Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ville Syrjälä | 1433 | 28.79% | 125 | 27.90% |
Paulo Zanoni | 389 | 7.81% | 11 | 2.46% |
Maarten Lankhorst | 382 | 7.67% | 32 | 7.14% |
Daniel Vetter | 279 | 5.60% | 44 | 9.82% |
Jesse Barnes | 272 | 5.46% | 16 | 3.57% |
Jani Nikula | 262 | 5.26% | 26 | 5.80% |
Ramalingam C | 250 | 5.02% | 11 | 2.46% |
Chris Wilson | 183 | 3.68% | 26 | 5.80% |
Sean Paul | 179 | 3.60% | 1 | 0.22% |
Matt Roper | 154 | 3.09% | 13 | 2.90% |
Imre Deak | 123 | 2.47% | 17 | 3.79% |
Dave Airlie | 115 | 2.31% | 6 | 1.34% |
Ander Conselvan de Oliveira | 103 | 2.07% | 15 | 3.35% |
Manasi D Navare | 91 | 1.83% | 9 | 2.01% |
Shashank Sharma | 85 | 1.71% | 9 | 2.01% |
Chandra Konduru | 66 | 1.33% | 4 | 0.89% |
Shobhit Kumar | 59 | 1.19% | 3 | 0.67% |
Damien Lespiau | 50 | 1.00% | 8 | 1.79% |
Eugeni Dodonov | 47 | 0.94% | 2 | 0.45% |
Chon Ming Lee | 44 | 0.88% | 3 | 0.67% |
Kumar, Mahesh | 37 | 0.74% | 5 | 1.12% |
Tvrtko A. Ursulin | 36 | 0.72% | 7 | 1.56% |
Stephen Chandler Paul | 35 | 0.70% | 4 | 0.89% |
Hans de Goede | 31 | 0.62% | 2 | 0.45% |
Rodrigo Vivi | 29 | 0.58% | 1 | 0.22% |
Lionel Landwerlin | 29 | 0.58% | 2 | 0.45% |
Zhenyu Wang | 21 | 0.42% | 5 | 1.12% |
James Ausmus | 20 | 0.40% | 1 | 0.22% |
Gwan-gyeong Mun | 15 | 0.30% | 1 | 0.22% |
Vandana Kannan | 15 | 0.30% | 2 | 0.45% |
Uma Shankar | 13 | 0.26% | 3 | 0.67% |
Dhinakaran Pandiyan | 11 | 0.22% | 2 | 0.45% |
Gustavo Padovan | 10 | 0.20% | 1 | 0.22% |
Adam Jackson | 9 | 0.18% | 1 | 0.22% |
Vandita Kulkarni | 9 | 0.18% | 1 | 0.22% |
A.Sunil Kamath | 8 | 0.16% | 1 | 0.22% |
Neil Armstrong | 8 | 0.16% | 1 | 0.22% |
Egbert Eich | 8 | 0.16% | 2 | 0.45% |
Keith Packard | 8 | 0.16% | 1 | 0.22% |
Anusha Srivatsa | 7 | 0.14% | 2 | 0.45% |
Yetunde Adebisi | 5 | 0.10% | 1 | 0.22% |
Pradeep Bhat | 5 | 0.10% | 1 | 0.22% |
Kristian Högsberg | 5 | 0.10% | 1 | 0.22% |
Rob Clark | 5 | 0.10% | 1 | 0.22% |
Clint Taylor | 4 | 0.08% | 1 | 0.22% |
Sonika Jindal | 4 | 0.08% | 1 | 0.22% |
Ingo Molnar | 3 | 0.06% | 1 | 0.22% |
Abhay Kumar | 3 | 0.06% | 1 | 0.22% |
Eric Anholt | 3 | 0.06% | 2 | 0.45% |
Ma Ling | 3 | 0.06% | 1 | 0.22% |
Todd Previte | 2 | 0.04% | 2 | 0.45% |
Shubhangi Shrivastava | 2 | 0.04% | 1 | 0.22% |
Laurent Pinchart | 2 | 0.04% | 1 | 0.22% |
Daniel Stone | 1 | 0.02% | 1 | 0.22% |
David Howells | 1 | 0.02% | 1 | 0.22% |
Stéphane Marchesin | 1 | 0.02% | 1 | 0.22% |
Xiong Zhang | 1 | 0.02% | 1 | 0.22% |
Mika Kuoppala | 1 | 0.02% | 1 | 0.22% |
Matthias Kaehlcke | 1 | 0.02% | 1 | 0.22% |
José Roberto de Souza | 1 | 0.02% | 1 | 0.22% |
Total | 4978 | 448 |
/* * Copyright (c) 2006 Dave Airlie <airlied@linux.ie> * Copyright (c) 2007-2008 Intel Corporation * Jesse Barnes <jesse.barnes@intel.com> * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #ifndef __INTEL_DRV_H__ #define __INTEL_DRV_H__ #include <linux/async.h> #include <linux/i2c.h> #include <linux/sched/clock.h> #include <drm/drm_atomic.h> #include <drm/drm_crtc.h> #include <drm/drm_dp_dual_mode_helper.h> #include <drm/drm_dp_mst_helper.h> #include <drm/drm_encoder.h> #include <drm/drm_fb_helper.h> #include <drm/drm_probe_helper.h> #include <drm/drm_rect.h> #include <drm/drm_vblank.h> #include <drm/i915_drm.h> #include <drm/i915_mei_hdcp_interface.h> #include <media/cec-notifier.h> #include "i915_drv.h" struct drm_printer; /* * Display related stuff */ /* these are outputs from the chip - integrated only external chips are via DVO or SDVO output */ enum intel_output_type { INTEL_OUTPUT_UNUSED = 0, INTEL_OUTPUT_ANALOG = 1, INTEL_OUTPUT_DVO = 2, INTEL_OUTPUT_SDVO = 3, INTEL_OUTPUT_LVDS = 4, INTEL_OUTPUT_TVOUT = 5, INTEL_OUTPUT_HDMI = 6, INTEL_OUTPUT_DP = 7, INTEL_OUTPUT_EDP = 8, INTEL_OUTPUT_DSI = 9, INTEL_OUTPUT_DDI = 10, INTEL_OUTPUT_DP_MST = 11, }; struct intel_framebuffer { struct drm_framebuffer base; struct intel_rotation_info rot_info; /* for each plane in the normal GTT view */ struct { unsigned int x, y; } normal[2]; /* for each plane in the rotated GTT view */ struct { unsigned int x, y; unsigned int pitch; /* pixels */ } rotated[2]; }; struct intel_fbdev { struct drm_fb_helper helper; struct intel_framebuffer *fb; struct i915_vma *vma; unsigned long vma_flags; async_cookie_t cookie; int preferred_bpp; /* Whether or not fbdev hpd processing is temporarily suspended */ bool hpd_suspended : 1; /* Set when a hotplug was received while HPD processing was * suspended */ bool hpd_waiting : 1; /* Protects hpd_suspended */ struct mutex hpd_lock; }; struct intel_encoder { struct drm_encoder base; enum intel_output_type type; enum port port; unsigned int cloneable; bool (*hotplug)(struct intel_encoder *encoder, struct intel_connector *connector); enum intel_output_type (*compute_output_type)(struct intel_encoder *, struct intel_crtc_state *, struct drm_connector_state *); int (*compute_config)(struct intel_encoder *, struct intel_crtc_state *, struct drm_connector_state *); void (*pre_pll_enable)(struct intel_encoder *, const struct intel_crtc_state *, const struct drm_connector_state *); void (*pre_enable)(struct intel_encoder *, const struct intel_crtc_state *, const struct drm_connector_state *); void (*enable)(struct intel_encoder *, const struct intel_crtc_state *, const struct drm_connector_state *); void (*disable)(struct intel_encoder *, const struct intel_crtc_state *, const struct drm_connector_state *); void (*post_disable)(struct intel_encoder *, const struct intel_crtc_state *, const struct drm_connector_state *); void (*post_pll_disable)(struct intel_encoder *, const struct intel_crtc_state *, const struct drm_connector_state *); void (*update_pipe)(struct intel_encoder *, const struct intel_crtc_state *, const struct drm_connector_state *); /* Read out the current hw state