&priv->hdmi->dev, "read edid wait err %d\n", i); ret = i; goto failed; } } else { for (i = 100; i > 0; i--) { msleep(1); ret = reg_read(priv, REG_INT_FLAGS_2); if (ret < 0) goto failed; if (ret & INT_FLAGS_2_EDID_BLK_RD) break; } } if (i == 0) { dev_err(&priv->hdmi->dev, "read edid timeout\n"); ret = -ETIMEDOUT; goto failed; } ret = reg_read_range(priv, REG_EDID_DATA_0, buf, length); if (ret != length) { dev_err(&priv->hdmi->dev, "failed to read edid block %d: %d\n", blk, ret); goto failed; } ret = 0; failed: mutex_unlock(&priv->edid_mutex); return ret; } static int tda998x_connector_get_modes(struct drm_connector *connector) { struct tda998x_priv *priv = conn_to_tda998x_priv(connector); struct edid *edid; int n; /* * If we get killed while waiting for the HPD timeout, return * no modes found: we are not in a restartable path, so we * can't handle signals gracefully. */ if (tda998x_edid_delay_wait(priv)) return 0; if (priv->rev == TDA19988) reg_clear(priv, REG_TX4, TX4_PD_RAM); edid = drm_do_get_edid(connector, read_edid_block, priv); if (priv->rev == TDA19988) reg_set(priv, REG_TX4, TX4_PD_RAM); if (!edid) { dev_warn(&priv->hdmi->dev, "failed to read EDID\n"); return 0; } drm_connector_update_edid_property(connector, edid); cec_notifier_set_phys_addr_from_edid(priv->cec_notify, edid); mutex_lock(&priv->audio_mutex); n = drm_add_edid_modes(connector, edid); priv->sink_has_audio = drm_detect_monitor_audio(edid); mutex_unlock(&priv->audio_mutex); kfree(edid); return n; } static struct drm_encoder * tda998x_connector_best_encoder(struct drm_connector *connector) { struct tda998x_priv *priv = conn_to_tda998x_priv(connector); return priv->bridge.encoder; } static const struct drm_connector_helper_funcs tda998x_connector_helper_funcs = { .get_modes = tda998x_connector_get_modes, .best_encoder = tda998x_connector_best_encoder, }; static int tda998x_connector_init(struct tda998x_priv *priv, struct drm_device *drm) { struct drm_connector *connector = &priv->connector; int ret; connector->interlace_allowed = 1; if (priv->hdmi->irq) connector->polled = DRM_CONNECTOR_POLL_HPD; else connector->polled = DRM_CONNECTOR_POLL_CONNECT | DRM_CONNECTOR_POLL_DISCONNECT; drm_connector_helper_add(connector, &tda998x_connector_helper_funcs); ret = drm_connector_init(drm, connector, &tda998x_connector_funcs, DRM_MODE_CONNECTOR_HDMIA); if (ret) return ret; drm_connector_attach_encoder(&priv->connector, priv->bridge.encoder); return 0; } /* DRM bridge functions */ static int tda998x_bridge_attach(struct drm_bridge *bridge) { struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge); return tda998x_connector_init(priv, bridge->dev); } static void tda998x_bridge_detach(struct drm_bridge *bridge) { struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge); drm_connector_cleanup(&priv->connector); } static enum drm_mode_status tda998x_bridge_mode_valid(struct drm_bridge *bridge, const struct drm_display_mode *mode) { /* TDA19988 dotclock can go up to 165MHz */ struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge); if (mode->clock > ((priv->rev == TDA19988) ? 