Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jesse Barnes | 3542 | 23.29% | 5 | 1.84% |
Chris Wilson | 3415 | 22.46% | 52 | 19.12% |
Maarten Lankhorst | 1696 | 11.15% | 6 | 2.21% |
Ville Syrjälä | 1618 | 10.64% | 48 | 17.65% |
Daniel Vetter | 1385 | 9.11% | 38 | 13.97% |
Yakui Zhao | 1301 | 8.56% | 12 | 4.41% |
Zhenyu Wang | 851 | 5.60% | 7 | 2.57% |
Ma Ling | 355 | 2.33% | 6 | 2.21% |
Jani Nikula | 236 | 1.55% | 21 | 7.72% |
Ander Conselvan de Oliveira | 103 | 0.68% | 8 | 2.94% |
Imre Deak | 94 | 0.62% | 2 | 0.74% |
Simon Farnsworth | 86 | 0.57% | 1 | 0.37% |
Ben Widawsky | 73 | 0.48% | 2 | 0.74% |
Adam Jackson | 50 | 0.33% | 6 | 2.21% |
Damien Lespiau | 45 | 0.30% | 6 | 2.21% |
Sascha Hauer | 37 | 0.24% | 1 | 0.37% |
Tvrtko A. Ursulin | 35 | 0.23% | 4 | 1.47% |
Paulo Zanoni | 33 | 0.22% | 5 | 1.84% |
Egbert Eich | 32 | 0.21% | 3 | 1.10% |
Dave Airlie | 25 | 0.16% | 3 | 1.10% |
Rob Clark | 25 | 0.16% | 1 | 0.37% |
Mika Kahola | 23 | 0.15% | 1 | 0.37% |
Eric Anholt | 16 | 0.11% | 3 | 1.10% |
Matt Roper | 12 | 0.08% | 2 | 0.74% |
Keith Packard | 11 | 0.07% | 4 | 1.47% |
Pavel Roskin | 11 | 0.07% | 1 | 0.37% |
Sean Paul | 10 | 0.07% | 1 | 0.37% |
Daniel Kurtz | 10 | 0.07% | 1 | 0.37% |
David Weinehall | 8 | 0.05% | 1 | 0.37% |
Stephen Chandler Paul | 8 | 0.05% | 1 | 0.37% |
Alan Cox | 8 | 0.05% | 1 | 0.37% |
Shashank Sharma | 7 | 0.05% | 2 | 0.74% |
Guillaume Clement | 6 | 0.04% | 1 | 0.37% |
Gustavo A. R. Silva | 6 | 0.04% | 1 | 0.37% |
Rodrigo Vivi | 6 | 0.04% | 1 | 0.37% |
Dhinakaran Pandiyan | 6 | 0.04% | 1 | 0.37% |
Hannes Eder | 3 | 0.02% | 1 | 0.37% |
Laurent Pinchart | 2 | 0.01% | 1 | 0.37% |
David Härdeman | 2 | 0.01% | 1 | 0.37% |
David Howells | 2 | 0.01% | 1 | 0.37% |
Paul Gortmaker | 2 | 0.01% | 1 | 0.37% |
Tejun Heo | 2 | 0.01% | 1 | 0.37% |
Vasiliy Kulikov | 2 | 0.01% | 1 | 0.37% |
Peter Ross | 1 | 0.01% | 1 | 0.37% |
André Goddard Rosa | 1 | 0.01% | 1 | 0.37% |
Thomas Wood | 1 | 0.01% | 1 | 0.37% |
Tobias Klauser | 1 | 0.01% | 1 | 0.37% |
Thierry Reding | 1 | 0.01% | 1 | 0.37% |
Akshay Joshi | 1 | 0.01% | 1 | 0.37% |
Total | 15206 | 272 |
/* * Copyright 2006 Dave Airlie <airlied@linux.ie> * Copyright © 2006-2007 Intel Corporation * Jesse Barnes <jesse.barnes@intel.com> * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Eric Anholt <eric@anholt.net> */ #include <linux/delay.h> #include <linux/export.h> #include <linux/i2c.h> #include <linux/slab.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_crtc.h> #include <drm/drm_edid.h> #include <drm/i915_drm.h> #include "i915_drv.h" #include "intel_atomic.h" #include "intel_connector.h" #include "intel_drv.h" #include "intel_fifo_underrun.h" #include "intel_gmbus.h" #include "intel_hdmi.h" #include "intel_hotplug.h" #include "intel_panel.h" #include "intel_sdvo.h" #include "intel_sdvo_regs.h" #define SDVO_TMDS_MASK (SDVO_OUTPUT_TMDS0 | SDVO_OUTPUT_TMDS1) #define SDVO_RGB_MASK (SDVO_OUTPUT_RGB0 | SDVO_OUTPUT_RGB1) #define SDVO_LVDS_MASK (SDVO_OUTPUT_LVDS0 | SDVO_OUTPUT_LVDS1) #define SDVO_TV_MASK (SDVO_OUTPUT_CVBS0 | SDVO_OUTPUT_SVID0 | SDVO_OUTPUT_YPRPB0) #define SDVO_OUTPUT_MASK (SDVO_TMDS_MASK | SDVO_RGB_MASK | SDVO_LVDS_MASK |\ SDVO_TV_MASK) #define IS_TV(c) (c->output_flag & SDVO_TV_MASK) #define IS_TMDS(c) (c->output_flag & SDVO_TMDS_MASK) #define IS_LVDS(c) (c->output_flag & SDVO_LVDS_MASK) #define IS_TV_OR_LVDS(c) (c->output_flag & (SDVO_TV_MASK | SDVO_LVDS_MASK)) #define IS_DIGITAL(c) (c->output_flag & (SDVO_TMDS_MASK | SDVO_LVDS_MASK)) static const char * const tv_format_names[] = { "NTSC_M" , "NTSC_J" , "NTSC_443", "PAL_B" , "PAL_D" , "PAL_G" , "PAL_H" , "PAL_I" , "PAL_M" , "PAL_N" , "PAL_NC" , "PAL_60" , "SECAM_B" , "SECAM_D" , "SECAM_G" , "SECAM_K" , "SECAM_K1", "SECAM_L" , "SECAM_60" }; #define TV_FORMAT_NUM ARRAY_SIZE(tv_format_names) struct intel_sdvo { struct intel_encoder base; struct i2c_adapter *i2c; u8 slave_addr; struct i2c_adapter ddc; /* Register for the SDVO device: SDVOB or SDVOC */ i915_reg_t sdvo_reg; /* Active outputs controlled by this SDVO output */ u16 controlled_output; /* * Capabilities of the SDVO device returned by * intel_sdvo_get_capabilities() */ struct intel_sdvo_caps caps; /* Pixel clock limitations reported by the SDVO device, in kHz */ int pixel_clock_min, pixel_clock_max; /* * For multiple function SDVO device, * this is for current attached outputs. */ u16 attached_output; /* * Hotplug activation bits for this device */ u16 hotplug_active; enum port port; bool has_hdmi_monitor; bool has_hdmi_audio; /* DDC bus used by this SDVO encoder */ u8 ddc_bus; /* * the sdvo flag gets lost in round trip: dtd->adjusted_mode->dtd */ u8 dtd_sdvo_flags; }; struct intel_sdvo_connector { struct intel_connector base; /* Mark the type of connector */ u16 output_flag; /* This contains all current supported TV format */ u8 tv_format_supported[TV_FORMAT_NUM]; int format_supported_num; struct drm_property *tv_format; /* add the property for the SDVO-TV */ struct drm_property *left; struct drm_property *right; struct drm_property *top; struct drm_property *bottom; struct drm_property *hpos; struct drm_property *vpos; struct drm_property *contrast; struct drm_property *saturation; struct drm_property *hue; struct drm_property *sharpness; struct drm_property *flicker_filter; struct drm_property *flicker_filter_adaptive; struct drm_property *flicker_filter_2d; struct drm_property *tv_chroma_filter; struct drm_property *tv_luma_filter; struct drm_property *dot_crawl; /* add the property for the SDVO-TV/LVDS */ struct drm_property *brightness; /* this is to get the range of margin.*/ u32 max_hscan, max_vscan; /** * This is set if we treat the device as HDMI, instead of DVI. */ bool is_hdmi; }; struct intel_sdvo_connector_state { /* base.base: tv.saturation/contrast/hue/brightness */ struct intel_digital_connector_state base; struct { unsigned overscan_h, overscan_v, hpos, vpos, sharpness; unsigned flicker_filter, flicker_filter_2d, flicker_filter_adaptive; unsigned chroma_filter, luma_filter, dot_crawl; } tv; }; static struct intel_sdvo *to_sdvo(struct intel_encoder *encoder) { return container_of(encoder, struct intel_sdvo, base); } static struct intel_sdvo *intel_attached_sdvo(struct drm_connector *connector) { return to_sdvo(intel_attached_encoder(connector)); } static struct intel_sdvo_connector * to_intel_sdvo_connector(struct drm_connector *connector) { return container_of(connector, struct intel_sdvo_connector, base.base); } #define to_intel_sdvo_connector_state(conn_state) \ container_of((conn_state), struct intel_sdvo_connector_state, base.base) static bool intel_sdvo_output_setup(struct intel_sdvo *intel_sdvo, u16 flags); static bool intel_sdvo_tv_create_property(struct intel_sdvo *intel_sdvo, struct intel_sdvo_connector *intel_sdvo_connector, int type); static bool intel_sdvo_create_enhance_property(struct intel_sdvo *intel_sdvo, struct intel_sdvo_connector *intel_sdvo_connector); /* * Writes the SDVOB or SDVOC with the given value, but always writes both * SDVOB and SDVOC to work around apparent hardware issues (according to * comments in the BIOS). */ static void intel_sdvo_write_sdvox(struct intel_sdvo *intel_sdvo, u32 val) { struct drm_device *dev = intel_sdvo->base.base.dev; struct drm_i915_private *dev_priv = to_i915(dev); u32 bval = val, cval = val; int i; if (HAS_PCH_SPLIT(dev_priv)) { I915_WRITE(intel_sdvo->sdvo_reg, val); POSTING_READ(intel_sdvo->sdvo_reg); /* * HW workaround, need to write this twice for issue * that may result in first write getting masked. */ if (HAS_PCH_IBX(dev_priv)) { I915_WRITE(intel_sdvo->sdvo_reg, val); POSTING_READ(intel_sdvo->sdvo_reg); } return; } if (intel_sdvo->port == PORT_B) cval = I915_READ(GEN3_SDVOC); else bval = I915_READ(GEN3_SDVOB); /* * Write the registers twice for luck. Sometimes, * writing them only once doesn't appear to 'stick'. * The BIOS does this too. Yay, magic */ for (i = 0; i < 2; i++) { I915_WRITE(GEN3_SDVOB, bval); POSTING_READ(GEN3_SDVOB); I915_WRITE(GEN3_SDVOC, cval); POSTING_READ(GEN3_SDVOC); } } static bool intel_sdvo_read_byte(struct intel_sdvo *intel_sdvo, u8 addr, u8 *ch) { struct i2c_msg msgs[] = { { .addr = intel_sdvo->slave_addr, .flags = 0, .len = 1, .buf = &addr, }, { .addr = intel_sdvo->slave_addr, .flags = I2C_M_RD, .len = 1, .buf = ch, } }; int ret; if ((ret = i2c_transfer(intel_sdvo->i2c, msgs, 2)) == 2) return true; DRM_DEBUG_KMS("i2c transfer returned %d\n", ret); return false; } #define SDVO_CMD_NAME_ENTRY(cmd) {cmd, #cmd} /** Mapping of command numbers to names, for debug output */ static const struct _sdvo_cmd_name { u8 cmd; const char *name; } __attribute__ ((packed)) sdvo_cmd_names[] = { SDVO_CMD_NAME_ENTRY(SDVO_CMD_RESET), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_DEVICE_CAPS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_FIRMWARE_REV), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_TRAINED_INPUTS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ACTIVE_OUTPUTS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ACTIVE_OUTPUTS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_IN_OUT_MAP), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_IN_OUT_MAP), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ATTACHED_DISPLAYS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HOT_PLUG_SUPPORT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ACTIVE_HOT_PLUG), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ACTIVE_HOT_PLUG), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INTERRUPT_EVENT_SOURCE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TARGET_INPUT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TARGET_OUTPUT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INPUT_TIMINGS_PART1), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INPUT_TIMINGS_PART2), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_INPUT_TIMINGS_PART1), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_INPUT_TIMINGS_PART2), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_INPUT_TIMINGS_PART1), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_OUTPUT_TIMINGS_PART1), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_OUTPUT_TIMINGS_PART2), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OUTPUT_TIMINGS_PART1), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OUTPUT_TIMINGS_PART2), SDVO_CMD_NAME_ENTRY(SDVO_CMD_CREATE_PREFERRED_INPUT_TIMING), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART1), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART2), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INPUT_PIXEL_CLOCK_RANGE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OUTPUT_PIXEL_CLOCK_RANGE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_CLOCK_RATE_MULTS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_CLOCK_RATE_MULT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_CLOCK_RATE_MULT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_TV_FORMATS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_TV_FORMAT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TV_FORMAT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_POWER_STATES), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_POWER_STATE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ENCODER_POWER_STATE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_DISPLAY_POWER_STATE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_CONTROL_BUS_SWITCH), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SDTV_RESOLUTION_SUPPORT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SCALED_HDTV_RESOLUTION_SUPPORT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_ENHANCEMENTS), /* Add the op code for SDVO enhancements */ SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_HPOS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HPOS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HPOS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_VPOS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_VPOS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_VPOS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_SATURATION), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SATURATION), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_SATURATION), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_HUE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HUE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HUE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_CONTRAST), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_CONTRAST), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_CONTRAST), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_BRIGHTNESS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_BRIGHTNESS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_BRIGHTNESS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_OVERSCAN_H), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OVERSCAN_H), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_OVERSCAN_H), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_OVERSCAN_V), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OVERSCAN_V), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_OVERSCAN_V), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_FLICKER_FILTER), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_FLICKER_FILTER), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_FLICKER_FILTER), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_FLICKER_FILTER_ADAPTIVE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_FLICKER_FILTER_ADAPTIVE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_FLICKER_FILTER_ADAPTIVE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_FLICKER_FILTER_2D), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_FLICKER_FILTER_2D), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_FLICKER_FILTER_2D), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_SHARPNESS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SHARPNESS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_SHARPNESS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_DOT_CRAWL), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_DOT_CRAWL), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_TV_CHROMA_FILTER), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_TV_CHROMA_FILTER), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TV_CHROMA_FILTER), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_TV_LUMA_FILTER), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_TV_LUMA_FILTER), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TV_LUMA_FILTER), /* HDMI op code */ SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPP_ENCODE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ENCODE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ENCODE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_PIXEL_REPLI), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_PIXEL_REPLI), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_COLORIMETRY_CAP), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_COLORIMETRY), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_COLORIMETRY), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_AUDIO_ENCRYPT_PREFER), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_AUDIO_STAT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_AUDIO_STAT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_INDEX), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HBUF_INDEX), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_INFO), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_AV_SPLIT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HBUF_AV_SPLIT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_TXRATE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HBUF_TXRATE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HBUF_DATA), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_DATA), }; #define SDVO_NAME(svdo) ((svdo)->port == PORT_B ? "SDVOB" : "SDVOC") static void intel_sdvo_debug_write(struct intel_sdvo *intel_sdvo, u8 cmd, const void *args, int args_len) { int i, pos = 0; #define BUF_LEN 256 char buffer[BUF_LEN]; #define BUF_PRINT(args...) \ pos += snprintf(buffer + pos, max_t(int, BUF_LEN - pos, 0), args) for (i = 0; i < args_len; i++) { BUF_PRINT("%02X ", ((u8 *)args)[i]); } for (; i < 8; i++) { BUF_PRINT(" "); } for (i = 0; i < ARRAY_SIZE(sdvo_cmd_names); i++) { if (cmd == sdvo_cmd_names[i].cmd) { BUF_PRINT("(%s)", sdvo_cmd_names[i].name); break; } } if (i == ARRAY_SIZE(sdvo_cmd_names)) { BUF_PRINT("(%02X)", cmd); } BUG_ON(pos >= BUF_LEN - 1); #undef BUF_PRINT #undef BUF_LEN DRM_DEBUG_KMS("%s: W: %02X %s\n", SDVO_NAME(intel_sdvo), cmd, buffer); } static const char * const cmd_status_names[] = { "Power on", "Success", "Not supported", "Invalid arg", "Pending", "Target not specified", "Scaling not supported" }; static bool __intel_sdvo_write_cmd(struct intel_sdvo *intel_sdvo, u8 cmd, const void *args, int args_len, bool unlocked) { u8 *buf, status; struct i2c_msg *msgs; int i, ret = true; /* Would be simpler to allocate both in one go ? */ buf = kzalloc(args_len * 2 + 2, GFP_KERNEL); if (!buf) return false; msgs = kcalloc(args_len + 3, sizeof(*msgs), GFP_KERNEL); if (!msgs) { kfree(buf); return false; } intel_sdvo_debug_write(intel_sdvo, cmd, args, args_len); for (i = 0; i < args_len; i++) { msgs[i].addr = intel_sdvo->slave_addr; msgs[i].flags = 0; msgs[i].len = 2; msgs[i].buf = buf + 2 *i; buf[2*i + 0] = SDVO_I2C_ARG_0 - i; buf[2*i + 1] = ((u8*)args)[i]; } msgs[i].addr = intel_sdvo->slave_addr; msgs[i].flags = 0; msgs[i].len = 2; msgs[i].buf = buf + 2*i; buf[2*i + 0] = SDVO_I2C_OPCODE; buf[2*i + 1] = cmd; /* the following two are to read the response */ status = SDVO_I2C_CMD_STATUS; msgs[i+1].addr = intel_sdvo->slave_addr; msgs[i+1].flags = 0; msgs[i+1].len = 1; msgs[i+1].buf = &status; msgs[i+2].addr = intel_sdvo->slave_addr; msgs[i+2].flags = I2C_M_RD; msgs[i+2].len = 1; msgs[i+2].buf = &status; if (unlocked) ret = i2c_transfer(intel_sdvo->i2c, msgs, i+3); else ret = __i2c_transfer(intel_sdvo->i2c, msgs, i+3); if (ret < 0) { DRM_DEBUG_KMS("I2c transfer returned %d\n", ret); ret = false; goto out; } if (ret != i+3) { /* failure in I2C transfer */ DRM_DEBUG_KMS("I2c transfer returned %d/%d\n", ret, i+3); ret = false; } out: kfree(msgs); kfree(buf); return ret; } static bool intel_sdvo_write_cmd(struct intel_sdvo *intel_sdvo, u8 cmd, const void *args, int args_len) { return __intel_sdvo_write_cmd(intel_sdvo, cmd, args, args_len, true); } static bool intel_sdvo_read_response(struct intel_sdvo *intel_sdvo, void *response, int response_len) { u8 retry = 15; /* 5 quick checks, followed by 10 long checks */ u8 status; int i, pos = 0; #define BUF_LEN 256 char buffer[BUF_LEN]; buffer[0] = '\0'; /* * The documentation states that all commands will be * processed within 15µs, and that we need only poll * the status byte a maximum of 3 times in order for the * command to be complete. * * Check 5 times in case the hardware failed to read the docs. * * Also beware that the first response by many devices is to * reply PENDING and stall for time. TVs are notorious for * requiring longer than specified to complete their replies. * Originally (in the DDX long ago), the delay was only ever 15ms * with an additional delay of 30ms applied for TVs added later after * many experiments. To accommodate both sets of delays, we do a * sequence of slow checks if the device is falling behind and fails * to reply within 5*15µs. */ if (!intel_sdvo_read_byte(intel_sdvo, SDVO_I2C_CMD_STATUS, &status)) goto log_fail; while ((status == SDVO_CMD_STATUS_PENDING || status == SDVO_CMD_STATUS_TARGET_NOT_SPECIFIED) && --retry) { if (retry < 10) msleep(15); else udelay(15); if (!intel_sdvo_read_byte(intel_sdvo, SDVO_I2C_CMD_STATUS, &status)) goto log_fail; } #define BUF_PRINT(args...) \ pos += snprintf(buffer + pos, max_t(int, BUF_LEN - pos, 0), args) if (status <= SDVO_CMD_STATUS_SCALING_NOT_SUPP) BUF_PRINT("(%s)", cmd_status_names[status]); else BUF_PRINT("(??? %d)", status); if (status != SDVO_CMD_STATUS_SUCCESS) goto log_fail; /* Read the command response */ for (i = 0; i < response_len; i++) { if (!intel_sdvo_read_byte(intel_sdvo, SDVO_I2C_RETURN_0 + i, &((u8 *)response)[i])) goto log_fail; BUF_PRINT(" %02X", ((u8 *)response)[i]); } BUG_ON(pos >= BUF_LEN - 1); #undef BUF_PRINT #undef BUF_LEN DRM_DEBUG_KMS("%s: R: %s\n", SDVO_NAME(intel_sdvo), buffer); return true; log_fail: DRM_DEBUG_KMS("%s: R: ... failed %s\n", SDVO_NAME(intel_sdvo), buffer); return false; } static int intel_sdvo_get_pixel_multiplier(const struct drm_display_mode *adjusted_mode) { if (adjusted_mode->crtc_clock >= 100000) return 1; else if (adjusted_mode->crtc_clock >= 50000) return 2; else return 4; } static bool __intel_sdvo_set_control_bus_switch(struct intel_sdvo *intel_sdvo, u8 ddc_bus) { /* This must be the immediately preceding write before the i2c xfer */ return __intel_sdvo_write_cmd(intel_sdvo, SDVO_CMD_SET_CONTROL_BUS_SWITCH, &ddc_bus, 1, false); } static bool intel_sdvo_set_value(struct intel_sdvo *intel_sdvo, u8 cmd, const void *data, int len) { if (!intel_sdvo_write_cmd(intel_sdvo, cmd, data, len)) return false; return intel_sdvo_read_response(intel_sdvo, NULL, 0); } static bool intel_sdvo_get_value(struct intel_sdvo *intel_sdvo, u8 cmd, void *value, int len) { if (!intel_sdvo_write_cmd(intel_sdvo, cmd, NULL, 0)) return false; return intel_sdvo_read_response(intel_sdvo, value, len); } static bool intel_sdvo_set_target_input(struct intel_sdvo *intel_sdvo) { struct intel_sdvo_set_target_input_args targets = {0}; return intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_TARGET_INPUT, &targets, sizeof(targets)); } /* * Return whether each input is trained. * * This function is making an assumption about the layout of the response, * which should be checked against the docs. */ static bool intel_sdvo_get_trained_inputs(struct intel_sdvo *intel_sdvo, bool *input_1, bool *input_2) { struct intel_sdvo_get_trained_inputs_response response; BUILD_BUG_ON(sizeof(response) != 1); if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_TRAINED_INPUTS, &response, sizeof(response))) return false; *input_1 = response.input0_trained; *input_2 = response.input1_trained; return true; } static bool intel_sdvo_set_active_outputs(struct intel_sdvo *intel_sdvo, u16 outputs) { return intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_ACTIVE_OUTPUTS, &outputs, sizeof(outputs)); } static bool intel_sdvo_get_active_outputs(struct intel_sdvo *intel_sdvo, u16 *outputs) { return intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_ACTIVE_OUTPUTS, outputs, sizeof(*outputs)); } static bool intel_sdvo_set_encoder_power_state(struct intel_sdvo *intel_sdvo, int mode) { u8 state = SDVO_ENCODER_STATE_ON; switch (mode) { case DRM_MODE_DPMS_ON: state = SDVO_ENCODER_STATE_ON; break; case DRM_MODE_DPMS_STANDBY: state = SDVO_ENCODER_STATE_STANDBY; break; case DRM_MODE_DPMS_SUSPEND: state = SDVO_ENCODER_STATE_SUSPEND; break; case DRM_MODE_DPMS_OFF: state = SDVO_ENCODER_STATE_OFF; break; } return intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_ENCODER_POWER_STATE, &state, sizeof(state)); } static bool intel_sdvo_get_input_pixel_clock_range(struct intel_sdvo *intel_sdvo, int *clock_min, int *clock_max) { struct intel_sdvo_pixel_clock_range clocks; BUILD_BUG_ON(sizeof(clocks) != 4); if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_INPUT_PIXEL_CLOCK_RANGE, &clocks, sizeof(clocks))) return false; /* Convert the values from units of 10 kHz to kHz. */ *clock_min = clocks.min * 10; *clock_max = clocks.max * 10; return true; } static bool intel_sdvo_set_target_output(struct intel_sdvo *intel_sdvo, u16 outputs) { return intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_TARGET_OUTPUT, &outputs, sizeof(outputs)); } static bool intel_sdvo_set_timing(struct intel_sdvo *intel_sdvo, u8 cmd, struct intel_sdvo_dtd *dtd) { return intel_sdvo_set_value(intel_sdvo, cmd, &dtd->part1, sizeof(dtd->part1)) && intel_sdvo_set_value(intel_sdvo, cmd + 1, &dtd->part2, sizeof(dtd->part2)); } static bool intel_sdvo_get_timing(struct intel_sdvo *intel_sdvo, u8 cmd, struct intel_sdvo_dtd *dtd) { return intel_sdvo_get_value(intel_sdvo, cmd, &dtd->part1, sizeof(dtd->part1)) && intel_sdvo_get_value(intel_sdvo, cmd + 