of this connector, returning true if * the encoder is active. If the encoder is enabled it also set the pipe * it is connected to in the pipe parameter. */ bool (*get_hw_state)(struct intel_encoder *, enum pipe *pipe); /* Reconstructs the equivalent mode flags for the current hardware * state. This must be called _after_ display->get_pipe_config has * pre-filled the pipe config. Note that intel_encoder->base.crtc must * be set correctly before calling this function. */ void (*get_config)(struct intel_encoder *, struct intel_crtc_state *pipe_config); /* * Acquires the power domains needed for an active encoder during * hardware state readout. */ void (*get_power_domains)(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state); /* * Called during system suspend after all pending requests for the * encoder are flushed (for example for DP AUX transactions) and * device interrupts are disabled. */ void (*suspend)(struct intel_encoder *); int crtc_mask; enum hpd_pin hpd_pin; enum intel_display_power_domain power_domain; /* for communication with audio component; protected by av_mutex */ const struct drm_connector *audio_connector; }; struct intel_panel { struct drm_display_mode *fixed_mode; struct drm_display_mode *downclock_mode; /* backlight */ struct { bool present; u32 level; u32 min; u32 max; bool enabled; bool combination_mode; /* gen 2/4 only */ bool active_low_pwm; bool alternate_pwm_increment; /* lpt+ */ /* PWM chip */ bool util_pin_active_low; /* bxt+ */ u8 controller; /* bxt+ only */ struct pwm_device *pwm; struct backlight_device *device; /* Connector and platform specific backlight functions */ int (*setup)(struct intel_connector *connector, enum pipe pipe); u32 (*get)(struct intel_connector *connector); void (*set)(const struct drm_connector_state *conn_state, u32 level); void (*disable)(const struct drm_connector_state *conn_state); void (*enable)(const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state); u32 (*hz_to_pwm)(struct intel_connector *connector, u32 hz); void (*power)(struct intel_connector *, bool enable); } backlight; }; struct intel_digital_port; enum check_link_response { HDCP_LINK_PROTECTED = 0, HDCP_TOPOLOGY_CHANGE, HDCP_LINK_INTEGRITY_FAILURE, HDCP_REAUTH_REQUEST }; /* * This structure serves as a translation layer between the generic HDCP code * and the bus-specific code. What that means is that HDCP over HDMI differs * from HDCP over DP, so to account for these differences, we need to * communicate with the receiver through this shim. * * For completeness, the 2 buses differ in the following ways: * - DP AUX vs. DDC * HDCP registers on the receiver are set via DP AUX for DP, and * they are set via DDC for HDMI. * - Receiver register offsets * The offsets of the registers are different for DP vs. HDMI * - Receiver register masks/offsets * For instance, the ready bit for the KSV fifo is in a different * place on DP vs HDMI * - Receiver register names * Seriously. In the DP spec, the 16-bit register containing * downstream information is called BINFO, on HDMI it's called * BSTATUS. To confuse matters further, DP has a BSTATUS register * with a completely different definition. * - KSV FIFO * On HDMI, the ksv fifo is read all at once, whereas on DP it must * be read 3 keys at a time * - Aksv output * Since Aksv is hidden in hardware, there's different procedures * to send it over DP AUX vs DDC */ struct intel_hdcp_shim { /* Outputs the transmitter's An and Aksv values to the receiver. */ int (*write_an_aksv)(struct intel_digital_port *intel_dig_port, u8 *an); /* Reads the receiver's key selection vector */ int (*read_bksv)(struct intel_digital_port *intel_dig_port, u8 *bksv); /* * Reads BINFO from DP receivers and BSTATUS from HDMI receivers. The * definitions are the same in the respective specs, but the names are * different. Call it BSTATUS since that's the name the HDMI spec * uses and it was there first. */ int (*read_bstatus)(struct intel_digital_port *intel_dig_port, u8 *bstatus); /* Determines whether a repeater is present downstream */ int (*repeater_present)(struct intel_digital_port *intel_dig_port, bool *repeater_present); /* Reads the receiver's Ri' value */ int (*read_ri_prime)(struct intel_digital_port *intel_dig_port, u8 *ri); /* Determines if the receiver's KSV FIFO is ready for consumption */ int (*read_ksv_ready)(struct intel_digital_port *intel_dig_port, bool *ksv_ready); /* Reads the ksv fifo for num_downstream devices */ int (*read_ksv_fifo)(struct intel_digital_port *intel_dig_port, int num_downstream, u8 *ksv_fifo); /* Reads a 32-bit part of V' from the receiver */ int (*read_v_prime_part)(struct intel_digital_port *intel_dig_port, int i, u32 *part); /* Enables HDCP signalling on the port */ int (*toggle_signalling)(struct intel_digital_port *intel_dig_port, bool enable); /* Ensures the link is still protected */ bool (*check_link)(struct intel_digital_port *intel_dig_port); /* Detects panel's hdcp capability. This is optional for HDMI. */ int (*hdcp_capable)(struct intel_digital_port *intel_dig_port, bool *hdcp_capable); /* HDCP adaptation(DP/HDMI) required on the port */ enum hdcp_wired_protocol protocol; /* Detects whether sink is HDCP2.2 capable */ int (*hdcp_2_2_capable)(struct intel_digital_port *intel_dig_port, bool *capable); /* Write HDCP2.2 messages */ int (*write_2_2_msg)(struct intel_digital_port *intel_dig_port, void *buf, size_t size); /* Read HDCP2.2 messages */ int (*read_2_2_msg)(struct intel_digital_port *intel_dig_port, u8 msg_id, void *buf, size_t size); /* * Implementation of DP HDCP2.2 Errata for the communication of stream * type to Receivers. In DP HDCP2.2 Stream type is one of the input to * the HDCP2.2 Cipher for En/De-Cryption. Not