165000 : 150000)) return MODE_CLOCK_HIGH; if (mode->htotal >= BIT(13)) return MODE_BAD_HVALUE; if (mode->vtotal >= BIT(11)) return MODE_BAD_VVALUE; return MODE_OK; } static void tda998x_bridge_enable(struct drm_bridge *bridge) { struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge); if (!priv->is_on) { /* enable video ports, audio will be enabled later */ reg_write(priv, REG_ENA_VP_0, 0xff); reg_write(priv, REG_ENA_VP_1, 0xff); reg_write(priv, REG_ENA_VP_2, 0xff); /* set muxing after enabling ports: */ reg_write(priv, REG_VIP_CNTRL_0, priv->vip_cntrl_0); reg_write(priv, REG_VIP_CNTRL_1, priv->vip_cntrl_1); reg_write(priv, REG_VIP_CNTRL_2, priv->vip_cntrl_2); priv->is_on = true; } } static void tda998x_bridge_disable(struct drm_bridge *bridge) { struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge); if (priv->is_on) { /* disable video ports */ reg_write(priv, REG_ENA_VP_0, 0x00); reg_write(priv, REG_ENA_VP_1, 0x00); reg_write(priv, REG_ENA_VP_2, 0x00); priv->is_on = false; } } static void tda998x_bridge_mode_set(struct drm_bridge *bridge, const struct drm_display_mode *mode, const struct drm_display_mode *adjusted_mode) { struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge); unsigned long tmds_clock; u16 ref_pix, ref_line, n_pix, n_line; u16 hs_pix_s, hs_pix_e; u16 vs1_pix_s, vs1_pix_e, vs1_line_s, vs1_line_e; u16 vs2_pix_s, vs2_pix_e, vs2_line_s, vs2_line_e; u16 vwin1_line_s, vwin1_line_e; u16 vwin2_line_s, vwin2_line_e; u16 de_pix_s, de_pix_e; u8 reg, div, rep, sel_clk; /* * Since we are "computer" like, our source invariably produces * full-range RGB. If the monitor supports full-range, then use * it, otherwise reduce to limited-range. */ priv->rgb_quant_range = priv->connector.display_info.rgb_quant_range_selectable ? HDMI_QUANTIZATION_RANGE_FULL : drm_default_rgb_quant_range(adjusted_mode); /* * Internally TDA998x is using ITU-R BT.656 style sync but * we get VESA style sync. TDA998x is using a reference pixel * relative to ITU to sync to the input frame and for output * sync generation. Currently, we are using reference detection * from HS/VS, i.e. REFPIX/REFLINE denote frame start sync point * which is position of rising VS with coincident rising HS. * * Now there is some issues to take care of: * - HDMI data islands require sync-before-active * - TDA998x register values must be > 0 to be enabled * - REFLINE needs an additional offset of +1 * - REFPIX needs an addtional offset of +1 for UYUV and +3 for RGB * * So we add +1 to all horizontal and vertical register values, * plus an additional +3 for REFPIX as we are using RGB input only. */ n_pix = mode->htotal; n_line = mode->vtotal; hs_pix_e = mode->hsync_end - mode->hdisplay; hs_pix_s = mode->hsync_start - mode->hdisplay; de_pix_e = mode->htotal; de_pix_s = mode->htotal - mode->hdisplay; ref_pix = 3 + hs_pix_s; /* * Attached LCD controllers may generate broken sync. Allow * those to adjust the position of the rising VS edge by adding * HSKEW to ref_pix. */ if (adjusted_mode->flags & DRM_MODE_FLAG_HSKEW) ref_pix += adjusted_mode->hskew; if ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0) { ref_line = 1 + mode->vsync_start - mode->vdisplay; vwin1_line_s = mode->vtotal - mode->vdisplay - 1; vwin1_line_e = vwin1_line_s + mode->vdisplay; vs1_pix_s = vs1_pix_e = hs_pix_s; vs1_line_s = mode->vsync_start - mode->vdisplay; vs1_line_e = vs1_line_s + mode->vsync_end - mode->vsync_start; vwin2_line_s = vwin2_line_e = 0; vs2_pix_s = vs2_pix_e = 0; vs2_line_s = vs2_line_e = 0; } else { ref_line = 1 + (mode->vsync_start - mode->vdisplay)/2; vwin1_line_s = (mode->vtotal - mode->vdisplay)/2; vwin1_line_e = vwin1_line_s + mode->vdisplay/2; vs1_pix_s = vs1_pix_e = hs_pix_s; vs1_line_s = (mode->vsync_start - mode->vdisplay)/2; vs1_line_e = vs1_line_s + (mode->vsync_end - mode->vsync_start)/2; vwin2_line_s = vwin1_line_s + mode->vtotal/2; vwin2_line_e = vwin2_line_s + mode->vdisplay/2; vs2_pix_s = vs2_pix_e = hs_pix_s + mode->htotal/2; vs2_line_s = vs1_line_s + mode->vtotal/2 ; vs2_line_e = vs2_line_s + (mode->vsync_end - mode->vsync_start)/2; } /* * Select pixel repeat depending on the double-clock flag * (which means we have to repeat each pixel once.) */ rep = mode->flags & DRM_MODE_FLAG_DBLCLK ? 1 : 0; sel_clk = SEL_CLK_ENA_SC_CLK | SEL_CLK_SEL_CLK1 | SEL_CLK_SEL_VRF_CLK(rep ? 2 : 0); /* the TMDS clock is scaled up by the pixel repeat */ tmds_clock = mode->clock * (1 + rep); /* * The divisor is power-of-2. The TDA9983B datasheet gives * this as ranges of Msample/s, which is 10x the TMDS clock: * 0 - 800 to 1500 Msample/s * 1 - 400 to 800 Msample/s * 2 - 200 to 400 Msample/s * 3 - as 2 above */ for (div = 0; div < 3; div++) if (80000 >> div <= tmds_clock) break; mutex_lock(&priv->audio_mutex); priv->tmds_clock = tmds_clock; /* mute the audio FIFO: */ reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO); /* set HDMI HDCP mode off: */ reg_write(priv, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS); reg_clear(priv, REG_TX33, TX33_HDMI); reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(0)); /* no pre-filter or interpolator: */ reg_write(priv, REG_HVF_CNTRL_0, HVF_CNTRL_0_PREFIL(0) | HVF_CNTRL_0_INTPOL(0)); reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_PREFILT); reg_write(priv, REG_VIP_CNTRL_5, VIP_CNTRL_5_SP_CNT(0)); reg_write(priv, REG_VIP_CNTRL_4, VIP_CNTRL_4_BLANKIT(0) | VIP_CNTRL_4_BLC(0)); reg_clear(priv, REG_PLL_SERIAL_1, PLL_SERIAL_1_SRL_MAN_IZ); reg_clear(priv, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_CCIR | PLL_SERIAL_3_SRL_DE); reg_write(priv, REG_SERIALIZER, 0); reg_write(priv, REG_HVF_CNTRL_1, HVF_CNTRL_1_VQR(0)); reg_write(priv, REG_RPT_CNTRL, RPT_CNTRL_REPEAT(rep)); reg_write(priv, REG_SEL_CLK, sel_clk); reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(div) | PLL_SERIAL_2_SRL_PR(rep)); /* set color matrix according to output rgb quant range */ if (priv->rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED) { static u8 tda998x_full_to_limited_range[] = { MAT_CONTRL_MAT_SC(2), 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x6f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x6f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x6f, 0x00, 0x40, 0x00, 0x40, 0x00, 0x40 }; reg_clear(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC); reg_write_range(priv, REG_MAT_CONTRL, tda998x_full_to_limited_range, sizeof(tda998x_full_to_limited_range)); } else { reg_write(priv, REG_MAT_CONTRL, MAT_CONTRL_MAT_BP | MAT_CONTRL_MAT_SC(1)); reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC); } /* set BIAS tmds value: */ reg_write(priv, REG_ANA_GENERAL, 0x09); /* * Sync on rising HSYNC/VSYNC */ reg = VIP_CNTRL_3_SYNC_HS; /* * TDA19988 requires high-active sync at input stage, * so invert low-active sync provided by master encoder here */ if (mode->flags & DRM_MODE_FLAG_NHSYNC) reg |= VIP_CNTRL_3_H_TGL; if (mode->flags & DRM_MODE_FLAG_NVSYNC) reg |= VIP_CNTRL_3_V_TGL; reg_write(priv, REG_VIP_CNTRL_3, reg); reg_write(priv, REG_VIDFORMAT, 0x00); reg_write16(priv, REG_REFPIX_MSB, ref_pix); reg_write16(priv, REG_REFLINE_MSB, ref_line); reg_write16(priv, REG_NPIX_MSB, n_pix); reg_write16(priv, REG_NLINE_MSB, n_line); reg_write16(priv, REG_VS_LINE_STRT_1_MSB, vs1_line_s); reg_write16(priv, REG_VS_PIX_STRT_1_MSB, vs1_pix_s); reg_write16(priv, REG_VS_LINE_END_1_MSB, vs1_line_e); reg_write16(priv, REG_VS_PIX_END_1_MSB, vs1_pix_e); reg_write16(priv, REG_VS_LINE_STRT_2_MSB, vs2_line_s); reg_write16(priv, REG_VS_PIX_STRT_2_MSB, vs2_pix_s); reg_write16(priv, REG_VS_LINE_END_2_MSB, vs2_line_e); reg_write16(priv, REG_VS_PIX_END_2_MSB, vs2_pix_e); reg_write16(priv, REG_HS_PIX_START_MSB, hs_pix_s); reg_write16(priv, REG_HS_PIX_STOP_MSB, hs_pix_e); reg_write16(priv, REG_VWIN_START_1_MSB, vwin1_line_s); reg_write16(priv, REG_VWIN_END_1_MSB, vwin1_line_e); reg_write16(priv, REG_VWIN_START_2_MSB, vwin2_line_s); reg_write16(priv, REG_VWIN_END_2_MSB, vwin2_line_e); reg_write16(priv, REG_DE_START_MSB, de_pix_s); reg_write16(priv, REG_DE_STOP_MSB, de_pix_e); if (priv->rev == TDA19988) { /* let incoming pixels fill the active space (if any) */ reg_write(priv, REG_ENABLE_SPACE, 0x00); } /* * Always generate sync polarity relative to input sync and * revert input stage toggled sync at output stage */ reg = TBG_CNTRL_1_DWIN_DIS | TBG_CNTRL_1_TGL_EN; if (mode->flags & DRM_MODE_FLAG_NHSYNC) reg |= TBG_CNTRL_1_H_TGL; if (mode->flags & DRM_MODE_FLAG_NVSYNC) reg |= TBG_CNTRL_1_V_TGL; reg_write(priv, REG_TBG_CNTRL_1, reg); /* must be last register set: */ reg_write(priv, REG_TBG_CNTRL_0, 0); /* CEA-861B section 6 says that: * CEA version 1 (CEA-861) has no support for infoframes. * CEA version 2 (CEA-861A) supports version 1 AVI infoframes, * and optional basic audio. * CEA version 3 (CEA-861B) supports version 1 and 2 AVI infoframes, * and optional digital audio, with audio infoframes. * * Since we only support generation of version 2 AVI infoframes, * ignore CEA version 2 and below (iow, behave as if we're a * CEA-861 source.) */ priv->supports_infoframes = priv->connector.display_info.cea_rev >= 3; if (priv->supports_infoframes) { /* We need to turn HDMI HDCP stuff on to get audio through */ reg &= ~TBG_CNTRL_1_DWIN_DIS; reg_write(priv, REG_TBG_CNTRL_1, reg); reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(1)); reg_set(priv, REG_TX33, TX33_HDMI); tda998x_write_avi(priv, adjusted_mode); tda998x_write_vsi(priv, adjusted_mode); if (priv->sink_has_audio) tda998x_configure_audio(priv); } mutex_unlock(&priv->audio_mutex); } static const struct drm_bridge_funcs tda998x_bridge_funcs = { .attach = tda998x_bridge_attach, .detach = tda998x_bridge_detach, .mode_valid = tda998x_bridge_mode_valid, .disable = tda998x_bridge_disable, .mode_set = tda998x_bridge_mode_set, .enable = tda998x_bridge_enable, }; /* I2C driver functions */ static int tda998x_get_audio_ports(struct tda998x_priv *priv, struct device_node *np) { const u32 *port_data; u32 size; int i; port_data = of_get_property(np, "audio-ports", &size); if (!port_data) return 0; size /= sizeof(u32); if (size > 2 * ARRAY_SIZE(priv->audio_port_enable) || size % 2 != 0) { dev_err(&priv->hdmi->dev, "Bad number of elements in audio-ports dt-property\n"); return -EINVAL; } size /= 2; for (i = 0; i < size; i++) { unsigned int route; u8 afmt = be32_to_cpup(&port_data[2*i]); u8 ena_ap = be32_to_cpup(&port_data[2*i+1]); switch (afmt) { case AFMT_I2S: route = AUDIO_ROUTE_I2S; break; case AFMT_SPDIF: route = AUDIO_ROUTE_SPDIF; break; default: dev_err(&priv->hdmi->dev, "Bad audio format %u\n", afmt); return -EINVAL; } if (!ena_ap) { dev_err(&priv->hdmi->dev, "invalid zero port config\n"); continue; } if (priv->audio_port_enable[route]) { dev_err(&priv->hdmi->dev, "%s format already configured\n", route == AUDIO_ROUTE_SPDIF ? "SPDIF" : "I2S"); return -EINVAL; } priv->audio_port_enable[route] = ena_ap; } return 0; } static int tda998x_set_config(struct tda998x_priv *priv, const struct tda998x_encoder_params *p) { priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(p->swap_a) | (p->mirr_a ? VIP_CNTRL_0_MIRR_A : 0) | VIP_CNTRL_0_SWAP_B(p->swap_b) | (p->mirr_b ? VIP_CNTRL_0_MIRR_B : 0); priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(p->swap_c) | (p->mirr_c ? VIP_CNTRL_1_MIRR_C : 0) | VIP_CNTRL_1_SWAP_D(p->swap_d) | (p->mirr_d ? VIP_CNTRL_1_MIRR_D : 0); priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(p->swap_e) | (p->mirr_e ? VIP_CNTRL_2_MIRR_E : 0) | VIP_CNTRL_2_SWAP_F(p->swap_f) | (p->mirr_f ? VIP_CNTRL_2_MIRR_F : 0); if (p->audio_params.format != AFMT_UNUSED) { unsigned int ratio, route; bool spdif = p->audio_params.format == AFMT_SPDIF; route = AUDIO_ROUTE_I2S + spdif; priv->audio.route = &tda998x_audio_route[route]; priv->audio.cea = p->audio_params.cea; priv->audio.sample_rate = p->audio_params.sample_rate; memcpy(priv->audio.status, p->audio_params.status, min(sizeof(priv->audio.status), sizeof(p->audio_params.status))); priv->audio.ena_ap = p->audio_params.config; priv->audio.i2s_format = I2S_FORMAT_PHILIPS; ratio = spdif ? 64 : p->audio_params.sample_width * 2; return tda998x_derive_cts_n(priv, &priv->audio, ratio); } return 0; } static void tda998x_destroy(struct device *dev) { struct tda998x_priv *priv = dev_get_drvdata(dev); drm_bridge_remove(&priv->bridge); /* disable all IRQs and free the IRQ handler */ cec_write(priv, REG_CEC_RXSHPDINTENA, 0); reg_clear(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD); if (priv->audio_pdev) platform_device_unregister(priv->audio_pdev); if (priv->hdmi->irq) free_irq(priv->hdmi->irq, priv); del_timer_sync(&priv->edid_delay_timer); cancel_work_sync(&priv->detect_work); i2c_unregister_device(priv->cec); if (priv->cec_notify) cec_notifier_put(priv->cec_notify); } static int tda998x_create(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct device_node *np = client->dev.of_node; struct i2c_board_info cec_info; struct tda998x_priv *priv; u32 video; int rev_lo, rev_hi, ret; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; dev_set_drvdata(dev, priv); mutex_init(&priv->mutex); /* protect the page access */ mutex_init(&priv->audio_mutex); /* protect access from audio thread */ mutex_init(&priv->edid_mutex); INIT_LIST_HEAD(&priv->bridge.list); init_waitqueue_head(&priv->edid_delay_waitq); timer_setup(&priv->edid_delay_timer, tda998x_edid_delay_done, 0); INIT_WORK(&priv->detect_work, tda998x_detect_work); priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(2) | VIP_CNTRL_0_SWAP_B(3); priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(0) | VIP_CNTRL_1_SWAP_D(1); priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(4) | VIP_CNTRL_2_SWAP_F(5); /* CEC