1, &dtd->part2, sizeof(dtd->part2)); } static bool intel_sdvo_set_input_timing(struct intel_sdvo *intel_sdvo, struct intel_sdvo_dtd *dtd) { return intel_sdvo_set_timing(intel_sdvo, SDVO_CMD_SET_INPUT_TIMINGS_PART1, dtd); } static bool intel_sdvo_set_output_timing(struct intel_sdvo *intel_sdvo, struct intel_sdvo_dtd *dtd) { return intel_sdvo_set_timing(intel_sdvo, SDVO_CMD_SET_OUTPUT_TIMINGS_PART1, dtd); } static bool intel_sdvo_get_input_timing(struct intel_sdvo *intel_sdvo, struct intel_sdvo_dtd *dtd) { return intel_sdvo_get_timing(intel_sdvo, SDVO_CMD_GET_INPUT_TIMINGS_PART1, dtd); } static bool intel_sdvo_create_preferred_input_timing(struct intel_sdvo *intel_sdvo, struct intel_sdvo_connector *intel_sdvo_connector, u16 clock, u16 width, u16 height) { struct intel_sdvo_preferred_input_timing_args args; memset(&args, 0, sizeof(args)); args.clock = clock; args.width = width; args.height = height; args.interlace = 0; if (IS_LVDS(intel_sdvo_connector)) { const struct drm_display_mode *fixed_mode = intel_sdvo_connector->base.panel.fixed_mode; if (fixed_mode->hdisplay != width || fixed_mode->vdisplay != height) args.scaled = 1; } return intel_sdvo_set_value(intel_sdvo, SDVO_CMD_CREATE_PREFERRED_INPUT_TIMING, &args, sizeof(args)); } static bool intel_sdvo_get_preferred_input_timing(struct intel_sdvo *intel_sdvo, struct intel_sdvo_dtd *dtd) { BUILD_BUG_ON(sizeof(dtd->part1) != 8); BUILD_BUG_ON(sizeof(dtd->part2) != 8); return intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART1, &dtd->part1, sizeof(dtd->part1)) && intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART2, &dtd->part2, sizeof(dtd->part2)); } static bool intel_sdvo_set_clock_rate_mult(struct intel_sdvo *intel_sdvo, u8 val) { return intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_CLOCK_RATE_MULT, &val, 1); } static void intel_sdvo_get_dtd_from_mode(struct intel_sdvo_dtd *dtd, const struct drm_display_mode *mode) { u16 width, height; u16 h_blank_len, h_sync_len, v_blank_len, v_sync_len; u16 h_sync_offset, v_sync_offset; int mode_clock; memset(dtd, 0, sizeof(*dtd)); width = mode->hdisplay; height = mode->vdisplay; /* do some mode translations */ h_blank_len = mode->htotal - mode->hdisplay; h_sync_len = mode->hsync_end - mode->hsync_start; v_blank_len = mode->vtotal - mode->vdisplay; v_sync_len = mode->vsync_end - mode->vsync_start; h_sync_offset = mode->hsync_start - mode->hdisplay; v_sync_offset = mode->vsync_start - mode->vdisplay; mode_clock = mode->clock; mode_clock /= 10; dtd->part1.clock = mode_clock; dtd->part1.h_active = width & 0xff; dtd->part1.h_blank = h_blank_len & 0xff; dtd->part1.h_high = (((width >> 8) & 0xf) << 4) | ((h_blank_len >> 8) & 0xf); dtd->part1.v_active = height & 0xff; dtd->part1.v_blank = v_blank_len & 0xff; dtd->part1.v_high = (((height >> 8) & 0xf) << 4) | ((v_blank_len >> 8) & 0xf); dtd->part2.h_sync_off = h_sync_offset & 0xff; dtd->part2.h_sync_width = h_sync_len & 0xff; dtd->part2.v_sync_off_width = (v_sync_offset & 0xf) << 4 | (v_sync_len & 0xf); dtd->part2.sync_off_width_high = ((h_sync_offset & 0x300) >> 2) | ((h_sync_len & 0x300) >> 4) | ((v_sync_offset & 0x30) >> 2) | ((v_sync_len & 0x30) >> 4); dtd->part2.dtd_flags = 0x18; if (mode->flags & DRM_MODE_FLAG_INTERLACE) dtd->part2.dtd_flags |= DTD_FLAG_INTERLACE; if (mode->flags & DRM_MODE_FLAG_PHSYNC) dtd->part2.dtd_flags |= DTD_FLAG_HSYNC_POSITIVE; if (mode->flags & DRM_MODE_FLAG_PVSYNC) dtd->part2.dtd_flags |= DTD_FLAG_VSYNC_POSITIVE; dtd->part2.v_sync_off_high = v_sync_offset & 0xc0; } static void intel_sdvo_get_mode_from_dtd(struct drm_display_mode *pmode, const struct intel_sdvo_dtd *dtd) { struct drm_display_mode mode = {}; mode.hdisplay = dtd->part1.h_active; mode.hdisplay += ((dtd->part1.h_high >> 4) & 0x0f) << 8; mode.hsync_start = mode.hdisplay + dtd->part2.h_sync_off; mode.hsync_start += (dtd->part2.sync_off_width_high & 0xc0) << 2; mode.hsync_end = mode.hsync_start + dtd->part2.h_sync_width; mode.hsync_end += (dtd->part2.sync_off_width_high & 0x30) << 4; mode.htotal = mode.hdisplay + dtd->part1.h_blank; mode.htotal += (dtd->part1.h_high & 0xf) << 8; mode.vdisplay = dtd->part1.v_active; mode.vdisplay += ((dtd->part1.v_high >> 4) & 0x0f) << 8; mode.vsync_start = mode.vdisplay; mode.vsync_start += (dtd->part2.v_sync_off_width >> 4) & 0xf; mode.vsync_start += (dtd->part2.sync_off_width_high & 0x0c) << 2; mode.vsync_start += dtd->part2.v_sync_off_high & 0xc0; mode.vsync_end = mode.vsync_start + (dtd->part2.v_sync_off_width & 0xf); mode.vsync_end += (dtd->part2.sync_off_width_high & 0x3) << 4; mode.vtotal = mode.vdisplay + dtd->part1.v_blank; mode.vtotal += (dtd->part1.v_high & 0xf) << 8; mode.clock = dtd->part1.clock * 10; if (dtd->part2.dtd_flags & DTD_FLAG_INTERLACE) mode.flags |= DRM_MODE_FLAG_INTERLACE; if (dtd->part2.dtd_flags & DTD_FLAG_HSYNC_POSITIVE) mode.flags |= DRM_MODE_FLAG_PHSYNC; else mode.flags |= DRM_MODE_FLAG_NHSYNC; if (dtd->part2.dtd_flags & DTD_FLAG_VSYNC_POSITIVE) mode.flags |= DRM_MODE_FLAG_PVSYNC; else mode.flags |= DRM_MODE_FLAG_NVSYNC; drm_mode_set_crtcinfo(&mode, 0); drm_mode_copy(pmode, &mode); } static bool intel_sdvo_check_supp_encode(struct intel_sdvo *intel_sdvo) { struct intel_sdvo_encode encode; BUILD_BUG_ON(sizeof(encode) != 2); return intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_SUPP_ENCODE, &encode, sizeof(encode)); } static bool intel_sdvo_set_encode(struct intel_sdvo *intel_sdvo, u8 mode) { return intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_ENCODE, &mode, 1); } static bool intel_sdvo_set_colorimetry(struct intel_sdvo *intel_sdvo, u8 mode) { return intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_COLORIMETRY, &mode, 1); } static bool intel_sdvo_set_audio_state(struct intel_sdvo *intel_sdvo, u8 audio_state) { return intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_AUDIO_STAT, &audio_state, 1); } #if 0 static void intel_sdvo_dump_hdmi_buf(struct intel_sdvo *intel_sdvo) { int i, j; u8 set_buf_index[2]; u8 av_split; u8 buf_size; u8 buf[48]; u8 *pos; intel_sdvo_get_value(encoder, SDVO_CMD_GET_HBUF_AV_SPLIT, &av_split, 1); for (i = 0; i <= av_split; i++) { set_buf_index[0] = i; set_buf_index[1] = 0; intel_sdvo_write_cmd(encoder, SDVO_CMD_SET_HBUF_INDEX, set_buf_index, 2); intel_sdvo_write_cmd(encoder, SDVO_CMD_GET_HBUF_INFO, NULL, 0); intel_sdvo_read_response(encoder, &buf_size, 1); pos = buf; for (j = 0; j <= buf_size; j += 8) { intel_sdvo_write_cmd(encoder, SDVO_CMD_GET_HBUF_DATA, NULL, 0); intel_sdvo_read_response(encoder, pos, 8); pos += 8; } } } #endif static bool intel_sdvo_write_infoframe(struct intel_sdvo *intel_sdvo, unsigned int if_index, u8 tx_rate, const u8 *data, unsigned int length) { u8 set_buf_index[2] = { if_index, 0 }; u8 hbuf_size, tmp[8]; int i; if (!intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_HBUF_INDEX, set_buf_index, 2)) return false; if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_HBUF_INFO, &hbuf_size, 1)) return false; /* Buffer size is 0 based, hooray! */ hbuf_size++; DRM_DEBUG_KMS("writing sdvo hbuf: %i, hbuf_size %i, hbuf_size: %i\n", if_index, length, hbuf_size); if (hbuf_size < length) return false; for (i = 0; i < hbuf_size; i += 8) { memset(tmp, 0, 8); if (i < length) memcpy(tmp, data + i, min_t(unsigned, 8, length - i)); if (!intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_HBUF_DATA, tmp, 8)) return false; } return intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_HBUF_TXRATE, &tx_rate, 1); } static ssize_t intel_sdvo_read_infoframe(struct intel_sdvo *intel_sdvo, unsigned int if_index, u8 *data, unsigned int length) { u8 set_buf_index[2] = { if_index, 0 }; u8 hbuf_size, tx_rate, av_split; int i; if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_HBUF_AV_SPLIT, &av_split, 1)) return -ENXIO; if (av_split < if_index) return 0; if (!intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_HBUF_INDEX, set_buf_index, 2)) return -ENXIO; if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_HBUF_TXRATE, &tx_rate, 1)) return -ENXIO; if (tx_rate == SDVO_HBUF_TX_DISABLED) return 0; if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_HBUF_INFO, &hbuf_size, 1)) return -ENXIO; /* Buffer size is 0 based, hooray! */ hbuf_size++; DRM_DEBUG_KMS("reading sdvo hbuf: %i, hbuf_size %i, hbuf_size: %i\n", if_index, length, hbuf_size); hbuf_size = min_t(unsigned int, length, hbuf_size); for (i = 0; i < hbuf_size; i += 8) { if (!intel_sdvo_write_cmd(intel_sdvo, SDVO_CMD_GET_HBUF_DATA, NULL, 0)) return -ENXIO; if (!intel_sdvo_read_response(intel_sdvo, &data[i], min_t(unsigned int, 8, hbuf_size - i))) return -ENXIO; } return hbuf_size; } static bool intel_sdvo_compute_avi_infoframe(struct intel_sdvo *intel_sdvo, struct intel_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi; const struct drm_display_mode *adjusted_mode = &crtc_state->base.adjusted_mode; int ret; if (!crtc_state->has_hdmi_sink) return true; crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI); ret = drm_hdmi_avi_infoframe_from_display_mode(frame, conn_state->connector, adjusted_mode); if (ret) return false; drm_hdmi_avi_infoframe_quant_range(frame, conn_state->connector, adjusted_mode, crtc_state->limited_color_range ? HDMI_QUANTIZATION_RANGE_LIMITED : HDMI_QUANTIZATION_RANGE_FULL); ret = hdmi_avi_infoframe_check(frame); if (WARN_ON(ret)) return false; return true; } static bool intel_sdvo_set_avi_infoframe(struct intel_sdvo *intel_sdvo, const struct intel_crtc_state *crtc_state) { u8 sdvo_data[HDMI_INFOFRAME_SIZE(AVI)]; const union hdmi_infoframe *frame = &crtc_state->infoframes.avi; ssize_t len; if ((crtc_state->infoframes.enable & intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI)) == 0) return true; if (WARN_ON(frame->any.type != HDMI_INFOFRAME_TYPE_AVI)) return false; len = hdmi_infoframe_pack_only(frame, sdvo_data, sizeof(sdvo_data)); if (WARN_ON(len < 0)) return false; return intel_sdvo_write_infoframe(intel_sdvo, SDVO_HBUF_INDEX_AVI_IF, SDVO_HBUF_TX_VSYNC, sdvo_data, len); } static void intel_sdvo_get_avi_infoframe(struct intel_sdvo *intel_sdvo, struct intel_crtc_state *crtc_state) { u8 sdvo_data[HDMI_INFOFRAME_SIZE(AVI)]; union hdmi_infoframe *frame = &crtc_state->infoframes.avi; ssize_t len; int ret; if (!crtc_state->has_hdmi_sink) return; len = intel_sdvo_read_infoframe(intel_sdvo, SDVO_HBUF_INDEX_AVI_IF, sdvo_data, sizeof(sdvo_data)); if (len < 0) { DRM_DEBUG_KMS("failed to read AVI infoframe\n"); return; } else if (len == 0) { return; } crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI); ret = hdmi_infoframe_unpack(frame, sdvo_data, len); if (ret) { DRM_DEBUG_KMS("Failed to unpack AVI infoframe\n"); return; } if (frame->any.type != HDMI_INFOFRAME_TYPE_AVI) DRM_DEBUG_KMS("Found the wrong infoframe type 0x%x (expected 0x%02x)\n", frame->any.type, HDMI_INFOFRAME_TYPE_AVI); } static bool intel_sdvo_set_tv_format(struct intel_sdvo *intel_sdvo, const struct drm_connector_state *conn_state) { struct intel_sdvo_tv_format format; u32 format_map; format_map = 1 << conn_state->tv.mode; memset(&format, 0, sizeof(format)); memcpy(&format, &format_map, min(sizeof(format), sizeof(format_map))); BUILD_BUG_ON(sizeof(format) != 6); return intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_TV_FORMAT, &format, sizeof(format)); } static bool intel_sdvo_set_output_timings_from_mode(struct intel_sdvo *intel_sdvo, const struct drm_display_mode *mode) { struct intel_sdvo_dtd output_dtd; if (!intel_sdvo_set_target_output(intel_sdvo, intel_sdvo->attached_output)) return false; intel_sdvo_get_dtd_from_mode(&output_dtd, mode); if (!intel_sdvo_set_output_timing(intel_sdvo, &output_dtd)) return false; return true; } /* * Asks the sdvo controller for the preferred input mode given the output mode. * Unfortunately we have to set up the full output mode to do that. */ static bool intel_sdvo_get_preferred_input_mode(struct intel_sdvo *intel_sdvo, struct intel_sdvo_connector *intel_sdvo_connector, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct intel_sdvo_dtd input_dtd; /* Reset the input timing to the screen. Assume always input 0. */ if (!intel_sdvo_set_target_input(intel_sdvo)) return false; if (!intel_sdvo_create_preferred_input_timing(intel_sdvo, intel_sdvo_connector, mode->clock / 10, mode->hdisplay, mode->vdisplay)) return false; if (!intel_sdvo_get_preferred_input_timing(intel_sdvo, &input_dtd)) return false; intel_sdvo_get_mode_from_dtd(adjusted_mode, &input_dtd); intel_sdvo->dtd_sdvo_flags = input_dtd.part2.sdvo_flags; return true; } static void i9xx_adjust_sdvo_tv_clock(struct intel_crtc_state *pipe_config) { unsigned dotclock = pipe_config->port_clock; struct dpll *clock = &pipe_config->dpll; /* * SDVO TV has fixed PLL values depend on its clock range, * this mirrors vbios setting. */ if (dotclock >= 100000 && dotclock < 140500) { clock->p1 = 2; clock->p2 = 10; clock->n = 3; clock->m1 = 16; clock->m2 = 8; } else if (dotclock >= 140500 && dotclock <= 200000) { clock->p1 = 1; clock->p2 = 10; clock->n = 6; clock->m1 = 12; clock->m2 = 8; } else { WARN(1, "SDVO TV clock out of range: %i\n", dotclock); } pipe_config->clock_set = true; } static int intel_sdvo_compute_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config, struct drm_connector_state *conn_state) { struct intel_sdvo *intel_sdvo = to_sdvo(encoder); struct intel_sdvo_connector_state *intel_sdvo_state = to_intel_sdvo_connector_state(conn_state); struct intel_sdvo_connector *intel_sdvo_connector = to_intel_sdvo_connector(conn_state->connector); struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; struct drm_display_mode *mode = &pipe_config->base.mode; DRM_DEBUG_KMS("forcing bpc to 8 for SDVO\n"); pipe_config->pipe_bpp = 8*3; pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; if (HAS_PCH_SPLIT(to_i915(encoder->base.dev))) pipe_config->has_pch_encoder = true; /* * We need to construct preferred input timings based on our * output timings. To do that, we have to set the output * timings, even though this isn't really the right place in * the sequence to do it. Oh well. */ if (IS_TV(intel_sdvo_connector)) { if (!intel_sdvo_set_output_timings_from_mode(intel_sdvo, mode)) return -EINVAL; (void) intel_sdvo_get_preferred_input_mode(intel_sdvo, intel_sdvo_connector, mode, adjusted_mode); pipe_config->sdvo_tv_clock = true; } else if (IS_LVDS(intel_sdvo_connector)) { if (!intel_sdvo_set_output_timings_from_mode(intel_sdvo, intel_sdvo_connector->base.panel.fixed_mode)) return -EINVAL; (void) intel_sdvo_get_preferred_input_mode(intel_sdvo, intel_sdvo_connector, mode, adjusted_mode); } if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) return -EINVAL; /* * Make the CRTC code factor in the SDVO pixel multiplier. The * SDVO device will factor out the multiplier during mode_set. */ pipe_config->pixel_multiplier = intel_sdvo_get_pixel_multiplier(adjusted_mode); if (intel_sdvo_state->base.force_audio != HDMI_AUDIO_OFF_DVI) pipe_config->has_hdmi_sink = intel_sdvo->has_hdmi_monitor; if (intel_sdvo_state->base.force_audio == HDMI_AUDIO_ON || (intel_sdvo_state->base.force_audio == HDMI_AUDIO_AUTO && intel_sdvo->has_hdmi_audio)) pipe_config->has_audio = true; if (intel_sdvo_state->base.broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) { /* * See CEA-861-E - 5.1 Default Encoding Parameters * * FIXME: This bit is only valid when using TMDS encoding and 8 * bit per color mode. */ if (pipe_config->has_hdmi_sink && drm_match_cea_mode(adjusted_mode) > 1) pipe_config->limited_color_range = true; } else { if (pipe_config->has_hdmi_sink && intel_sdvo_state->base.broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED) pipe_config->limited_color_range = true; } /* Clock computation needs to happen after pixel multiplier. */ if (IS_TV(intel_sdvo_connector)) i9xx_adjust_sdvo_tv_clock(pipe_config); /* Set user selected PAR to incoming mode's member */ if (intel_sdvo_connector->is_hdmi) adjusted_mode->picture_aspect_ratio = conn_state->picture_aspect_ratio; if (!intel_sdvo_compute_avi_infoframe(intel_sdvo, pipe_config, conn_state)) { DRM_DEBUG_KMS("bad AVI infoframe\n"); return -EINVAL; } return 0; } #define UPDATE_PROPERTY(input, NAME) \ do { \ val = input; \ intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_##NAME, &val, sizeof(val)); \ } while (0) static void intel_sdvo_update_props(struct intel_sdvo *intel_sdvo, const struct intel_sdvo_connector_state *sdvo_state) { const struct drm_connector_state *conn_state = &sdvo_state->base.base; struct intel_sdvo_connector *intel_sdvo_conn = to_intel_sdvo_connector(conn_state->connector); u16 val; if (intel_sdvo_conn->left) UPDATE_PROPERTY(sdvo_state->tv.overscan_h, OVERSCAN_H); if (intel_sdvo_conn->top) UPDATE_PROPERTY(sdvo_state->tv.overscan_v, OVERSCAN_V); if (intel_sdvo_conn->hpos) UPDATE_PROPERTY(sdvo_state->tv.hpos, HPOS); if (intel_sdvo_conn->vpos) UPDATE_PROPERTY(sdvo_state->tv.vpos, VPOS); if (intel_sdvo_conn->saturation) UPDATE_PROPERTY(conn_state->tv.saturation, SATURATION); if (intel_sdvo_conn->contrast) UPDATE_PROPERTY(conn_state->tv.contrast, CONTRAST); if (intel_sdvo_conn->hue) UPDATE_PROPERTY(conn_state->tv.hue, HUE); if (intel_sdvo_conn->brightness) UPDATE_PROPERTY(conn_state->tv.brightness, BRIGHTNESS); if (intel_sdvo_conn->sharpness) UPDATE_PROPERTY(sdvo_state->tv.sharpness, SHARPNESS); if (intel_sdvo_conn->flicker_filter) UPDATE_PROPERTY(sdvo_state->tv.flicker_filter, FLICKER_FILTER); if (intel_sdvo_conn->flicker_filter_2d) UPDATE_PROPERTY(sdvo_state->tv.flicker_filter_2d, FLICKER_FILTER_2D); if (intel_sdvo_conn->flicker_filter_adaptive) UPDATE_PROPERTY(sdvo_state->tv.flicker_filter_adaptive, FLICKER_FILTER_ADAPTIVE); if (intel_sdvo_conn->tv_chroma_filter) UPDATE_PROPERTY(sdvo_state->tv.chroma_filter, TV_CHROMA_FILTER); if (intel_sdvo_conn->tv_luma_filter) UPDATE_PROPERTY(sdvo_state->tv.luma_filter, TV_LUMA_FILTER); if (intel_sdvo_conn->dot_crawl) UPDATE_PROPERTY(sdvo_state->tv.dot_crawl, DOT_CRAWL); #undef UPDATE_PROPERTY } static void intel_sdvo_pre_enable(struct intel_encoder *intel_encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev); struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); const struct drm_display_mode *adjusted_mode = &crtc_state->base.adjusted_mode; const struct intel_sdvo_connector_state *sdvo_state = to_intel_sdvo_connector_state(conn_state); const struct intel_sdvo_connector *intel_sdvo_connector = to_intel_sdvo_connector(conn_state->connector); const struct drm_display_mode *mode = &crtc_state->base.mode; struct intel_sdvo *intel_sdvo = to_sdvo(intel_encoder); u32 sdvox; struct intel_sdvo_in_out_map in_out; struct intel_sdvo_dtd input_dtd, output_dtd; int rate; intel_sdvo_update_props(intel_sdvo, sdvo_state); /* * First, set the input mapping for the first input to our controlled * output. This is only correct if we're a single-input device, in * which case the first input is the output from the appropriate SDVO * channel on the motherboard. In a two-input device, the first input * will be SDVOB and the second SDVOC. */ in_out.in0 = intel_sdvo->attached_output; in_out.in1 = 0; intel_sdvo_set_value(intel_sdvo, SDVO_CMD_SET_IN_OUT_MAP, &in_out, sizeof(in_out)); /* Set the output timings to the screen */ if (!intel_sdvo_set_target_output(intel_sdvo, intel_sdvo->attached_output)) return; /* lvds has a special fixed output timing. */ if (IS_LVDS(intel_sdvo_connector)) intel_sdvo_get_dtd_from_mode(&output_dtd, intel_sdvo_connector->base.panel.fixed_mode); else intel_sdvo_get_dtd_from_mode(&output_dtd, mode); if (!intel_sdvo_set_output_timing(intel_sdvo, &output_dtd)) DRM_INFO("Setting output timings on %s failed\n", SDVO_NAME(intel_sdvo)); /* Set the input timing to the screen. Assume always input 0. */ if (!intel_sdvo_set_target_input(intel_sdvo)) return; if (crtc_state->has_hdmi_sink) { intel_sdvo_set_encode(intel_sdvo, SDVO_ENCODE_HDMI); intel_sdvo_set_colorimetry(intel_sdvo, SDVO_COLORIMETRY_RGB256); intel_sdvo_set_avi_infoframe(intel_sdvo, crtc_state); } else intel_sdvo_set_encode(intel_sdvo, SDVO_ENCODE_DVI); if (IS_TV(intel_sdvo_connector) && !intel_sdvo_set_tv_format(intel_sdvo, conn_state)) return; intel_sdvo_get_dtd_from_mode(&input_dtd, adjusted_mode); if (IS_TV(intel_sdvo_connector) || IS_LVDS(intel_sdvo_connector)) input_dtd.part2.sdvo_flags = intel_sdvo->dtd_sdvo_flags; if (!intel_sdvo_set_input_timing(intel_sdvo, &input_dtd)) DRM_INFO("Setting input timings on %s failed\n", SDVO_NAME(intel_sdvo)); switch (crtc_state->pixel_multiplier) { default: WARN(1, "unknown pixel multiplier specified\n"); /* fall through */ case 1: rate = SDVO_CLOCK_RATE_MULT_1X; break; case 2: rate = SDVO_CLOCK_RATE_MULT_2X; break; case 4: rate = SDVO_CLOCK_RATE_MULT_4X; break; } if (!intel_sdvo_set_clock_rate_mult(intel_sdvo, rate)) return; /* Set the SDVO control regs. */ if (INTEL_GEN(dev_priv) >= 4) { /* The real mode polarity is set by the SDVO commands, using * struct intel_sdvo_dtd. */ sdvox = SDVO_VSYNC_ACTIVE_HIGH | SDVO_HSYNC_ACTIVE_HIGH; if (!HAS_PCH_SPLIT(dev_priv) && crtc_state->limited_color_range) sdvox |= HDMI_COLOR_RANGE_16_235; if (INTEL_GEN(dev_priv) < 5) sdvox |= SDVO_BORDER_ENABLE; } else { sdvox = I915_READ(intel_sdvo->sdvo_reg); if (intel_sdvo->port == PORT_B) sdvox &= SDVOB_PRESERVE_MASK; else sdvox &= SDVOC_PRESERVE_MASK; sdvox |= (9 << 19) | SDVO_BORDER_ENABLE; } if (HAS_PCH_CPT(dev_priv)) sdvox |= SDVO_PIPE_SEL_CPT(crtc->pipe); else sdvox |= SDVO_PIPE_SEL(crtc->pipe); if (INTEL_GEN(dev_priv) >= 4) { /* done in crtc_mode_set as the dpll_md reg must be written early */ } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { /* done in crtc_mode_set as it lives inside the dpll register */ } else { sdvox |= (crtc_state->pixel_multiplier - 1) << SDVO_PORT_MULTIPLY_SHIFT; } if (input_dtd.part2.sdvo_flags & SDVO_NEED_TO_STALL && INTEL_GEN(dev_priv) < 5) sdvox |= SDVO_STALL_SELECT; intel_sdvo_write_sdvox(intel_sdvo, sdvox); } static bool intel_sdvo_connector_get_hw_state(struct intel_connector *connector) { struct intel_sdvo_connector *intel_sdvo_connector = to_intel_sdvo_connector(&connector->base); struct intel_sdvo *intel_sdvo = intel_attached_sdvo(&connector->base); u16 active_outputs = 0; intel_sdvo_get_active_outputs(intel_sdvo, &active_outputs); return active_outputs & intel_sdvo_connector->output_flag; } bool intel_sdvo_port_enabled(struct drm_i915_private *dev_priv, i915_reg_t sdvo_reg, enum pipe *pipe) { u32 val; val = I915_READ(sdvo_reg); /* asserts want to know the pipe even if the port is disabled */ if (HAS_PCH_CPT(dev_priv)) *pipe = (val & SDVO_PIPE_SEL_MASK_CPT) >> SDVO_PIPE_SEL_SHIFT_CPT; else if (IS_CHERRYVIEW(dev_priv)) *pipe = (val & SDVO_PIPE_SEL_MASK_CHV) >> SDVO_PIPE_SEL_SHIFT_CHV; else *pipe = (val & SDVO_PIPE_SEL_MASK) >> SDVO_PIPE_SEL_SHIFT; return val & SDVO_ENABLE; } static bool intel_sdvo_get_hw_state(struct intel_encoder *encoder, enum pipe *pipe) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_sdvo *intel_sdvo = to_sdvo(encoder); u16 active_outputs = 0; bool ret; intel_sdvo_get_active_outputs(intel_sdvo, &active_outputs); ret = intel_sdvo_port_enabled(dev_priv, intel_sdvo->sdvo_reg, pipe); return ret || active_outputs; } static void intel_sdvo_get_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_sdvo *intel_sdvo = to_sdvo(encoder); struct intel_sdvo_dtd dtd; int encoder_pixel_multiplier = 0; int dotclock; u32 flags = 0, sdvox; u8 val; bool ret; pipe_config->output_types |= BIT(INTEL_OUTPUT_SDVO); sdvox = I915_READ(intel_sdvo->sdvo_reg); ret = intel_sdvo_get_input_timing(intel_sdvo, &dtd); if (!ret) { /* * Some sdvo encoders are not spec compliant and don't * implement the mandatory get_timings function. */ DRM_DEBUG_DRIVER("failed to retrieve SDVO DTD\n"); pipe_config->quirks |= PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS; } else { if (dtd.part2.dtd_flags & DTD_FLAG_HSYNC_POSITIVE) flags |= DRM_MODE_FLAG_PHSYNC; else flags |= DRM_MODE_FLAG_NHSYNC; if (dtd.part2.dtd_flags & DTD_FLAG_VSYNC_POSITIVE) flags |= DRM_MODE_FLAG_PVSYNC; else flags |= DRM_MODE_FLAG_NVSYNC; } pipe_config->base.adjusted_mode.flags |= flags; /* * pixel multiplier readout is tricky: Only on i915g/gm it is stored in * the sdvo port register, on all other platforms it is part of the dpll * state. Since the general pipe state readout happens before the * encoder->get_config we so already have a valid pixel multplier on all * other platfroms. */ if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) { pipe_config->pixel_multiplier = ((sdvox & SDVO_PORT_MULTIPLY_MASK) >> SDVO_PORT_MULTIPLY_SHIFT) + 1; } dotclock = pipe_config->port_clock; if (pipe_config->pixel_multiplier) dotclock /= pipe_config->pixel_multiplier; pipe_config->base.adjusted_mode.crtc_clock = dotclock; /* Cross check the port pixel multiplier with the sdvo encoder state. */ if (intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_CLOCK_RATE_MULT, &val, 1)) { switch (val) { case SDVO_CLOCK_RATE_MULT_1X: encoder_pixel_multiplier = 1; break; case SDVO_CLOCK_RATE_MULT_2X: encoder_pixel_multiplier = 2; break; case SDVO_CLOCK_RATE_MULT_4X: encoder_pixel_multiplier = 4; break; } } WARN(encoder_pixel_multiplier != pipe_config->pixel_multiplier, "SDVO pixel multiplier mismatch, port: %i, encoder: %i\n", pipe_config->pixel_multiplier, encoder_pixel_multiplier); if (sdvox & HDMI_COLOR_RANGE_16_235) pipe_config->limited_color_range = true; if (intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_AUDIO_STAT, &val, 1)) { u8 mask = SDVO_AUDIO_ELD_VALID | SDVO_AUDIO_PRESENCE_DETECT; if ((val & mask) == mask) pipe_config->has_audio = true; } if (intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_ENCODE, &val, 1)) { if (val == SDVO_ENCODE_HDMI) pipe_config->has_hdmi_sink = true; } intel_sdvo_get_avi_infoframe(intel_sdvo, pipe_config); } static void intel_sdvo_disable_audio(struct intel_sdvo *intel_sdvo) { intel_sdvo_set_audio_state(intel_sdvo, 0); } static void intel_sdvo_enable_audio(struct intel_sdvo *intel_sdvo, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { const struct drm_display_mode *adjusted_mode = &crtc_state->base.adjusted_mode; struct drm_connector *connector = conn_state->connector; u8 *eld = connector->eld; eld[6] = drm_av_sync_delay(connector, adjusted_mode) / 2; intel_sdvo_set_audio_state(intel_sdvo, 0); intel_sdvo_write_infoframe(intel_sdvo, SDVO_HBUF_INDEX_ELD, SDVO_HBUF_TX_DISABLED, eld, drm_eld_size(eld)); intel_sdvo_set_audio_state(intel_sdvo, SDVO_AUDIO_ELD_VALID | SDVO_AUDIO_PRESENCE_DETECT); } static void intel_disable_sdvo(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_sdvo *intel_sdvo = to_sdvo(encoder); struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); u32 temp; if (old_crtc_state->has_audio) intel_sdvo_disable_audio(intel_sdvo); intel_sdvo_set_active_outputs(intel_sdvo, 0); if (0) intel_sdvo_set_encoder_power_state(intel_sdvo, DRM_MODE_DPMS_OFF); temp = I915_READ(intel_sdvo->sdvo_reg); temp &= ~SDVO_ENABLE; intel_sdvo_write_sdvox(intel_sdvo, temp); /* * HW workaround for IBX, we need to move the port * to transcoder A after disabling it to allow the * matching DP port to be enabled on transcoder A. */ if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B) { /* * We get CPU/PCH FIFO underruns on the other pipe when * doing the workaround. Sweep them under the rug. */ intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false); intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false); temp &= ~SDVO_PIPE_SEL_MASK; temp |= SDVO_ENABLE | SDVO_PIPE_SEL(PIPE_A); intel_sdvo_write_sdvox(intel_sdvo, temp); temp &= ~SDVO_ENABLE; intel_sdvo_write_sdvox(intel_sdvo, temp); intel_wait_for_vblank_if_active(dev_priv, PIPE_A); intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true); intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true); } } static void pch_disable_sdvo(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { } static void pch_post_disable_sdvo(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { intel_disable_sdvo(encoder, old_crtc_state, old_conn_state); } static void intel_enable_sdvo(struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_sdvo *intel_sdvo = to_sdvo(encoder); struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc); u32 temp; bool input1, input2; int i; bool success; temp = I915_READ(intel_sdvo->sdvo_reg); temp |= SDVO_ENABLE; intel_sdvo_write_sdvox(intel_sdvo, temp); for (i = 0; i < 2; i++) intel_wait_for_vblank(dev_priv, intel_crtc->pipe); success = intel_sdvo_get_trained_inputs(intel_sdvo, &input1, &input2); /* * Warn if the device reported failure to sync. * * A lot of SDVO devices fail to notify of sync, but it's * a given it the status is a success, we succeeded. */ if (success && !input1) { DRM_DEBUG_KMS("First %s output reported failure to " "sync\n", SDVO_NAME(intel_sdvo)); } if (0) intel_sdvo_set_encoder_power_state(intel_sdvo, DRM_MODE_DPMS_ON); intel_sdvo_set_active_outputs(intel_sdvo, intel_sdvo->attached_output); if (pipe_config->has_audio) intel_sdvo_enable_audio(intel_sdvo, pipe_config, conn_state); } static enum drm_mode_status intel_sdvo_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { struct intel_sdvo *intel_sdvo = intel_attached_sdvo(connector); struct intel_sdvo_connector *intel_sdvo_connector = to_intel_sdvo_connector(connector); int max_dotclk = to_i915(connector->dev)->max_dotclk_freq; if (mode->flags & DRM_MODE_FLAG_DBLSCAN) return MODE_NO_DBLESCAN; if (intel_sdvo->pixel_clock_min > mode->clock) return MODE_CLOCK_LOW; if (intel_sdvo->pixel_clock_max < mode->clock) return MODE_CLOCK_HIGH; if (mode->clock > max_dotclk) return MODE_CLOCK_HIGH; if (IS_LVDS(intel_sdvo_connector)) { const struct drm_display_mode *fixed_mode = intel_sdvo_connector->base.panel.fixed_mode; if (mode->hdisplay > fixed_mode->hdisplay) return MODE_PANEL; if (mode->vdisplay > fixed_mode->vdisplay) return MODE_PANEL; } return MODE_OK; } static bool intel_sdvo_get_capabilities(struct intel_sdvo *intel_sdvo, struct intel_sdvo_caps *caps) { BUILD_BUG_ON(sizeof(*caps) != 8); if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_DEVICE_CAPS, caps, sizeof(*caps))) return false; DRM_DEBUG_KMS("SDVO capabilities:\n" " vendor_id: %d\n" " device_id: %d\n" " device_rev_id: %d\n" " sdvo_version_major: %d\n" " sdvo_version_minor: %d\n" " sdvo_inputs_mask: %d\n" " smooth_scaling: %d\n" " sharp_scaling: %d\n" " up_scaling: %d\n" " down_scaling: %d\n" " stall_support: %d\n" " output_flags: %d\n", caps->vendor_id, caps->device_id, caps->device_rev_id, caps->sdvo_version_major, caps->sdvo_version_minor, caps->sdvo_inputs_mask, caps->smooth_scaling, caps->sharp_scaling, caps->up_scaling, caps->down_scaling, caps->stall_support, caps->output_flags); return true; } static u16 intel_sdvo_get_hotplug_support(struct intel_sdvo *intel_sdvo) { struct drm_i915_private *dev_priv = to_i915(intel_sdvo->base.base.dev); u16 hotplug; if (!I915_HAS_HOTPLUG(dev_priv)) return 0; /* * HW Erratum: SDVO Hotplug is broken on all i945G chips, there's noise * on the line. */ if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) return 0; if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_HOT_PLUG_SUPPORT, &hotplug, sizeof(hotplug))) return 0; return hotplug; } static void intel_sdvo_enable_hotplug(struct intel_encoder *encoder) { struct intel_sdvo *intel_sdvo = to_sdvo(encoder); intel_sdvo_write_cmd(intel_sdvo, SDVO_CMD_SET_ACTIVE_HOT_PLUG, &intel_sdvo->hotplug_active, 2); } static bool intel_sdvo_hotplug(struct intel_encoder *encoder, struct intel_connector *connector) { intel_sdvo_enable_hotplug(encoder); return intel_encoder_hotplug(encoder, connector); } static bool intel_sdvo_multifunc_encoder(struct intel_sdvo *intel_sdvo) { /* Is there more than one type of output? */ return hweight16(intel_sdvo->caps.output_flags) > 1; } static struct edid * intel_sdvo_get_edid(struct drm_connector *connector) { struct intel_sdvo *sdvo = intel_attached_sdvo(connector); return drm_get_edid(connector, &sdvo->ddc); } /* Mac mini hack -- use the same DDC as the analog connector */ static struct edid * intel_sdvo_get_analog_edid(struct drm_connector *connector) { struct drm_i915_private *dev_priv = to_i915(connector->dev); return drm_get_edid(connector, intel_gmbus_get_adapter(dev_priv, dev_priv->vbt.crt_ddc_pin)); } static enum drm_connector_status intel_sdvo_tmds_sink_detect(struct drm_connector *connector) { struct intel_sdvo *intel_sdvo = intel_attached_sdvo(connector); struct intel_sdvo_connector *intel_sdvo_connector = to_intel_sdvo_connector(connector); enum drm_connector_status status; struct edid *edid; edid = intel_sdvo_get_edid(connector); if (edid == NULL && intel_sdvo_multifunc_encoder(intel_sdvo)) { u8 ddc, saved_ddc = intel_sdvo->ddc_bus; /* * Don't use the 1 as the argument of DDC bus switch to get * the EDID. It is used for SDVO SPD ROM. */ for (ddc = intel_sdvo->ddc_bus >> 1; ddc > 1; ddc >>= 1) { intel_sdvo->ddc_bus = ddc; edid = intel_sdvo_get_edid(connector); if (edid) break; } /* * If we found the EDID on the other bus, * assume that is the correct DDC bus. */ if (edid == NULL) intel_sdvo->ddc_bus = saved_ddc; } /* * When there is no edid and no monitor is connected with VGA * port, try to use the CRT ddc to read the EDID for DVI-connector. */ if (edid == NULL) edid = intel_sdvo_get_analog_edid(connector); status = connector_status_unknown; if (edid != NULL) { /* DDC bus is shared, match EDID to connector type */ if (edid->input & DRM_EDID_INPUT_DIGITAL) { status = connector_status_connected; if (intel_sdvo_connector->is_hdmi) { intel_sdvo->has_hdmi_monitor = drm_detect_hdmi_monitor(edid); intel_sdvo->has_hdmi_audio = drm_detect_monitor_audio(edid); } } else status = connector_status_disconnected; kfree(edid); } return status; } static bool intel_sdvo_connector_matches_edid(struct intel_sdvo_connector *sdvo, struct edid *edid) { bool monitor_is_digital = !!(edid->input & DRM_EDID_INPUT_DIGITAL); bool connector_is_digital = !!IS_DIGITAL(sdvo); DRM_DEBUG_KMS("connector_is_digital? %d, monitor_is_digital? %d\n", connector_is_digital, monitor_is_digital); return connector_is_digital == monitor_is_digital; } static enum drm_connector_status intel_sdvo_detect(struct drm_connector *connector, bool force) { u16 response; struct intel_sdvo *intel_sdvo = intel_attached_sdvo(connector); struct intel_sdvo_connector *intel_sdvo_connector = to_intel_sdvo_connector(connector); enum drm_connector_status ret; DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id, connector->name); if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_ATTACHED_DISPLAYS, &response, 2)) return connector_status_unknown; DRM_DEBUG_KMS("SDVO response %d %d [%x]\n", response & 0xff, response >> 8, intel_sdvo_connector->output_flag); if (response == 0) return connector_status_disconnected; intel_sdvo->attached_output = response; intel_sdvo->has_hdmi_monitor = false; intel_sdvo->has_hdmi_audio = false; if ((intel_sdvo_connector->output_flag & response) == 0) ret = connector_status_disconnected; else if (IS_TMDS(intel_sdvo_connector)) ret = intel_sdvo_tmds_sink_detect(connector); else { struct edid *edid; /* if we have an edid check it matches the connection */ edid = intel_sdvo_get_edid(connector); if (edid == NULL) edid = intel_sdvo_get_analog_edid(connector); if (edid != NULL) { if (intel_sdvo_connector_matches_edid(intel_sdvo_connector, edid)) ret = connector_status_connected; else ret = connector_status_disconnected; kfree(edid); } else ret = connector_status_connected; } return ret; } static void intel_sdvo_get_ddc_modes(struct drm_connector *connector) { struct edid *edid; DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id, connector->name); /* set the bus switch and get the modes */ edid = intel_sdvo_get_edid(connector); /* * Mac mini hack. On this device, the DVI-I connector shares one DDC * link between analog and digital outputs. So, if the regular SDVO * DDC fails, check to see if the analog output is disconnected, in * which case we'll look there for the digital DDC data. */ if (edid == NULL) edid = intel_sdvo_get_analog_edid(connector); if (edid != NULL) { if (intel_sdvo_connector_matches_edid(to_intel_sdvo_connector(connector), edid)) { drm_connector_update_edid_property(connector, edid); drm_add_edid_modes(connector, edid); } kfree(edid); } } /* * Set of SDVO TV modes. * Note! This is in reply order (see loop in get_tv_modes). * XXX: all 60Hz refresh? */ static const struct drm_display_mode sdvo_tv_modes[] = { { DRM_MODE("320x200", DRM_MODE_TYPE_DRIVER, 5815, 320, 321, 384, 416, 0, 200, 201, 232, 233, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("320x240", DRM_MODE_TYPE_DRIVER, 6814, 320, 321, 384, 416, 0, 240, 241, 272, 273, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("400x300", DRM_MODE_TYPE_DRIVER, 9910, 400, 401, 464, 496, 0, 300, 301, 332, 333, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 16913, 640, 641, 704, 736, 0, 350, 351, 382, 383, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 19121, 640, 641, 704, 736, 0, 400, 401, 432, 433, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 22654, 640, 641, 704, 736, 0, 480, 481, 512, 513, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("704x480", DRM_MODE_TYPE_DRIVER, 24624, 704, 705, 768, 800, 0, 480, 481, 512, 513, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("704x576", DRM_MODE_TYPE_DRIVER, 29232, 704, 705, 768, 800, 0, 576, 577, 608, 609, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("720x350", DRM_MODE_TYPE_DRIVER, 18751, 720, 721, 784, 816, 0, 350, 351, 382, 383, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 21199, 720, 721, 784, 816, 0, 400, 401, 432, 433, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 25116, 720, 721, 784, 816, 0, 480, 481, 512, 513, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("720x540", DRM_MODE_TYPE_DRIVER, 28054, 720, 721, 784, 816, 0, 540, 541, 572, 573, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 29816, 720, 721, 784, 816, 0, 576, 577, 608, 609, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("768x576", DRM_MODE_TYPE_DRIVER, 31570, 768, 769, 832, 864, 0, 576, 577, 608, 609, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 34030, 800, 801, 864, 896, 0, 600, 601, 632, 633, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 36581, 832, 833, 896, 928, 0, 624, 625, 656, 657, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("920x766", DRM_MODE_TYPE_DRIVER, 48707, 920, 921, 984, 1016, 0, 766, 767, 798, 799, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 53827, 1024, 1025, 1088, 1120, 0, 768, 769, 800, 801, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 87265, 1280, 1281, 1344, 1376, 0, 1024, 1025, 1056, 1057, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, }; static void intel_sdvo_get_tv_modes(struct drm_connector *connector) { struct intel_sdvo *intel_sdvo = intel_attached_sdvo(connector); const struct drm_connector_state *conn_state = connector->state; struct intel_sdvo_sdtv_resolution_request tv_res; u32 reply = 0, format_map = 0; int i; DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id, connector->name); /* * Read the list of supported input resolutions for the selected TV * format. */ format_map = 1 << conn_state->tv.mode; memcpy(&tv_res, &format_map, min(sizeof(format_map), sizeof(struct intel_sdvo_sdtv_resolution_request))); if (!intel_sdvo_set_target_output(intel_sdvo, intel_sdvo->attached_output)) return; BUILD_BUG_ON(sizeof(tv_res) != 3); if (!intel_sdvo_write_cmd(intel_sdvo, SDVO_CMD_GET_SDTV_RESOLUTION_SUPPORT, &tv_res, sizeof(tv_res))) return; if (!intel_sdvo_read_response(intel_sdvo, &reply, 3)) return; for (i = 0; i < ARRAY_SIZE(sdvo_tv_modes); i++) if (reply & (1 << i)) { struct drm_display_mode *nmode; nmode = drm_mode_duplicate(connector->dev, &sdvo_tv_modes[i]); if (nmode) drm_mode_probed_add(connector, nmode); } } static void intel_sdvo_get_lvds_modes(struct drm_connector *connector) { struct intel_sdvo *intel_sdvo = intel_attached_sdvo(connector); struct drm_i915_private *dev_priv = to_i915(connector->dev); struct drm_display_mode *newmode; DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id, connector->name); /* * Fetch modes from VBT. For SDVO prefer the VBT mode since some * SDVO->LVDS transcoders can't cope with the EDID mode. */ if (dev_priv->vbt.sdvo_lvds_vbt_mode != NULL) { newmode = drm_mode_duplicate(connector->dev, dev_priv->vbt.sdvo_lvds_vbt_mode); if (newmode != NULL) { /* Guarantee the mode is preferred */ newmode->type = (DRM_MODE_TYPE_PREFERRED | DRM_MODE_TYPE_DRIVER); drm_mode_probed_add(connector, newmode); } } /* * Attempt to get the mode list from DDC. * Assume that the preferred modes are * arranged in priority order. */ intel_ddc_get_modes(connector, &intel_sdvo->ddc); } static int intel_sdvo_get_modes(struct drm_connector *connector) { struct intel_sdvo_connector *intel_sdvo_connector = to_intel_sdvo_connector(connector); if (IS_TV(intel_sdvo_connector)) intel_sdvo_get_tv_modes(connector); else if (IS_LVDS(intel_sdvo_connector)) intel_sdvo_get_lvds_modes(connector); else intel_sdvo_get_ddc_modes(connector); return !list_empty(&connector->probed_modes); } static int intel_sdvo_connector_atomic_get_property(struct drm_connector *connector, const struct drm_connector_state *state, struct drm_property *property, u64 *val) { struct intel_sdvo_connector *intel_sdvo_connector = to_intel_sdvo_connector(connector); const struct intel_sdvo_connector_state *sdvo_state = to_intel_sdvo_connector_state((void *)state); if (property == intel_sdvo_connector->tv_format) { int i; for (i = 0; i < intel_sdvo_connector->format_supported_num; i++) if (state->tv.mode == intel_sdvo_connector->tv_format_supported[i]) { *val = i; return 0; } WARN_ON(1); *val = 0; } else if (property == intel_sdvo_connector->top || property == intel_sdvo_connector->bottom) *val = intel_sdvo_connector->max_vscan - sdvo_state->tv.overscan_v; else if (property == intel_sdvo_connector->left || property == intel_sdvo_connector->right) *val = intel_sdvo_connector->max_hscan - sdvo_state->tv.overscan_h; else if (property == intel_sdvo_connector->hpos) *val = sdvo_state->tv.hpos; else if (property == intel_sdvo_connector->vpos) *val = sdvo_state->tv.vpos; else if (property == intel_sdvo_connector->saturation) *val = state->tv.saturation; else if (property == intel_sdvo_connector->contrast) *val = state->tv.contrast; else if (property == intel_sdvo_connector->hue) *val = state->tv.hue; else if (property == intel_sdvo_connector->brightness) *val = state->tv.brightness; else if (property == intel_sdvo_connector->sharpness) *val = sdvo_state->tv.sharpness; else if (property == intel_sdvo_connector->flicker_filter) *val = sdvo_state->tv.flicker_filter; else if (property == intel_sdvo_connector->flicker_filter_2d) *val = sdvo_state->tv.flicker_filter_2d; else if (property == intel_sdvo_connector->flicker_filter_adaptive) *val = sdvo_state->tv.flicker_filter_adaptive; else if (property == intel_sdvo_connector->tv_chroma_filter) *val = sdvo_state->tv.chroma_filter; else if (property == intel_sdvo_connector->tv_luma_filter) *val = sdvo_state->tv.luma_filter; else if (property == intel_sdvo_connector->dot_crawl) *val = sdvo_state->tv.dot_crawl; else return intel_digital_connector_atomic_get_property(connector, state, property, val); return 0; } static int intel_sdvo_connector_atomic_set_property(struct drm_connector *connector, struct drm_connector_state *state, struct drm_property *property, u64 val) { struct intel_sdvo_connector *intel_sdvo_connector = to_intel_sdvo_connector(connector); struct intel_sdvo_connector_state *sdvo_state = to_intel_sdvo_connector_state(state); if (property == intel_sdvo_connector->tv_format) { state->tv.mode = intel_sdvo_connector->tv_format_supported[val]; if (state->crtc) { struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state->state, state->crtc); crtc_state->connectors_changed = true; } } else if (property == intel_sdvo_connector->top || property == intel_sdvo_connector->bottom) /* Cannot set these independent from each other */ sdvo_state->tv.overscan_v = intel_sdvo_connector->max_vscan - val; else if (property == intel_sdvo_connector->left || property == intel_sdvo_connector->right) /* Cannot set these independent from each other */ sdvo_state->tv.overscan_h = intel_sdvo_connector->max_hscan - val; else if (property == intel_sdvo_connector->hpos) sdvo_state->tv.hpos = val; else if (property == intel_sdvo_connector->vpos) sdvo_state->tv.vpos = val; else if (property == intel_sdvo_connector->saturation) state->tv.saturation = val; else if (property == intel_sdvo_connector->contrast) state->tv.contrast = val; else if (property == intel_sdvo_connector->hue) state->tv.hue = val; else if (property == intel_sdvo_connector->brightness) state->tv.brightness = val; else if (property == intel_sdvo_connector->sharpness) sdvo_state->tv.sharpness = val; else if (property == intel_sdvo_connector->flicker_filter) sdvo_state->tv.flicker_filter = val; else if (property == intel_sdvo_connector->flicker_filter_2d) sdvo_state->tv.flicker_filter_2d = val; else if (property == intel_sdvo_connector->flicker_filter_adaptive) sdvo_state->tv.flicker_filter_adaptive = val; else if (property == intel_sdvo_connector->tv_chroma_filter) sdvo_state->tv.chroma_filter = val; else if (property == intel_sdvo_connector->tv_luma_filter) sdvo_state->tv.luma_filter = val; else if (property == intel_sdvo_connector->dot_crawl) sdvo_state->tv.dot_crawl = val; else return intel_digital_connector_atomic_set_property(connector, state, property, val); return 0; } static int intel_sdvo_connector_register(struct drm_connector *connector) { struct intel_sdvo *sdvo = intel_attached_sdvo(connector); int ret; ret = intel_connector_register(connector); if (ret) return ret; return sysfs_create_link(&connector->kdev->kobj, &sdvo->ddc.dev.kobj, sdvo->ddc.dev.kobj.name); } static void intel_sdvo_connector_unregister(struct drm_connector *connector) { struct intel_sdvo *sdvo = intel_attached_sdvo(connector); sysfs_remove_link(&connector->kdev->kobj, sdvo->ddc.dev.kobj.name); intel_connector_unregister(connector); } static struct drm_connector_state * intel_sdvo_connector_duplicate_state(struct drm_connector *connector) { struct intel_sdvo_connector_state *state; state = kmemdup(connector->state, sizeof(*state), GFP_KERNEL); if (!state) return NULL; __drm_atomic_helper_connector_duplicate_state(connector, &state->base.base); return &state->base.base; } static const struct drm_connector_funcs intel_sdvo_connector_funcs = { .detect = intel_sdvo_detect, .fill_modes = drm_helper_probe_single_connector_modes, .atomic_get_property = intel_sdvo_connector_atomic_get_property, .atomic_set_property = intel_sdvo_connector_atomic_set_property, .late_register = intel_sdvo_connector_register, .early_unregister = intel_sdvo_connector_unregister, .destroy = intel_connector_destroy, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, .atomic_duplicate_state = intel_sdvo_connector_duplicate_state, }; static int intel_sdvo_atomic_check(struct drm_connector *conn, struct drm_atomic_state *state) { struct drm_connector_state *new_conn_state = drm_atomic_get_new_connector_state(state, conn); struct drm_connector_state *old_conn_state = drm_atomic_get_old_connector_state(state, conn); struct intel_sdvo_connector_state *old_state = to_intel_sdvo_connector_state(old_conn_state); struct intel_sdvo_connector_state *new_state = to_intel_sdvo_connector_state(new_conn_state); if (new_conn_state->crtc && (memcmp(&old_state->tv, &new_state->tv, sizeof(old_state->tv)) || memcmp(&old_conn_state->tv, &new_conn_state->tv, sizeof(old_conn_state->tv)))) { struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, new_conn_state->crtc); crtc_state->connectors_changed = true; } return intel_digital_connector_atomic_check(conn, state); } static const struct drm_connector_helper_funcs intel_sdvo_connector_helper_funcs = { .get_modes = intel_sdvo_get_modes, .mode_valid = intel_sdvo_mode_valid, .atomic_check = intel_sdvo_atomic_check, }; static void intel_sdvo_enc_destroy(struct drm_encoder *encoder) { struct intel_sdvo *intel_sdvo = to_sdvo(to_intel_encoder(encoder)); i2c_del_adapter(&intel_sdvo->ddc); intel_encoder_destroy(encoder); } static const struct drm_encoder_funcs intel_sdvo_enc_funcs = { .destroy = intel_sdvo_enc_destroy, }; static void intel_sdvo_guess_ddc_bus(struct intel_sdvo *sdvo) { u16 mask = 0; unsigned int num_bits; /* * Make a mask of outputs less than or equal to our own priority in the * list. */ switch (sdvo->controlled_output) { case SDVO_OUTPUT_LVDS1: mask |= SDVO_OUTPUT_LVDS1; /* fall through */ case SDVO_OUTPUT_LVDS0: mask |= SDVO_OUTPUT_LVDS0; /* fall through */ case SDVO_OUTPUT_TMDS1: mask |= SDVO_OUTPUT_TMDS1; /* fall through */ case SDVO_OUTPUT_TMDS0: mask |= SDVO_OUTPUT_TMDS0; /* fall through */ case SDVO_OUTPUT_RGB1: mask |= SDVO_OUTPUT_RGB1; /* fall through */ case SDVO_OUTPUT_RGB0: mask |= SDVO_OUTPUT_RGB0; break; } /* Count bits to find what number we are in the priority list. */ mask &= sdvo->caps.output_flags; num_bits = hweight16(mask); /* If more than 3 outputs, default to DDC bus 3 for now. */ if (num_bits > 3) num_bits = 3; /* Corresponds to SDVO_CONTROL_BUS_DDCx */ sdvo->ddc_bus = 1 << num_bits; } /* * Choose the appropriate DDC bus for control bus switch command for this * SDVO output based on the controlled output. * * DDC bus number assignment is in a priority order of RGB outputs, then TMDS * outputs, then LVDS outputs. */ static void intel_sdvo_select_ddc_bus(struct drm_i915_private *dev_priv, struct intel_sdvo *sdvo) { struct sdvo_device_mapping *mapping; if (sdvo->port == PORT_B) mapping = &dev_priv->vbt.sdvo_mappings[0]; else mapping = &dev_priv->vbt.sdvo_mappings[1]; if (mapping->initialized) sdvo->ddc_bus = 1 << ((mapping->ddc_pin & 0xf0) >> 4); else intel_sdvo_guess_ddc_bus(sdvo); } static void intel_sdvo_select_i2c_bus(struct drm_i915_private *dev_priv, struct intel_sdvo *sdvo) { struct sdvo_device_mapping *mapping; u8 pin; if (sdvo->port == PORT_B) mapping = &dev_priv->vbt.sdvo_mappings[0]; else mapping = &dev_priv->vbt.sdvo_mappings[1]; if (mapping->initialized && intel_gmbus_is_valid_pin(dev_priv, mapping->i2c_pin)) pin = mapping->i2c_pin; else pin = GMBUS_PIN_DPB; sdvo->i2c = intel_gmbus_get_adapter(dev_priv, pin); /* * With gmbus we should be able to drive sdvo i2c at 2MHz, but somehow * our code totally fails once we start using gmbus. Hence fall back to * bit banging for now. */ intel_gmbus_force_bit(sdvo->i2c, true); } /* undo any changes intel_sdvo_select_i2c_bus() did to sdvo->i2c */ static void intel_sdvo_unselect_i2c_bus(struct intel_sdvo *sdvo) { intel_gmbus_force_bit(sdvo->i2c, false); } static bool intel_sdvo_is_hdmi_connector(struct intel_sdvo *intel_sdvo, int device) { return intel_sdvo_check_supp_encode(intel_sdvo); } static u8 intel_sdvo_get_slave_addr(struct drm_i915_private *dev_priv, struct intel_sdvo *sdvo) { struct sdvo_device_mapping *my_mapping, *other_mapping; if (sdvo->port == PORT_B) { my_mapping = &dev_priv->vbt.sdvo_mappings[0]; other_mapping = &dev_priv->vbt.sdvo_mappings[1]; } else { my_mapping = &dev_priv->vbt.sdvo_mappings[1]; other_mapping = &dev_priv->vbt.sdvo_mappings[0]; } /* If the BIOS described our SDVO device, take advantage of it. */ if (my_mapping->slave_addr) return my_mapping->slave_addr; /* * If the BIOS only described a different SDVO device, use the * address that it isn't using. */ if (other_mapping->slave_addr) { if (other_mapping->slave_addr == 0x70) return 0x72; else return 0x70; } /* * No SDVO device info is found for another DVO port, * so use mapping assumption we had before BIOS parsing. */ if (sdvo->port == PORT_B) return 0x70; else return 0x72; } static int intel_sdvo_connector_init(struct intel_sdvo_connector *connector, struct intel_sdvo *encoder) { struct drm_connector *drm_connector; int ret; drm_connector = &connector->base.base; ret = drm_connector_init(encoder->base.base.dev, drm_connector, &intel_sdvo_connector_funcs, connector->base.base.connector_type); if (ret < 0) return ret; drm_connector_helper_add(drm_connector, &intel_sdvo_connector_helper_funcs); connector->base.base.interlace_allowed = 1; connector->base.base.doublescan_allowed = 0; connector->base.base.display_info.subpixel_order = SubPixelHorizontalRGB; connector->base.get_hw_state = intel_sdvo_connector_get_hw_state; intel_connector_attach_encoder(&connector->base, &encoder->base); return 0; } static void intel_sdvo_add_hdmi_properties(struct intel_sdvo *intel_sdvo, struct intel_sdvo_connector *connector) { struct drm_i915_private *dev_priv = to_i915(connector->base.base.dev); intel_attach_force_audio_property(&connector->base.base); if (INTEL_GEN(dev_priv) >= 4 && IS_MOBILE(dev_priv)) { intel_attach_broadcast_rgb_property(&connector->base.base); } intel_attach_aspect_ratio_property(&connector->base.base); connector->base.base.state->picture_aspect_ratio = HDMI_PICTURE_ASPECT_NONE; } static struct intel_sdvo_connector *intel_sdvo_connector_alloc(void) { struct intel_sdvo_connector *sdvo_connector; struct intel_sdvo_connector_state *conn_state; sdvo_connector = kzalloc(sizeof(*sdvo_connector), GFP_KERNEL); if (!sdvo_connector) return NULL; conn_state = kzalloc(sizeof(*conn_state), GFP_KERNEL); if (!conn_state) { kfree(sdvo_connector); return NULL; } __drm_atomic_helper_connector_reset(&sdvo_connector->base.base, &conn_state->base.base); return sdvo_connector; } static bool intel_sdvo_dvi_init(struct intel_sdvo *intel_sdvo, int device) { struct drm_encoder *encoder = &intel_sdvo->base.base; struct drm_connector *connector; struct intel_encoder *intel_encoder = to_intel_encoder(encoder); struct intel_connector *intel_connector; struct intel_sdvo_connector *intel_sdvo_connector; DRM_DEBUG_KMS("initialising DVI device %d\n", device); intel_sdvo_connector = intel_sdvo_connector_alloc(); if (!intel_sdvo_connector) return false; if (device == 0) { intel_sdvo->controlled_output |= SDVO_OUTPUT_TMDS0; intel_sdvo_connector->output_flag = SDVO_OUTPUT_TMDS0; } else if (device == 1) { intel_sdvo->controlled_output |= SDVO_OUTPUT_TMDS1; intel_sdvo_connector->output_flag = SDVO_OUTPUT_TMDS1; } intel_connector = &intel_sdvo_connector->base; connector = &intel_connector->base; if (intel_sdvo_get_hotplug_support(intel_sdvo) & intel_sdvo_connector->output_flag) { intel_sdvo->hotplug_active |= intel_sdvo_connector->output_flag; /* * Some SDVO devices have one-shot hotplug interrupts. * Ensure that they get re-enabled when an interrupt happens. */ intel_encoder->hotplug = intel_sdvo_hotplug; intel_sdvo_enable_hotplug(intel_encoder); } else { intel_connector->polled = DRM_CONNECTOR_POLL_CONNECT | DRM_CONNECTOR_POLL_DISCONNECT; } encoder->encoder_type = DRM_MODE_ENCODER_TMDS; connector->connector_type = DRM_MODE_CONNECTOR_DVID; if (intel_sdvo_is_hdmi_connector(intel_sdvo, device)) { connector->connector_type = DRM_MODE_CONNECTOR_HDMIA; intel_sdvo_connector->is_hdmi = true; } if (intel_sdvo_connector_init(intel_sdvo_connector, intel_sdvo) < 0) { kfree(intel_sdvo_connector); return false; } if (intel_sdvo_connector->is_hdmi) intel_sdvo_add_hdmi_properties(intel_sdvo, intel_sdvo_connector); return true; } static bool intel_sdvo_tv_init(struct intel_sdvo *intel_sdvo, int type) { struct drm_encoder *encoder = &intel_sdvo->base.base; struct drm_connector *connector; struct intel_connector *intel_connector; struct intel_sdvo_connector *intel_sdvo_connector; DRM_DEBUG_KMS("initialising TV type %d\n", type); intel_sdvo_connector = intel_sdvo_connector_alloc(); if (!intel_sdvo_connector) return false; intel_connector = &intel_sdvo_connector->base; connector = &intel_connector->base; encoder->encoder_type = DRM_MODE_ENCODER_TVDAC; connector->connector_type = DRM_MODE_CONNECTOR_SVIDEO; intel_sdvo->controlled_output |= type; intel_sdvo_connector->output_flag = type; if (intel_sdvo_connector_init(intel_sdvo_connector, intel_sdvo) < 0) { kfree(intel_sdvo_connector); return false; } if (!intel_sdvo_tv_create_property(intel_sdvo, intel_sdvo_connector, type)) goto err; if (!intel_sdvo_create_enhance_property(intel_sdvo, intel_sdvo_connector)) goto err; return true; err: intel_connector_destroy(connector); return false; } static bool intel_sdvo_analog_init(struct intel_sdvo *intel_sdvo, int device) { struct drm_encoder *encoder = &intel_sdvo->base.base; struct drm_connector *connector; struct intel_connector *intel_connector; struct intel_sdvo_connector *intel_sdvo_connector; DRM_DEBUG_KMS("initialising analog device %d\n", device); intel_sdvo_connector = intel_sdvo_connector_alloc(); if (!intel_sdvo_connector) return false; intel_connector = &intel_sdvo_connector->base; connector = &intel_connector->base; intel_connector->polled = DRM_CONNECTOR_POLL_CONNECT; encoder->encoder_type = DRM_MODE_ENCODER_DAC; connector->connector_type = DRM_MODE_CONNECTOR_VGA; if (device == 0) { intel_sdvo->controlled_output |= SDVO_OUTPUT_RGB0; intel_sdvo_connector->output_flag = SDVO_OUTPUT_RGB0; } else if (device == 1) { intel_sdvo->controlled_output |= SDVO_OUTPUT_RGB1; intel_sdvo_connector->output_flag = SDVO_OUTPUT_RGB1; } if (intel_sdvo_connector_init(intel_sdvo_connector, intel_sdvo) < 0) { kfree(intel_sdvo_connector); return false; } return true; } static bool intel_sdvo_lvds_init(struct intel_sdvo *intel_sdvo, int device) { struct drm_encoder *encoder = &intel_sdvo->base.base; struct drm_connector *connector; struct intel_connector *intel_connector; struct intel_sdvo_connector *intel_sdvo_connector; struct drm_display_mode *mode; DRM_DEBUG_KMS("initialising LVDS device %d\n", device); intel_sdvo_connector = intel_sdvo_connector_alloc(); if (!intel_sdvo_connector) return false; intel_connector = &intel_sdvo_connector->base; connector = &intel_connector->base; encoder->encoder_type = DRM_MODE_ENCODER_LVDS; connector->connector_type = DRM_MODE_CONNECTOR_LVDS; if (device == 0) { intel_sdvo->controlled_output |= SDVO_OUTPUT_LVDS0; intel_sdvo_connector->output_flag = SDVO_OUTPUT_LVDS0; } else if (device == 1) { intel_sdvo->controlled_output |= SDVO_OUTPUT_LVDS1; intel_sdvo_connector->output_flag = SDVO_OUTPUT_LVDS1; } if (intel_sdvo_connector_init(intel_sdvo_connector, intel_sdvo) < 0) { kfree(intel_sdvo_connector); return false; } if (!intel_sdvo_create_enhance_property(intel_sdvo, intel_sdvo_connector)) goto err; intel_sdvo_get_lvds_modes(connector); list_for_each_entry(mode, &connector->probed_modes, head) { if (mode->type & DRM_MODE_TYPE_PREFERRED) { struct drm_display_mode *fixed_mode = drm_mode_duplicate(connector->dev, mode); intel_panel_init(&intel_connector->panel, fixed_mode, NULL); break; } } if (!intel_connector->panel.fixed_mode) goto err; return true; err: intel_connector_destroy(connector); return false; } static bool intel_sdvo_output_setup(struct intel_sdvo *intel_sdvo, u16 flags) { /* SDVO requires XXX1 function may not exist unless it has XXX0 function.*/ if (flags & SDVO_OUTPUT_TMDS0) if (!intel_sdvo_dvi_init(intel_sdvo, 0)) return false; if ((flags & SDVO_TMDS_MASK) == SDVO_TMDS_MASK) if (!intel_sdvo_dvi_init(intel_sdvo, 1)) return false; /* TV has no XXX1 function block */ if (flags & SDVO_OUTPUT_SVID0) if (!intel_sdvo_tv_init(intel_sdvo, SDVO_OUTPUT_SVID0)) return false; if (flags & SDVO_OUTPUT_CVBS0) if (!intel_sdvo_tv_init(intel_sdvo, SDVO_OUTPUT_CVBS0)) return false; if (flags & SDVO_OUTPUT_YPRPB0) if (!intel_sdvo_tv_init(intel_sdvo, SDVO_OUTPUT_YPRPB0)) return false; if (flags & SDVO_OUTPUT_RGB0) if (!intel_sdvo_analog_init(intel_sdvo, 0)) return false; if ((flags & SDVO_RGB_MASK) == SDVO_RGB_MASK) if (!intel_sdvo_analog_init(intel_sdvo, 1)) return false; if (flags & SDVO_OUTPUT_LVDS0) if (!intel_sdvo_lvds_init(intel_sdvo, 0)) return false; if ((flags & SDVO_LVDS_MASK) == SDVO_LVDS_MASK) if (!intel_sdvo_lvds_init(intel_sdvo, 1)) return false; if ((flags & SDVO_OUTPUT_MASK) == 0) { unsigned char bytes[2]; intel_sdvo->controlled_output = 0; memcpy(bytes, &intel_sdvo->caps.output_flags, 2); DRM_DEBUG_KMS("%s: Unknown SDVO output type (0x%02x%02x)\n", SDVO_NAME(intel_sdvo), bytes[0], bytes[1]); return false; } intel_sdvo->base.crtc_mask = (1 << 0) | (1 << 1) | (1 << 2); return true; } static void intel_sdvo_output_cleanup(struct intel_sdvo *intel_sdvo) { struct drm_device *dev = intel_sdvo->base.base.dev; struct drm_connector *connector, *tmp; list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) { if (intel_attached_encoder(connector) == &intel_sdvo->base) { drm_connector_unregister(connector); intel_connector_destroy(connector); } } } static bool intel_sdvo_tv_create_property(struct intel_sdvo *intel_sdvo, struct intel_sdvo_connector *intel_sdvo_connector, int type) { struct drm_device *dev = intel_sdvo->base.base.dev; struct intel_sdvo_tv_format format; u32 format_map, i; if (!intel_sdvo_set_target_output(intel_sdvo, type)) return