applicable for HDMI. */ int (*config_stream_type)(struct intel_digital_port *intel_dig_port, bool is_repeater, u8 type); /* HDCP2.2 Link Integrity Check */ int (*check_2_2_link)(struct intel_digital_port *intel_dig_port); }; struct intel_hdcp { const struct intel_hdcp_shim *shim; /* Mutex for hdcp state of the connector */ struct mutex mutex; u64 value; struct delayed_work check_work; struct work_struct prop_work; /* HDCP1.4 Encryption status */ bool hdcp_encrypted; /* HDCP2.2 related definitions */ /* Flag indicates whether this connector supports HDCP2.2 or not. */ bool hdcp2_supported; /* HDCP2.2 Encryption status */ bool hdcp2_encrypted; /* * Content Stream Type defined by content owner. TYPE0(0x0) content can * flow in the link protected by HDCP2.2 or HDCP1.4, where as TYPE1(0x1) * content can flow only through a link protected by HDCP2.2. */ u8 content_type; struct hdcp_port_data port_data; bool is_paired; bool is_repeater; /* * Count of ReceiverID_List received. Initialized to 0 at AKE_INIT. * Incremented after processing the RepeaterAuth_Send_ReceiverID_List. * When it rolls over re-auth has to be triggered. */ u32 seq_num_v; /* * Count of RepeaterAuth_Stream_Manage msg propagated. * Initialized to 0 on AKE_INIT. Incremented after every successful * transmission of RepeaterAuth_Stream_Manage message. When it rolls * over re-Auth has to be triggered. */ u32 seq_num_m; /* * Work queue to signal the CP_IRQ. Used for the waiters to read the * available information from HDCP DP sink. */ wait_queue_head_t cp_irq_queue; atomic_t cp_irq_count; int cp_irq_count_cached; }; struct intel_connector { struct drm_connector base; /* * The fixed encoder this connector is connected to. */ struct intel_encoder *encoder; /* ACPI device id for ACPI and driver cooperation */ u32 acpi_device_id; /* Reads out the current hw, returning true if the connector is enabled * and active (i.e. dpms ON state). */ bool (*get_hw_state)(struct intel_connector *); /* Panel info for eDP and LVDS */ struct intel_panel panel; /* Cached EDID for eDP and LVDS. May hold ERR_PTR for invalid EDID. */ struct edid *edid; struct edid *detect_edid; /* since POLL and HPD connectors may use the same HPD line keep the native state of connector->polled in case hotplug storm detection changes it */ u8 polled; void *port; /* store this opaque as its illegal to dereference it */ struct intel_dp *mst_port; /* Work struct to schedule a uevent on link train failure */ struct work_struct modeset_retry_work; struct intel_hdcp hdcp; }; struct intel_digital_connector_state { struct drm_connector_state base; enum hdmi_force_audio force_audio; int broadcast_rgb; }; #define to_intel_digital_connector_state(x) container_of(x, struct intel_digital_connector_state, base) struct dpll { /* given values */ int n; int m1, m2; int p1, p2; /* derived values */ int dot; int vco; int m; int p; }; struct intel_atomic_state { struct drm_atomic_state base; intel_wakeref_t wakeref; struct { /* * Logical state of cdclk (used for all scaling, watermark, * etc. calculations and checks). This is computed as if all * enabled crtcs were active. */ struct intel_cdclk_state logical; /* * Actual state of cdclk, can be different from the logical * state only when all crtc's are DPMS off. */ struct intel_cdclk_state actual; int force_min_cdclk; bool force_min_cdclk_changed; /* pipe to which cd2x update is synchronized */ enum pipe pipe; } cdclk; bool dpll_set, modeset; /* * Does this transaction change the pipes that are active? This mask * tracks which CRTC's have changed their active state at the end of * the transaction (not counting the temporary disable during modesets). * This mask should only be non-zero when intel_state->modeset is true, * but the converse is not necessarily true; simply changing a mode may * not flip the final active status of any CRTC's */ unsigned int active_pipe_changes; unsigned int active_crtcs; /* minimum acceptable cdclk for each pipe */ int min_cdclk[I915_MAX_PIPES]; /* minimum acceptable voltage level for each pipe */ u8 min_voltage_level[I915_MAX_PIPES]; struct intel_shared_dpll_state shared_dpll[I915_NUM_PLLS]; /* * Current watermarks can't be trusted during hardware readout, so * don't bother calculating intermediate watermarks. */ bool skip_intermediate_wm; bool rps_interactive; /* Gen9+ only */ struct skl_ddb_values wm_results; struct i915_sw_fence commit_ready; struct llist_node freed; }; struct intel_plane_state { struct drm_plane_state base; struct i915_ggtt_view view; struct i915_vma *vma; unsigned long flags; #define PLANE_HAS_FENCE BIT(0) struct { u32 offset; /* * Plane stride in: * bytes for 0/180 degree rotation * pixels for 90/270 degree rotation */ u32 stride; int x, y; } color_plane[2]; /* plane control register */ u32 ctl; /* plane color control register */ u32 color_ctl; /* * scaler_id * = -1 : not using a scaler * >= 0 : using a scalers * * plane requiring a scaler: * - During check_plane, its bit is set in * crtc_state->scaler_state.scaler_users by calling helper function * update_scaler_plane. * - scaler_id indicates the scaler it got assigned. * * plane doesn't require a scaler: * - this can happen when scaling is no more required or plane simply * got disabled. * - During check_plane, corresponding bit is reset in * crtc_state->scaler_state.scaler_users by calling helper function * update_scaler_plane. */ int scaler_id; /* * linked_plane: * * ICL planar formats require 2 planes that are updated as pairs. * This member is used to make sure the other plane is also updated * when required, and for update_slave() to find the correct * plane_state to pass as argument. */ struct intel_plane *linked_plane; /* * slave: * If set don't update use the