I2C address bound to TDA998x I2C addr by configuration pins */ priv->cec_addr = 0x34 + (client->addr & 0x03); priv->current_page = 0xff; priv->hdmi = client; /* wake up the device: */ cec_write(priv, REG_CEC_ENAMODS, CEC_ENAMODS_EN_RXSENS | CEC_ENAMODS_EN_HDMI); tda998x_reset(priv); /* read version: */ rev_lo = reg_read(priv, REG_VERSION_LSB); if (rev_lo < 0) { dev_err(dev, "failed to read version: %d\n", rev_lo); return rev_lo; } rev_hi = reg_read(priv, REG_VERSION_MSB); if (rev_hi < 0) { dev_err(dev, "failed to read version: %d\n", rev_hi); return rev_hi; } priv->rev = rev_lo | rev_hi << 8; /* mask off feature bits: */ priv->rev &= ~0x30; /* not-hdcp and not-scalar bit */ switch (priv->rev) { case TDA9989N2: dev_info(dev, "found TDA9989 n2"); break; case TDA19989: dev_info(dev, "found TDA19989"); break; case TDA19989N2: dev_info(dev, "found TDA19989 n2"); break; case TDA19988: dev_info(dev, "found TDA19988"); break; default: dev_err(dev, "found unsupported device: %04x\n", priv->rev); return -ENXIO; } /* after reset, enable DDC: */ reg_write(priv, REG_DDC_DISABLE, 0x00); /* set clock on DDC channel: */ reg_write(priv, REG_TX3, 39); /* if necessary, disable multi-master: */ if (priv->rev == TDA19989) reg_set(priv, REG_I2C_MASTER, I2C_MASTER_DIS_MM); cec_write(priv, REG_CEC_FRO_IM_CLK_CTRL, CEC_FRO_IM_CLK_CTRL_GHOST_DIS | CEC_FRO_IM_CLK_CTRL_IMCLK_SEL); /* ensure interrupts are disabled */ cec_write(priv, REG_CEC_RXSHPDINTENA, 0); /* clear pending interrupts */ cec_read(priv, REG_CEC_RXSHPDINT); reg_read(priv, REG_INT_FLAGS_0); reg_read(priv, REG_INT_FLAGS_1); reg_read(priv, REG_INT_FLAGS_2); /* initialize the optional IRQ */ if (client->irq) { unsigned long irq_flags; /* init read EDID waitqueue and HDP work */ init_waitqueue_head(&priv->wq_edid); irq_flags = irqd_get_trigger_type(irq_get_irq_data(client->irq)); priv->cec_glue.irq_flags = irq_flags; irq_flags |= IRQF_SHARED | IRQF_ONESHOT; ret = request_threaded_irq(client->irq, NULL, tda998x_irq_thread, irq_flags, "tda998x", priv); if (ret) { dev_err(dev, "failed to request IRQ#%u: %d\n", client->irq, ret); goto err_irq; } /* enable HPD irq */ cec_write(priv, REG_CEC_RXSHPDINTENA, CEC_RXSHPDLEV_HPD); } priv->cec_notify = cec_notifier_get(dev); if (!priv->cec_notify) { ret = -ENOMEM; goto fail; } priv->cec_glue.parent = dev; priv->cec_glue.data = priv; priv->cec_glue.init = tda998x_cec_hook_init; priv->cec_glue.exit = tda998x_cec_hook_exit; priv->cec_glue.open = tda998x_cec_hook_open; priv->cec_glue.release = tda998x_cec_hook_release; /* * Some TDA998x are actually two I2C devices merged onto one piece * of silicon: TDA9989 and TDA19989 combine the HDMI transmitter * with a slightly modified TDA9950 CEC device. The CEC device * is at the TDA9950 address, with the address pins strapped across * to the TDA998x address pins. Hence, it always has the same * offset. */ memset(&cec_info, 0, sizeof(cec_info)); strlcpy(cec_info.type, "tda9950", sizeof(cec_info.type)); cec_info.addr = priv->cec_addr; cec_info.platform_data = &priv->cec_glue; cec_info.irq = client->irq; priv->cec = i2c_new_device(client->adapter, &cec_info); if (!priv->cec) { ret = -ENODEV; goto fail; } /* enable EDID read irq: */ reg_set(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD); if (np) { /* get the device tree parameters */ ret = of_property_read_u32(np, "video-ports", &video); if (ret == 0) { priv->vip_cntrl_0 = video >> 16; priv->vip_cntrl_1 = video >> 8; priv->vip_cntrl_2 = video; } ret = tda998x_get_audio_ports(priv, np); if (ret) goto fail; if (priv->audio_port_enable[AUDIO_ROUTE_I2S] || priv->audio_port_enable[AUDIO_ROUTE_SPDIF]) tda998x_audio_codec_init(priv, &client->dev); } else if (dev->platform_data) { ret = tda998x_set_config(priv, dev->platform_data); if (ret) goto fail; } priv->bridge.funcs = &tda998x_bridge_funcs; #ifdef CONFIG_OF priv->bridge.of_node = dev->of_node; #endif drm_bridge_add(&priv->bridge); return 0; fail: tda998x_destroy(dev); err_irq: return ret; } /* DRM encoder functions */ static void tda998x_encoder_destroy(struct drm_encoder *encoder) { drm_encoder_cleanup(encoder); } static const struct drm_encoder_funcs tda998x_encoder_funcs = { .destroy = tda998x_encoder_destroy, }; static int tda998x_encoder_init(struct device *dev, struct drm_device *drm) { struct tda998x_priv *priv = dev_get_drvdata(dev); u32 crtcs = 0; int ret; if (dev->of_node) crtcs = drm_of_find_possible_crtcs(drm, dev->of_node); /* If no CRTCs were found, fall back to our old behaviour */ if (crtcs == 0) { dev_warn(dev, "Falling back to first CRTC\n"); crtcs = 1 << 0; } priv->encoder.possible_crtcs = crtcs; ret = drm_encoder_init(drm, &priv->encoder, &tda998x_encoder_funcs, DRM_MODE_ENCODER_TMDS, NULL); if (ret) goto err_encoder; ret = drm_bridge_attach(&priv->encoder, &priv->bridge, NULL); if (ret) goto err_bridge; return 0; err_bridge: drm_encoder_cleanup(&priv->encoder); err_encoder: return ret; } static int tda998x_bind(struct device *dev, struct device *master, void *data) { struct drm_device *drm = data; return tda998x_encoder_init(dev, drm); } static void tda998x_unbind(struct device *dev, struct device *master, void *data) { struct tda998x_priv *priv = dev_get_drvdata(dev); drm_encoder_cleanup(&priv->encoder); } static const struct component_ops tda998x_ops = { .bind = tda998x_bind, .unbind = tda998x_unbind, }; static int tda998x_probe(struct i2c_client *client, const struct i2c_device_id *id) { int ret; if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { dev_warn(&client->dev, "adapter does not support I2C\n"); return -EIO; } ret = tda998x_create(&client->dev); if (ret) return ret; ret = component_add(&client->dev, &tda998x_ops); if (ret) tda998x_destroy(&client->dev); return ret; } static int tda998x_remove(struct i2c_client *client) { component_del(&client->dev, &tda998x_ops); tda998x_destroy(&client->dev); return 0; } #ifdef CONFIG_OF static const struct of_device_id tda998x_dt_ids[] = { { .compatible = "nxp,tda998x", }, { } }; MODULE_DEVICE_TABLE(of, tda998x_dt_ids); #endif static const struct i2c_device_id tda998x_ids[] = { { "tda998x", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, tda998x_ids); static struct i2c_driver tda998x_driver = { .probe = tda998x_probe, .remove = tda998x_remove, .driver = { .name = "tda998x", .of_match_table = of_match_ptr(tda998x_dt_ids), }, .id_table = tda998x_ids, }; module_i2c_driver(tda998x_driver); MODULE_AUTHOR("Rob Clark <robdclark@gmail.com"); MODULE_DESCRIPTION("NXP Semiconductors TDA998X HDMI Encoder"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1