false; BUILD_BUG_ON(sizeof(format) != 6); if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_SUPPORTED_TV_FORMATS, &format, sizeof(format))) return false; memcpy(&format_map, &format, min(sizeof(format_map), sizeof(format))); if (format_map == 0) return false; intel_sdvo_connector->format_supported_num = 0; for (i = 0 ; i < TV_FORMAT_NUM; i++) if (format_map & (1 << i)) intel_sdvo_connector->tv_format_supported[intel_sdvo_connector->format_supported_num++] = i; intel_sdvo_connector->tv_format = drm_property_create(dev, DRM_MODE_PROP_ENUM, "mode", intel_sdvo_connector->format_supported_num); if (!intel_sdvo_connector->tv_format) return false; for (i = 0; i < intel_sdvo_connector->format_supported_num; i++) drm_property_add_enum(intel_sdvo_connector->tv_format, i, tv_format_names[intel_sdvo_connector->tv_format_supported[i]]); intel_sdvo_connector->base.base.state->tv.mode = intel_sdvo_connector->tv_format_supported[0]; drm_object_attach_property(&intel_sdvo_connector->base.base.base, intel_sdvo_connector->tv_format, 0); return true; } #define _ENHANCEMENT(state_assignment, name, NAME) do { \ if (enhancements.name) { \ if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_MAX_##NAME, &data_value, 4) || \ !intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_##NAME, &response, 2)) \ return false; \ intel_sdvo_connector->name = \ drm_property_create_range(dev, 0, #name, 0, data_value[0]); \ if (!intel_sdvo_connector->name) return false; \ state_assignment = response; \ drm_object_attach_property(&connector->base, \ intel_sdvo_connector->name, 0); \ DRM_DEBUG_KMS(#name ": max %d, default %d, current %d\n", \ data_value[0], data_value[1], response); \ } \ } while (0) #define ENHANCEMENT(state, name, NAME) _ENHANCEMENT((state)->name, name, NAME) static bool intel_sdvo_create_enhance_property_tv(struct intel_sdvo *intel_sdvo, struct intel_sdvo_connector *intel_sdvo_connector, struct intel_sdvo_enhancements_reply enhancements) { struct drm_device *dev = intel_sdvo->base.base.dev; struct drm_connector *connector = &intel_sdvo_connector->base.base; struct drm_connector_state *conn_state = connector->state; struct intel_sdvo_connector_state *sdvo_state = to_intel_sdvo_connector_state(conn_state); u16 response, data_value[2]; /* when horizontal overscan is supported, Add the left/right property */ if (enhancements.overscan_h) { if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_MAX_OVERSCAN_H, &data_value, 4)) return false; if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_OVERSCAN_H, &response, 2)) return false; sdvo_state->tv.overscan_h = response; intel_sdvo_connector->max_hscan = data_value[0]; intel_sdvo_connector->left = drm_property_create_range(dev, 0, "left_margin", 0, data_value[0]); if (!intel_sdvo_connector->left) return false; drm_object_attach_property(&connector->base, intel_sdvo_connector->left, 0); intel_sdvo_connector->right = drm_property_create_range(dev, 0, "right_margin", 0, data_value[0]); if (!intel_sdvo_connector->right) return false; drm_object_attach_property(&connector->base, intel_sdvo_connector->right, 0); DRM_DEBUG_KMS("h_overscan: max %d, " "default %d, current %d\n", data_value[0], data_value[1], response); } if (enhancements.overscan_v) { if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_MAX_OVERSCAN_V, &data_value, 4)) return false; if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_OVERSCAN_V, &response, 2)) return false; sdvo_state->tv.overscan_v = response; intel_sdvo_connector->max_vscan = data_value[0]; intel_sdvo_connector->top = drm_property_create_range(dev, 0, "top_margin", 0, data_value[0]); if (!intel_sdvo_connector->top) return false; drm_object_attach_property(&connector->base, intel_sdvo_connector->top, 0); intel_sdvo_connector->bottom = drm_property_create_range(dev, 0, "bottom_margin", 0, data_value[0]); if (!intel_sdvo_connector->bottom) return false; drm_object_attach_property(&connector->base, intel_sdvo_connector->bottom, 0); DRM_DEBUG_KMS("v_overscan: max %d, " "default %d, current %d\n", data_value[0], data_value[1], response); } ENHANCEMENT(&sdvo_state->tv, hpos, HPOS); ENHANCEMENT(&sdvo_state->tv, vpos, VPOS); ENHANCEMENT(&conn_state->tv, saturation, SATURATION); ENHANCEMENT(&conn_state->tv, contrast, CONTRAST); ENHANCEMENT(&conn_state->tv, hue, HUE); ENHANCEMENT(&conn_state->tv, brightness, BRIGHTNESS); ENHANCEMENT(&sdvo_state->tv, sharpness, SHARPNESS); ENHANCEMENT(&sdvo_state->tv, flicker_filter, FLICKER_FILTER); ENHANCEMENT(&sdvo_state->tv, flicker_filter_adaptive, FLICKER_FILTER_ADAPTIVE); ENHANCEMENT(&sdvo_state->tv, flicker_filter_2d, FLICKER_FILTER_2D); _ENHANCEMENT(sdvo_state->tv.chroma_filter, tv_chroma_filter, TV_CHROMA_FILTER); _ENHANCEMENT(sdvo_state->tv.luma_filter, tv_luma_filter, TV_LUMA_FILTER); if (enhancements.dot_crawl) { if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_DOT_CRAWL, &response, 2)) return false; sdvo_state->tv.dot_crawl = response & 0x1; intel_sdvo_connector->dot_crawl = drm_property_create_range(dev, 0, "dot_crawl", 0, 1); if (!intel_sdvo_connector->dot_crawl) return false; drm_object_attach_property(&connector->base, intel_sdvo_connector->dot_crawl, 0); DRM_DEBUG_KMS("dot crawl: current %d\n", response); } return true; } static bool intel_sdvo_create_enhance_property_lvds(struct intel_sdvo *intel_sdvo, struct intel_sdvo_connector *intel_sdvo_connector, struct intel_sdvo_enhancements_reply enhancements) { struct drm_device *dev = intel_sdvo->base.base.dev; struct drm_connector *connector = &intel_sdvo_connector->base.base; u16 response, data_value[2]; ENHANCEMENT(&connector->state->tv, brightness, BRIGHTNESS); return true; } #undef ENHANCEMENT #undef _ENHANCEMENT static bool intel_sdvo_create_enhance_property(struct intel_sdvo *intel_sdvo, struct intel_sdvo_connector *intel_sdvo_connector) { union { struct intel_sdvo_enhancements_reply reply; u16 response; } enhancements; BUILD_BUG_ON(sizeof(enhancements) != 2); if (!intel_sdvo_get_value(intel_sdvo, SDVO_CMD_GET_SUPPORTED_ENHANCEMENTS, &enhancements, sizeof(enhancements)) || enhancements.response == 0) { DRM_DEBUG_KMS("No enhancement is supported\n"); return true; } if (IS_TV(intel_sdvo_connector)) return intel_sdvo_create_enhance_property_tv(intel_sdvo, intel_sdvo_connector, enhancements.reply); else if (IS_LVDS(intel_sdvo_connector)) return intel_sdvo_create_enhance_property_lvds(intel_sdvo, intel_sdvo_connector, enhancements.reply); else return true; } static int intel_sdvo_ddc_proxy_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs, int num) { struct intel_sdvo *sdvo = adapter->algo_data; if (!__intel_sdvo_set_control_bus_switch(sdvo, sdvo->ddc_bus)) return -EIO; return sdvo->i2c->algo->master_xfer(sdvo->i2c, msgs, num); } static u32 intel_sdvo_ddc_proxy_func(struct i2c_adapter *adapter) { struct intel_sdvo *sdvo = adapter->algo_data; return sdvo->i2c->algo->functionality(sdvo->i2c); } static const struct i2c_algorithm intel_sdvo_ddc_proxy = { .master_xfer = intel_sdvo_ddc_proxy_xfer, .functionality = intel_sdvo_ddc_proxy_func }; static void proxy_lock_bus(struct i2c_adapter *adapter, unsigned int flags) { struct intel_sdvo *sdvo = adapter->algo_data; sdvo->i2c->lock_ops->lock_bus(sdvo->i2c, flags); } static int proxy_trylock_bus(struct i2c_adapter *adapter, unsigned int flags) { struct intel_sdvo *sdvo = adapter->algo_data; return sdvo->i2c->lock_ops->trylock_bus(sdvo->i2c, flags); } static void proxy_unlock_bus(struct i2c_adapter *adapter, unsigned int flags) { struct intel_sdvo *sdvo = adapter->algo_data; sdvo->i2c->lock_ops->unlock_bus(sdvo->i2c, flags); } static const struct i2c_lock_operations proxy_lock_ops = { .lock_bus = proxy_lock_bus, .trylock_bus = proxy_trylock_bus, .unlock_bus = proxy_unlock_bus, }; static bool intel_sdvo_init_ddc_proxy(struct intel_sdvo *sdvo, struct drm_i915_private *dev_priv) { struct pci_dev *pdev = dev_priv->drm.pdev; sdvo->ddc.owner = THIS_MODULE; sdvo->ddc.class = I2C_CLASS_DDC; snprintf(sdvo->ddc.name, I2C_NAME_SIZE, "SDVO DDC proxy"); sdvo->ddc.dev.parent = &pdev->dev; sdvo->ddc.algo_data = sdvo; sdvo->ddc.algo = &intel_sdvo_ddc_proxy; sdvo->ddc.lock_ops = &proxy_lock_ops; return i2c_add_adapter(&sdvo->ddc) == 0; } static void assert_sdvo_port_valid(const struct drm_i915_private *dev_priv, enum port port) { if (HAS_PCH_SPLIT(dev_priv)) WARN_ON(port != PORT_B); else WARN_ON(port != PORT_B && port != PORT_C); } bool intel_sdvo_init(struct drm_i915_private *dev_priv, i915_reg_t sdvo_reg, enum port port) { struct intel_encoder *intel_encoder; struct intel_sdvo *intel_sdvo; int i; assert_sdvo_port_valid(dev_priv, port); intel_sdvo = kzalloc(sizeof(*intel_sdvo), GFP_KERNEL); if (!intel_sdvo) return false; intel_sdvo->sdvo_reg = sdvo_reg; intel_sdvo->port = port; intel_sdvo->slave_addr = intel_sdvo_get_slave_addr(dev_priv, intel_sdvo) >> 1; intel_sdvo_select_i2c_bus(dev_priv, intel_sdvo); if (!intel_sdvo_init_ddc_proxy(intel_sdvo, dev_priv)) goto err_i2c_bus; /* encoder type will be decided later */ intel_encoder = &intel_sdvo->base; intel_encoder->type = INTEL_OUTPUT_SDVO; intel_encoder->power_domain = POWER_DOMAIN_PORT_OTHER; intel_encoder->port = port; drm_encoder_init(&dev_priv->drm, &intel_encoder->base, &intel_sdvo_enc_funcs, 0, "SDVO %c", port_name(port)); /* Read the regs to test if we can talk to the device */ for (i = 0; i < 0x40; i++) { u8 byte; if (!intel_sdvo_read_byte(intel_sdvo, i, &byte)) { DRM_DEBUG_KMS("No SDVO device found on %s\n", SDVO_NAME(intel_sdvo)); goto err; } } intel_encoder->compute_config = intel_sdvo_compute_config; if (HAS_PCH_SPLIT(dev_priv)) { intel_encoder->disable = pch_disable_sdvo; intel_encoder->post_disable = pch_post_disable_sdvo; } else { intel_encoder->disable = intel_disable_sdvo; } intel_encoder->pre_enable = intel_sdvo_pre_enable; intel_encoder->enable = intel_enable_sdvo; intel_encoder->get_hw_state = intel_sdvo_get_hw_state; intel_encoder->get_config = intel_sdvo_get_config; /* In default case sdvo lvds is false */ if (!intel_sdvo_get_capabilities(intel_sdvo, &intel_sdvo->caps)) goto err; if (intel_sdvo_output_setup(intel_sdvo, intel_sdvo->caps.output_flags) != true) { DRM_DEBUG_KMS("SDVO output failed to setup on %s\n", SDVO_NAME(intel_sdvo)); /* Output_setup can leave behind connectors! */ goto err_output; } /* * Only enable the hotplug irq if we need it, to work around noisy * hotplug lines. */ if (intel_sdvo->hotplug_active) { if (intel_sdvo->port == PORT_B) intel_encoder->hpd_pin = HPD_SDVO_B; else intel_encoder->hpd_pin = HPD_SDVO_C; } /* * Cloning SDVO with anything is often impossible, since the SDVO * encoder can request a special input timing mode. And even if that's * not the case we have evidence that cloning a plain unscaled mode with * VGA doesn't really work. Furthermore the cloning flags are way too * simplistic anyway to express such constraints, so just give up on * cloning for SDVO encoders. */ intel_sdvo->base.cloneable = 0; intel_sdvo_select_ddc_bus(dev_priv, intel_sdvo); /* Set the input timing to the screen. Assume always input 0. */ if (!intel_sdvo_set_target_input(intel_sdvo)) goto err_output; if (!intel_sdvo_get_input_pixel_clock_range(intel_sdvo, &intel_sdvo->pixel_clock_min, &intel_sdvo->pixel_clock_max)) goto err_output; DRM_DEBUG_KMS("%s device VID/DID: %02X:%02X.%02X, " "clock range %dMHz - %dMHz, " "input 1: %c, input 2: %c, " "output 1: %c, output 2: %c\n", SDVO_NAME(intel_sdvo), intel_sdvo->caps.vendor_id, intel_sdvo->caps.device_id, intel_sdvo->caps.device_rev_id, intel_sdvo->pixel_clock_min / 1000, intel_sdvo->pixel_clock_max / 1000, (intel_sdvo->caps.sdvo_inputs_mask & 0x1) ? 'Y' : 'N', (intel_sdvo->caps.sdvo_inputs_mask & 0x2) ? 'Y' : 'N', /* check currently supported outputs */ intel_sdvo->caps.output_flags & (SDVO_OUTPUT_TMDS0 | SDVO_OUTPUT_RGB0) ? 'Y' : 'N', intel_sdvo->caps.output_flags & (SDVO_OUTPUT_TMDS1 | SDVO_OUTPUT_RGB1) ? 'Y' : 'N'); return true; err_output: intel_sdvo_output_cleanup(intel_sdvo); err: drm_encoder_cleanup(&intel_encoder->base); i2c_del_adapter(&intel_sdvo->ddc); err_i2c_bus: intel_sdvo_unselect_i2c_bus(intel_sdvo); kfree(intel_sdvo); return false; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1