linked plane's state for updating * this plane during atomic commit with the update_slave() callback. * * It's also used by the watermark code to ignore wm calculations on * this plane. They're calculated by the linked plane's wm code. */ u32 slave; struct drm_intel_sprite_colorkey ckey; }; struct intel_initial_plane_config { struct intel_framebuffer *fb; unsigned int tiling; int size; u32 base; u8 rotation; }; struct intel_scaler { int in_use; u32 mode; }; struct intel_crtc_scaler_state { #define SKL_NUM_SCALERS 2 struct intel_scaler scalers[SKL_NUM_SCALERS]; /* * scaler_users: keeps track of users requesting scalers on this crtc. * * If a bit is set, a user is using a scaler. * Here user can be a plane or crtc as defined below: * bits 0-30 - plane (bit position is index from drm_plane_index) * bit 31 - crtc * * Instead of creating a new index to cover planes and crtc, using * existing drm_plane_index for planes which is well less than 31 * planes and bit 31 for crtc. This should be fine to cover all * our platforms. * * intel_atomic_setup_scalers will setup available scalers to users * requesting scalers. It will gracefully fail if request exceeds * avilability. */ #define SKL_CRTC_INDEX 31 unsigned scaler_users; /* scaler used by crtc for panel fitting purpose */ int scaler_id; }; /* drm_mode->private_flags */ #define I915_MODE_FLAG_INHERITED (1<<0) /* Flag to get scanline using frame time stamps */ #define I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP (1<<1) /* Flag to use the scanline counter instead of the pixel counter */ #define I915_MODE_FLAG_USE_SCANLINE_COUNTER (1<<2) struct intel_pipe_wm { struct intel_wm_level wm[5]; u32 linetime; bool fbc_wm_enabled; bool pipe_enabled; bool sprites_enabled; bool sprites_scaled; }; struct skl_plane_wm { struct skl_wm_level wm[8]; struct skl_wm_level uv_wm[8]; struct skl_wm_level trans_wm; bool is_planar; }; struct skl_pipe_wm { struct skl_plane_wm planes[I915_MAX_PLANES]; u32 linetime; }; enum vlv_wm_level { VLV_WM_LEVEL_PM2, VLV_WM_LEVEL_PM5, VLV_WM_LEVEL_DDR_DVFS, NUM_VLV_WM_LEVELS, }; struct vlv_wm_state { struct g4x_pipe_wm wm[NUM_VLV_WM_LEVELS]; struct g4x_sr_wm sr[NUM_VLV_WM_LEVELS]; u8 num_levels; bool cxsr; }; struct vlv_fifo_state { u16 plane[I915_MAX_PLANES]; }; enum g4x_wm_level { G4X_WM_LEVEL_NORMAL, G4X_WM_LEVEL_SR, G4X_WM_LEVEL_HPLL, NUM_G4X_WM_LEVELS, }; struct g4x_wm_state { struct g4x_pipe_wm wm; struct g4x_sr_wm sr; struct g4x_sr_wm hpll; bool cxsr; bool hpll_en; bool fbc_en; }; struct intel_crtc_wm_state { union { struct { /* * Intermediate watermarks; these can be * programmed immediately since they satisfy * both the current configuration we're * switching away from and the new * configuration we're switching to. */ struct intel_pipe_wm intermediate; /* * Optimal watermarks, programmed post-vblank * when this state is committed. */ struct intel_pipe_wm optimal; } ilk; struct { /* gen9+ only needs 1-step wm programming */ struct skl_pipe_wm optimal; struct skl_ddb_entry ddb; struct skl_ddb_entry plane_ddb_y[I915_MAX_PLANES]; struct skl_ddb_entry plane_ddb_uv[I915_MAX_PLANES]; } skl; struct { /* "raw" watermarks (not inverted) */ struct g4x_pipe_wm raw[NUM_VLV_WM_LEVELS]; /* intermediate watermarks (inverted) */ struct vlv_wm_state intermediate; /* optimal watermarks (inverted) */ struct vlv_wm_state optimal; /* display FIFO split */ struct vlv_fifo_state fifo_state; } vlv; struct { /* "raw" watermarks */ struct g4x_pipe_wm raw[NUM_G4X_WM_LEVELS]; /* intermediate watermarks */ struct g4x_wm_state intermediate; /* optimal watermarks */ struct g4x_wm_state optimal; } g4x; }; /* * Platforms with two-step watermark programming will need to * update watermark programming post-vblank to switch from the * safe intermediate watermarks to the optimal final * watermarks. */ bool need_postvbl_update; }; enum intel_output_format { INTEL_OUTPUT_FORMAT_INVALID, INTEL_OUTPUT_FORMAT_RGB, INTEL_OUTPUT_FORMAT_YCBCR420, INTEL_OUTPUT_FORMAT_YCBCR444, }; struct intel_crtc_state { struct drm_crtc_state base; /** * quirks - bitfield with hw state readout quirks * * For various reasons the hw state readout code might not be able to * completely faithfully read out the current state. These cases are * tracked with quirk flags so that fastboot and state checker can act * accordingly. */ #define PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS (1<<0) /* unreliable sync mode.flags */ unsigned long quirks; unsigned fb_bits; /* framebuffers to flip */ bool update_pipe; /* can a fast modeset be performed? */ bool disable_cxsr; bool update_wm_pre, update_wm_post; /* watermarks are updated */ bool fb_changed; /* fb on any of the planes is changed */ bool fifo_changed; /* FIFO split is changed */ /* Pipe source size (ie. panel fitter input size) * All planes will be positioned inside this space, * and get clipped at the edges. */ int pipe_src_w, pipe_src_h; /* * Pipe pixel rate, adjusted for * panel fitter/pipe scaler downscaling. */ unsigned int pixel_rate; /* Whether to set up the PCH/FDI. Note that we never allow sharing * between pch encoders and cpu encoders. */ bool has_pch_encoder; /* Are we sending infoframes on the attached port */ bool has_infoframe; /* CPU Transcoder for the pipe. Currently this can only differ from the * pipe on Haswell and later (where we have a special eDP transcoder) * and Broxton (where we have special DSI transcoders). */ enum transcoder cpu_transcoder; /* * Use reduced/limited/broadcast rbg range, compressing from the full * range fed into the crtcs. */ bool limited_color_range; /* Bitmask of encoder types (enum intel_output_type) * driven by the pipe. */ unsigned int output_types; /* Whether we should send NULL infoframes. Required for audio. */ bool has_hdmi_sink; /* Audio enabled on this pipe. Only valid if either has_hdmi_sink or * has_dp_encoder is set. */ bool has_audio; /* * Enable dithering, used when the selected pipe bpp doesn't match the * plane bpp. */ bool dither; /* * Dither gets enabled for 18bpp which causes CRC mismatch errors for * compliance video pattern tests. * Disable dither only if it is a compliance test request for * 18bpp. */ bool dither_force_disable; /* Controls for the clock computation, to override various stages. */ bool clock_set; /* SDVO TV has a bunch of special case. To make multifunction encoders * work correctly, we need to track this at runtime.*/ bool sdvo_tv_clock; /* * crtc bandwidth limit, don't increase pipe bpp or clock if not really * required. This is set in the 2nd loop of calling encoder's * ->compute_config if the first pick doesn't work out. */ bool bw_constrained; /* Settings for the intel dpll used on pretty much everything but * haswell. */ struct dpll dpll; /* Selected dpll when shared or NULL. */ struct intel_shared_dpll *shared_dpll; /* Actual register state of the dpll, for shared dpll cross-checking. */ struct intel_dpll_hw_state dpll_hw_state; /* DSI PLL registers */ struct { u32 ctrl, div; } dsi_pll; int pipe_bpp; struct intel_link_m_n dp_m_n; /* m2_n2 for eDP downclock */ struct intel_link_m_n dp_m2_n2; bool has_drrs; bool has_psr; bool has_psr2; /* * Frequence the dpll for the port should run at. Differs from the * adjusted dotclock e.g. for DP or 10/12bpc hdmi mode. This is also * already multiplied by pixel_multiplier. */ int port_clock; /* Used by SDVO (and if we ever fix it, HDMI). */ unsigned pixel_multiplier; u8 lane_count; /* * Used by platforms having DP/HDMI PHY with programmable lane * latency optimization. */ u8 lane_lat_optim_mask; /* minimum acceptable voltage level */ u8 min_voltage_level; /* Panel fitter controls for gen2-gen4 + VLV */ struct { u32 control; u32 pgm_ratios; u32 lvds_border_bits; } gmch_pfit; /* Panel fitter placement and size for Ironlake+ */ struct { u32 pos; u32 size; bool enabled; bool force_thru; } pch_pfit; /* FDI configuration, only valid if has_pch_encoder is set. */ int fdi_lanes; struct intel_link_m_n fdi_m_n; bool ips_enabled; bool crc_enabled; bool enable_fbc; bool double_wide; int pbn; struct intel_crtc_scaler_state scaler_state; /* w/a for waiting 2 vblanks during crtc enable */ enum pipe hsw_workaround_pipe; /* IVB sprite scaling w/a (WaCxSRDisabledForSpriteScaling:ivb) */ bool disable_lp_wm; struct intel_crtc_wm_state wm; u32 data_rate[I915_MAX_PLANES]; /* Gamma mode programmed on the pipe */ u32 gamma_mode; union { /* CSC mode programmed on the pipe */ u32 csc_mode; /* CHV CGM mode */ u32 cgm_mode; }; /* bitmask of visible planes (enum plane_id) */ u8 active_planes; u8 nv12_planes; u8 c8_planes; /* bitmask of planes that will be updated during the commit */ u8 update_planes; struct { u32 enable; u32 gcp; union hdmi_infoframe avi; union hdmi_infoframe spd; union hdmi_infoframe hdmi; union hdmi_infoframe drm; } infoframes; /* HDMI scrambling status */ bool hdmi_scrambling; /* HDMI High TMDS char rate ratio */ bool hdmi_high_tmds_clock_ratio; /* Output format RGB/YCBCR etc */ enum intel_output_format output_format; /* Output down scaling is done in LSPCON device */ bool lspcon_downsampling; /* enable pipe gamma? */ bool gamma_enable; /* enable pipe csc? */ bool csc_enable; /* Display Stream compression state */ struct { bool compression_enable; bool dsc_split; u16 compressed_bpp; u8 slice_count; } dsc_params; struct drm_dsc_config dp_dsc_cfg; /* Forward Error correction State */ bool fec_enable; }; struct intel_crtc { struct drm_crtc base; enum pipe pipe; /* * Whether the crtc and the connected output pipeline is active. Implies * that crtc->enabled is set, i.e. the current mode configuration has * some outputs connected to this crtc. */ bool active; u8 plane_ids_mask; unsigned long long enabled_power_domains; struct intel_overlay *overlay; struct intel_crtc_state *config; /* Access to these should be protected by dev_priv->irq_lock. */ bool cpu_fifo_underrun_disabled; bool pch_fifo_underrun_disabled; /* per-pipe watermark state */ struct { /* watermarks currently being used */ union { struct intel_pipe_wm ilk; struct vlv_wm_state vlv; struct g4x_wm_state g4x; } active; } wm; int scanline_offset; struct { unsigned start_vbl_count; ktime_t start_vbl_time; int min_vbl, max_vbl; int scanline_start; } debug; /* scalers available on this crtc */ int num_scalers; }; struct intel_plane { struct drm_plane base; enum i9xx_plane_id i9xx_plane; enum plane_id id; enum pipe pipe; bool has_fbc; bool has_ccs; u32 frontbuffer_bit; struct { u32 base, cntl, size; } cursor; /* * NOTE: Do not place new plane state fields here (e.g., when adding * new plane properties). New runtime state should now be placed in * the intel_plane_state structure and accessed via plane_state. */ unsigned int (*max_stride)(struct intel_plane *plane, u32 pixel_format, u64 modifier, unsigned int rotation); void (*update_plane)(struct intel_plane *plane, const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state); void (*update_slave)(struct intel_plane *plane, const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state); void (*disable_plane)(struct intel_plane *plane, const struct intel_crtc_state *crtc_state); bool (*get_hw_state)(struct intel_plane *plane, enum pipe *pipe); int (*check_plane)(struct intel_crtc_state *crtc_state, struct intel_plane_state *plane_state); }; struct intel_watermark_params { u16 fifo_size; u16 max_wm; u8 default_wm; u8 guard_size; u8 cacheline_size; }; struct cxsr_latency { bool is_desktop : 1; bool is_ddr3 : 1; u16 fsb_freq; u16 mem_freq; u16 display_sr; u16 display_hpll_disable; u16 cursor_sr; u16 cursor_hpll_disable; }; #define to_intel_atomic_state(x) container_of(x, struct intel_atomic_state, base) #define to_intel_crtc(x) container_of(x, struct intel_crtc, base) #define to_intel_crtc_state(x) container_of(x, struct intel_crtc_state, base) #define to_intel_connector(x) container_of(x, struct intel_connector, base) #define to_intel_encoder(x) container_of(x, struct intel_encoder, base) #define to_intel_framebuffer(x) container_of(x, struct intel_framebuffer, base) #define to_intel_plane(x) container_of(x, struct intel_plane, base) #define to_intel_plane_state(x) container_of(x, struct intel_plane_state, base) #define intel_fb_obj(x) ((x) ? to_intel_bo((x)->obj[0]) : NULL) struct intel_hdmi { i915_reg_t hdmi_reg; int ddc_bus; struct { enum drm_dp_dual_mode_type type; int max_tmds_clock; } dp_dual_mode; bool has_hdmi_sink; bool has_audio; struct intel_connector *attached_connector; struct cec_notifier *cec_notifier; }; struct intel_dp_mst_encoder; #define DP_MAX_DOWNSTREAM_PORTS 0x10 /* * enum link_m_n_set: * When platform provides two set of M_N registers for dp, we can * program them and switch between them incase of DRRS. * But When only one such register is provided, we have to program the * required divider value on that registers itself based on the DRRS state. * * M1_N1 : Program dp_m_n on M1_N1 registers * dp_m2_n2 on M2_N2 registers (If supported) * * M2_N2 : Program dp_m2_n2 on M1_N1 registers * M2_N2 registers are not supported */ enum link_m_n_set { /* Sets the m1_n1 and m2_n2 */ M1_N1 = 0, M2_N2 }; struct intel_dp_compliance_data { unsigned long edid; u8 video_pattern; u16 hdisplay, vdisplay; u8 bpc; }; struct intel_dp_compliance { unsigned long test_type; struct intel_dp_compliance_data test_data; bool test_active; int test_link_rate; u8 test_lane_count; }; struct intel_dp { i915_reg_t output_reg; u32 DP; int link_rate; u8 lane_count; u8 sink_count; bool link_mst; bool link_trained; bool has_audio; bool reset_link_params; u8 dpcd[DP_RECEIVER_CAP_SIZE]; u8 psr_dpcd[EDP_PSR_RECEIVER_CAP_SIZE]; u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS]; u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE]; u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE]; u8 fec_capable; /* source rates */ int num_source_rates; const int *source_rates; /* sink rates as reported by DP_MAX_LINK_RATE/DP_SUPPORTED_LINK_RATES */ int num_sink_rates; int sink_rates[DP_MAX_SUPPORTED_RATES]; bool use_rate_select; /* intersection of source and sink rates */ int num_common_rates; int common_rates[DP_MAX_SUPPORTED_RATES]; /* Max lane count for the current link */ int max_link_lane_count; /* Max rate for the current link */ int max_link_rate; /* sink or branch descriptor */ struct drm_dp_desc desc; struct drm_dp_aux aux; u8 train_set[4]; int panel_power_up_delay; int panel_power_down_delay; int panel_power_cycle_delay; int backlight_on_delay; int backlight_off_delay; struct delayed_work panel_vdd_work; bool want_panel_vdd; unsigned long last_power_on; unsigned long last_backlight_off; ktime_t panel_power_off_time; struct notifier_block edp_notifier; /* * Pipe whose power sequencer is currently locked into * this port. Only relevant on VLV/CHV. */ enum pipe pps_pipe; /* * Pipe currently driving the port. Used for preventing * the use of the PPS for any pipe currentrly driving * external DP as that will mess things up on VLV. */ enum pipe active_pipe; /* * Set if the sequencer may be reset due to a power transition, * requiring a reinitialization. Only relevant on BXT. */ bool pps_reset; struct edp_power_seq pps_delays; bool can_mst; /* this port supports mst */ bool is_mst; int active_mst_links; /* connector directly attached - won't be use for modeset in mst world */ struct intel_connector *attached_connector; /* mst connector list */ struct intel_dp_mst_encoder *mst_encoders[I915_MAX_PIPES]; struct drm_dp_mst_topology_mgr mst_mgr; u32 (*get_aux_clock_divider)(struct intel_dp *dp, int index); /* * This function returns the value we have to program the AUX_CTL * register with to kick off an AUX transaction. */ u32 (*get_aux_send_ctl)(struct intel_dp *dp, int send_bytes, u32 aux_clock_divider); i915_reg_t (*aux_ch_ctl_reg)(struct intel_dp *dp); i915_reg_t (*aux_ch_data_reg)(struct intel_dp *dp, int index); /* This is called before a link training is starterd */ void (*prepare_link_retrain)(struct intel_dp *intel_dp); /* Displayport compliance testing */ struct intel_dp_compliance compliance; /* Display stream compression testing */ bool force_dsc_en; }; enum lspcon_vendor { LSPCON_VENDOR_MCA, LSPCON_VENDOR_PARADE }; struct intel_lspcon { bool active; enum drm_lspcon_mode mode; enum lspcon_vendor vendor; }; struct intel_digital_port { struct intel_encoder base; u32 saved_port_bits; struct intel_dp dp; struct intel_hdmi hdmi; struct intel_lspcon lspcon; enum irqreturn (*hpd_pulse)(struct intel_digital_port *, bool); bool release_cl2_override; u8 max_lanes; /* Used for DP and ICL+ TypeC/DP and TypeC/HDMI ports. */ enum aux_ch aux_ch; enum intel_display_power_domain ddi_io_power_domain; bool tc_legacy_port:1; enum tc_port_type tc_type; void (*write_infoframe)(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, unsigned int type, const void *frame, ssize_t len); void (*read_infoframe)(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, unsigned int type, void *frame, ssize_t len); void (*set_infoframes)(struct intel_encoder *encoder, bool enable, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state); u32 (*infoframes_enabled)(struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config); }; struct intel_dp_mst_encoder { struct intel_encoder base; enum pipe pipe; struct intel_digital_port *primary; struct intel_connector *connector; }; static inline enum dpio_channel vlv_dport_to_channel(struct intel_digital_port *dport) { switch (dport->base.port) { case PORT_B: case PORT_D: return DPIO_CH0; case PORT_C: return DPIO_CH1; default: BUG(); } } static inline enum dpio_phy vlv_dport_to_phy(struct intel_digital_port *dport) { switch (dport->base.port) { case PORT_B: case PORT_C: return DPIO_PHY0; case PORT_D: return DPIO_PHY1; default: BUG(); } } static inline enum dpio_channel vlv_pipe_to_channel(enum pipe pipe) { switch (pipe) { case PIPE_A: case PIPE_C: return DPIO_CH0; case PIPE_B: return DPIO_CH1; default: BUG(); } } static inline struct intel_crtc * intel_get_crtc_for_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) { return dev_priv->pipe_to_crtc_mapping[pipe]; } static inline struct intel_crtc * intel_get_crtc_for_plane(struct drm_i915_private *dev_priv, enum i9xx_plane_id plane) { return dev_priv->plane_to_crtc_mapping[plane]; } struct intel_load_detect_pipe { struct drm_atomic_state *restore_state; }; static inline struct intel_encoder * intel_attached_encoder(struct drm_connector *connector) { return to_intel_connector(connector)->encoder; } static inline bool intel_encoder_is_dig_port(struct intel_encoder *encoder) { switch (encoder->type) { case INTEL_OUTPUT_DDI: case INTEL_OUTPUT_DP: case INTEL_OUTPUT_EDP: case INTEL_OUTPUT_HDMI: return true; default: return false; } } static inline struct intel_digital_port * enc_to_dig_port(struct drm_encoder *encoder) { struct intel_encoder *intel_encoder = to_intel_encoder(encoder); if (intel_encoder_is_dig_port(intel_encoder)) return container_of(encoder, struct intel_digital_port, base.base); else return NULL; } static inline struct intel_digital_port * conn_to_dig_port(struct intel_connector *connector) { return enc_to_dig_port(&intel_attached_encoder(&connector->base)->base); } static inline struct intel_dp_mst_encoder * enc_to_mst(struct drm_encoder *encoder) { return container_of(encoder, struct intel_dp_mst_encoder, base.base); } static inline struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder) { return &enc_to_dig_port(encoder)->dp; } static inline bool intel_encoder_is_dp(struct intel_encoder *encoder) { switch (encoder->type) { case INTEL_OUTPUT_DP: case INTEL_OUTPUT_EDP: return true; case INTEL_OUTPUT_DDI: /* Skip pure HDMI/DVI DDI encoders */ return i915_mmio_reg_valid(enc_to_intel_dp(&encoder->base)->output_reg); default: return false; } } static inline struct intel_lspcon * enc_to_intel_lspcon(struct drm_encoder *encoder) { return &enc_to_dig_port(encoder)->lspcon; } static inline struct intel_digital_port * dp_to_dig_port(struct intel_dp *intel_dp) { return container_of(intel_dp, struct intel_digital_port, dp); } static inline struct intel_lspcon * dp_to_lspcon(struct intel_dp *intel_dp) { return &dp_to_dig_port(intel_dp)->lspcon; } static inline struct drm_i915_private * dp_to_i915(struct intel_dp *intel_dp) { return to_i915(dp_to_dig_port(intel_dp)->base.base.dev); } static inline struct intel_digital_port * hdmi_to_dig_port(struct intel_hdmi *intel_hdmi) { return container_of(intel_hdmi, struct intel_digital_port, hdmi); } static inline struct intel_plane_state * intel_atomic_get_plane_state(struct intel_atomic_state *state, struct intel_plane *plane) { struct drm_plane_state *ret = drm_atomic_get_plane_state(&state->base, &plane->base); if (IS_ERR(ret)) return ERR_CAST(ret); return to_intel_plane_state(ret); } static inline struct intel_plane_state * intel_atomic_get_old_plane_state(struct intel_atomic_state *state, struct intel_plane *plane) { return to_intel_plane_state(drm_atomic_get_old_plane_state(&state->base, &plane->base)); } static inline struct intel_plane_state * intel_atomic_get_new_plane_state(struct intel_atomic_state *state, struct intel_plane *plane) { return to_intel_plane_state(drm_atomic_get_new_plane_state(&state->base, &plane->base)); } static inline struct intel_crtc_state * intel_atomic_get_old_crtc_state(struct intel_atomic_state *state, struct intel_crtc *crtc) { return to_intel_crtc_state(drm_atomic_get_old_crtc_state(&state->base, &crtc->base)); } static inline struct intel_crtc_state * intel_atomic_get_new_crtc_state(struct intel_atomic_state *state, struct intel_crtc *crtc) { return to_intel_crtc_state(drm_atomic_get_new_crtc_state(&state->base, &crtc->base)); } /* intel_display.c */ void intel_plane_destroy(struct drm_plane *plane); void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe); void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe); enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc); int vlv_get_hpll_vco(struct drm_i915_private *dev_priv); int vlv_get_cck_clock(struct drm_i915_private *dev_priv, const char *name, u32 reg, int ref_freq); int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv, const char *name, u32 reg); void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv); void lpt_disable_iclkip(struct drm_i915_private *dev_priv); void intel_init_display_hooks(struct drm_i915_private *dev_priv); unsigned int intel_fb_xy_to_linear(int x, int y, const struct intel_plane_state *state, int plane); unsigned int intel_fb_align_height(const struct drm_framebuffer *fb, int color_plane, unsigned int height); void intel_add_fb_offsets(int *x, int *y, const struct intel_plane_state *state, int plane); unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info); unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info); bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv); int intel_display_suspend(struct drm_device *dev); void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv); void intel_encoder_destroy(struct drm_encoder *encoder); struct drm_display_mode * intel_encoder_current_mode(struct intel_encoder *encoder); bool intel_port_is_combophy(struct drm_i915_private *dev_priv, enum port port); bool intel_port_is_tc(struct drm_i915_private *dev_priv, enum port port); enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port); int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv, enum pipe pipe); static inline bool intel_crtc_has_type(const struct intel_crtc_state *crtc_state, enum intel_output_type type) { return crtc_state->output_types & (1 << type); } static inline bool intel_crtc_has_dp_encoder(const struct intel_crtc_state *crtc_state) { return crtc_state->output_types & ((1 << INTEL_OUTPUT_DP) | (1 << INTEL_OUTPUT_DP_MST) | (1 << INTEL_OUTPUT_EDP)); } static inline void intel_wait_for_vblank(struct drm_i915_private *dev_priv, enum pipe pipe) { drm_wait_one_vblank(&dev_priv->drm, pipe); } static inline void intel_wait_for_vblank_if_active(struct drm_i915_private *dev_priv, int pipe) { const struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe); if (crtc->active) intel_wait_for_vblank(dev_priv, pipe); } u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc); int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp); void vlv_wait_port_ready(struct drm_i915_private *dev_priv, struct intel_digital_port *dport, unsigned int expected_mask); int intel_get_load_detect_pipe(struct drm_connector *connector, const struct drm_display_mode *mode, struct intel_load_detect_pipe *old, struct drm_modeset_acquire_ctx *ctx); void intel_release_load_detect_pipe(struct drm_connector *connector, struct intel_load_detect_pipe *old, struct drm_modeset_acquire_ctx *ctx); struct i915_vma * intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, const struct i915_ggtt_view *view, bool uses_fence, unsigned long *out_flags); void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags); struct drm_framebuffer * intel_framebuffer_create(struct drm_i915_gem_object *obj, struct drm_mode_fb_cmd2 *mode_cmd); int intel_prepare_plane_fb(struct drm_plane *plane, struct drm_plane_state *new_state); void intel_cleanup_plane_fb(struct drm_plane *plane, struct drm_plane_state *old_state); void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv, enum pipe pipe); int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe, const struct dpll *dpll); void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe); int lpt_get_iclkip(struct drm_i915_private *dev_priv); bool intel_fuzzy_clock_check(int clock1, int clock2); /* modesetting asserts */ void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe); void assert_pll(struct drm_i915_private *dev_priv, enum pipe pipe, bool state); #define assert_pll_enabled(d, p) assert_pll(d, p, true) #define assert_pll_disabled(d, p) assert_pll(d, p, false) void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state); #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true) #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false) void assert_fdi_rx_pll(struct drm_i915_private *dev_priv, enum pipe pipe, bool state); #define assert_fdi_rx_pll_enabled(d, p) assert_fdi_rx_pll(d, p, true) #define assert_fdi_rx_pll_disabled(d, p) assert_fdi_rx_pll(d, p, false) void assert_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, bool state); #define assert_pipe_enabled(d, p) assert_pipe(d, p, true) #define assert_pipe_disabled(d, p) assert_pipe(d, p, false) void intel_prepare_reset(struct drm_i915_private *dev_priv); void intel_finish_reset(struct drm_i915_private *dev_priv); void intel_dp_get_m_n(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config); void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n); void intel_dp_ycbcr_420_enable(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state); int intel_dotclock_calculate(int link_freq, const struct intel_link_m_n *m_n); bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, struct dpll *best_clock); int chv_calc_dpll_params(int refclk, struct dpll *pll_clock); bool intel_crtc_active(struct intel_crtc *crtc); bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state); void hsw_enable_ips(const struct intel_crtc_state *crtc_state); void hsw_disable_ips(const struct intel_crtc_state *crtc_state); enum intel_display_power_domain intel_port_to_power_domain(enum port port); enum intel_display_power_domain intel_aux_power_domain(struct intel_digital_port *dig_port); void intel_mode_from_pipe_config(struct drm_display_mode *mode, struct intel_crtc_state *pipe_config); void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state); u16 skl_scaler_calc_phase(int sub, int scale, bool chroma_center); int skl_update_scaler_crtc(struct intel_crtc_state *crtc_state); int skl_max_scale(const struct intel_crtc_state *crtc_state, u32 pixel_format); static inline u32 intel_plane_ggtt_offset(const struct intel_plane_state *state) { return i915_ggtt_offset(state->vma); } u32 glk_plane_color_ctl(const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state); u32 glk_plane_color_ctl_crtc(const struct intel_crtc_state *crtc_state); u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state); u32 skl_plane_ctl_crtc(const struct intel_crtc_state *crtc_state); u32 skl_plane_stride(const struct intel_plane_state *plane_state, int plane); int skl_check_plane_surface(struct intel_plane_state *plane_state); int i9xx_check_plane_surface(struct intel_plane_state *plane_state); int skl_format_to_fourcc(int format, bool rgb_order, bool alpha); unsigned int i9xx_plane_max_stride(struct intel_plane *plane, u32 pixel_format, u64 modifier, unsigned int rotation); int bdw_get_pipemisc_bpp(struct intel_crtc *crtc); #endif /* __INTEL_DRV_H__ */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1