Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Michal Wajdeczko | 620 | 60.08% | 12 | 35.29% |
Chris Wilson | 169 | 16.38% | 3 | 8.82% |
Alex Dai | 165 | 15.99% | 3 | 8.82% |
Fernando Pacheco | 27 | 2.62% | 2 | 5.88% |
Tvrtko A. Ursulin | 17 | 1.65% | 3 | 8.82% |
Nick Hoath | 9 | 0.87% | 2 | 5.88% |
Daniele Ceraolo Spurio | 7 | 0.68% | 2 | 5.88% |
Peter Antoine | 6 | 0.58% | 1 | 2.94% |
Arkadiusz Hiler | 5 | 0.48% | 2 | 5.88% |
Lucas De Marchi | 3 | 0.29% | 1 | 2.94% |
Ville Syrjälä | 2 | 0.19% | 1 | 2.94% |
Anusha Srivatsa | 1 | 0.10% | 1 | 2.94% |
Arun Siluvery | 1 | 0.10% | 1 | 2.94% |
Total | 1032 | 34 |
/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Vinit Azad <vinit.azad@intel.com> * Ben Widawsky <ben@bwidawsk.net> * Dave Gordon <david.s.gordon@intel.com> * Alex Dai <yu.dai@intel.com> */ #include "intel_guc_fw.h" #include "i915_drv.h" #define __MAKE_GUC_FW_PATH(KEY) \ "i915/" \ __stringify(KEY##_GUC_FW_PREFIX) "_guc_" \ __stringify(KEY##_GUC_FW_MAJOR) "." \ __stringify(KEY##_GUC_FW_MINOR) "." \ __stringify(KEY##_GUC_FW_PATCH) ".bin" #define SKL_GUC_FW_PREFIX skl #define SKL_GUC_FW_MAJOR 32 #define SKL_GUC_FW_MINOR 0 #define SKL_GUC_FW_PATCH 3 #define SKL_GUC_FIRMWARE_PATH __MAKE_GUC_FW_PATH(SKL) MODULE_FIRMWARE(SKL_GUC_FIRMWARE_PATH); #define BXT_GUC_FW_PREFIX bxt #define BXT_GUC_FW_MAJOR 32 #define BXT_GUC_FW_MINOR 0 #define BXT_GUC_FW_PATCH 3 #define BXT_GUC_FIRMWARE_PATH __MAKE_GUC_FW_PATH(BXT) MODULE_FIRMWARE(BXT_GUC_FIRMWARE_PATH); #define KBL_GUC_FW_PREFIX kbl #define KBL_GUC_FW_MAJOR 32 #define KBL_GUC_FW_MINOR 0 #define KBL_GUC_FW_PATCH 3 #define KBL_GUC_FIRMWARE_PATH __MAKE_GUC_FW_PATH(KBL) MODULE_FIRMWARE(KBL_GUC_FIRMWARE_PATH); #define GLK_GUC_FW_PREFIX glk #define GLK_GUC_FW_MAJOR 32 #define GLK_GUC_FW_MINOR 0 #define GLK_GUC_FW_PATCH 3 #define GLK_GUC_FIRMWARE_PATH __MAKE_GUC_FW_PATH(GLK) MODULE_FIRMWARE(GLK_GUC_FIRMWARE_PATH); #define ICL_GUC_FW_PREFIX icl #define ICL_GUC_FW_MAJOR 32 #define ICL_GUC_FW_MINOR 0 #define ICL_GUC_FW_PATCH 3 #define ICL_GUC_FIRMWARE_PATH __MAKE_GUC_FW_PATH(ICL) MODULE_FIRMWARE(ICL_GUC_FIRMWARE_PATH); static void guc_fw_select(struct intel_uc_fw *guc_fw) { struct intel_guc *guc = container_of(guc_fw, struct intel_guc, fw); struct drm_i915_private *i915 = guc_to_i915(guc); GEM_BUG_ON(guc_fw->type != INTEL_UC_FW_TYPE_GUC); if (!HAS_GUC(i915)) return; if (i915_modparams.guc_firmware_path) { guc_fw->path = i915_modparams.guc_firmware_path; guc_fw->major_ver_wanted = 0; guc_fw->minor_ver_wanted = 0; } else if (IS_ICELAKE(i915)) { guc_fw->path = ICL_GUC_FIRMWARE_PATH; guc_fw->major_ver_wanted = ICL_GUC_FW_MAJOR; guc_fw->minor_ver_wanted = ICL_GUC_FW_MINOR; } else if (IS_GEMINILAKE(i915)) { guc_fw->path = GLK_GUC_FIRMWARE_PATH; guc_fw->major_ver_wanted = GLK_GUC_FW_MAJOR; guc_fw->minor_ver_wanted = GLK_GUC_FW_MINOR; } else if (IS_KABYLAKE(i915) || IS_COFFEELAKE(i915)) { guc_fw->path = KBL_GUC_FIRMWARE_PATH; guc_fw->major_ver_wanted = KBL_GUC_FW_MAJOR; guc_fw->minor_ver_wanted = KBL_GUC_FW_MINOR; } else if (IS_BROXTON(i915)) { guc_fw->path = BXT_GUC_FIRMWARE_PATH; guc_fw->major_ver_wanted = BXT_GUC_FW_MAJOR; guc_fw->minor_ver_wanted = BXT_GUC_FW_MINOR; } else if (IS_SKYLAKE(i915)) { guc_fw->path = SKL_GUC_FIRMWARE_PATH; guc_fw->major_ver_wanted = SKL_GUC_FW_MAJOR; guc_fw->minor_ver_wanted = SKL_GUC_FW_MINOR; } } /** * intel_guc_fw_init_early() - initializes GuC firmware struct * @guc: intel_guc struct * * On platforms with GuC selects firmware for uploading */ void intel_guc_fw_init_early(struct intel_guc *guc) { struct intel_uc_fw *guc_fw = &guc->fw; intel_uc_fw_init_early(guc_fw, INTEL_UC_FW_TYPE_GUC); guc_fw_select(guc_fw); } static void guc_prepare_xfer(struct intel_guc *guc) { struct drm_i915_private *dev_priv = guc_to_i915(guc); /* Must program this register before loading the ucode with DMA */ I915_WRITE(GUC_SHIM_CONTROL, GUC_DISABLE_SRAM_INIT_TO_ZEROES | GUC_ENABLE_READ_CACHE_LOGIC | GUC_ENABLE_MIA_CACHING | GUC_ENABLE_READ_CACHE_FOR_SRAM_DATA | GUC_ENABLE_READ_CACHE_FOR_WOPCM_DATA | GUC_ENABLE_MIA_CLOCK_GATING); if (IS_GEN9_LP(dev_priv)) I915_WRITE(GEN9LP_GT_PM_CONFIG, GT_DOORBELL_ENABLE); else I915_WRITE(GEN9_GT_PM_CONFIG, GT_DOORBELL_ENABLE); if (IS_GEN(dev_priv, 9)) { /* DOP Clock Gating Enable for GuC clocks */ I915_WRITE(GEN7_MISCCPCTL, (GEN8_DOP_CLOCK_GATE_GUC_ENABLE | I915_READ(GEN7_MISCCPCTL))); /* allows for 5us (in 10ns units) before GT can go to RC6 */ I915_WRITE(GUC_ARAT_C6DIS, 0x1FF); } } /* Copy RSA signature from the fw image to HW for verification */ static void guc_xfer_rsa(struct intel_guc *guc) { struct drm_i915_private *dev_priv = guc_to_i915(guc); struct intel_uc_fw *fw = &guc->fw; struct sg_table *pages = fw->obj->mm.pages; u32 rsa[UOS_RSA_SCRATCH_COUNT]; int i; sg_pcopy_to_buffer(pages->sgl, pages->nents, rsa, sizeof(rsa), fw->rsa_offset); for (i = 0; i < UOS_RSA_SCRATCH_COUNT; i++) I915_WRITE(UOS_RSA_SCRATCH(i), rsa[i]); } static bool guc_xfer_completed(struct intel_guc *guc, u32 *status) { struct drm_i915_private *dev_priv = guc_to_i915(guc); /* Did we complete the xfer? */ *status = I915_READ(DMA_CTRL); return !(*status & START_DMA); } /* * Read the GuC status register (GUC_STATUS) and store it in the * specified location; then return a boolean indicating whether * the value matches either of two values representing completion * of the GuC boot process. * * This is used for polling the GuC status in a wait_for() * loop below. */ static inline bool guc_ready(struct intel_guc *guc, u32 *status) { struct drm_i915_private *dev_priv = guc_to_i915(guc); u32 val = I915_READ(GUC_STATUS); u32 uk_val = val & GS_UKERNEL_MASK; *status = val; return (uk_val == GS_UKERNEL_READY) || ((val & GS_MIA_CORE_STATE) && (uk_val == GS_UKERNEL_LAPIC_DONE)); } static int guc_wait_ucode(struct intel_guc *guc) { u32 status; int ret; /* * Wait for the GuC to start up. * NB: Docs recommend not using the interrupt for completion. * Measurements indicate this should take no more than 20ms, so a * timeout here indicates that the GuC has failed and is unusable. * (Higher levels of the driver may decide to reset the GuC and * attempt the ucode load again if this happens.) */ ret = wait_for(guc_ready(guc, &status), 100); DRM_DEBUG_DRIVER("GuC status %#x\n", status); if ((status & GS_BOOTROM_MASK) == GS_BOOTROM_RSA_FAILED) { DRM_ERROR("GuC firmware signature verification failed\n"); ret = -ENOEXEC; } if (ret == 0 && !guc_xfer_completed(guc, &status)) { DRM_ERROR("GuC is ready, but the xfer %08x is incomplete\n", status); ret = -ENXIO; } return ret; } /* * Transfer the firmware image to RAM for execution by the microcontroller. * * Architecturally, the DMA engine is bidirectional, and can potentially even * transfer between GTT locations. This functionality is left out of the API * for now as there is no need for it. */ static int guc_xfer_ucode(struct intel_guc *guc) { struct drm_i915_private *dev_priv = guc_to_i915(guc); struct intel_uc_fw *guc_fw = &guc->fw; unsigned long offset; /* * The header plus uCode will be copied to WOPCM via DMA, excluding any * other components */ I915_WRITE(DMA_COPY_SIZE, guc_fw->header_size + guc_fw->ucode_size); /* Set the source address for the new blob */ offset = intel_uc_fw_ggtt_offset(guc_fw) + guc_fw->header_offset; I915_WRITE(DMA_ADDR_0_LOW, lower_32_bits(offset)); I915_WRITE(DMA_ADDR_0_HIGH, upper_32_bits(offset) & 0xFFFF); /* * Set the DMA destination. Current uCode expects the code to be * loaded at 8k; locations below this are used for the stack. */ I915_WRITE(DMA_ADDR_1_LOW, 0x2000); I915_WRITE(DMA_ADDR_1_HIGH, DMA_ADDRESS_SPACE_WOPCM); /* Finally start the DMA */ I915_WRITE(DMA_CTRL, _MASKED_BIT_ENABLE(UOS_MOVE | START_DMA)); return guc_wait_ucode(guc); } /* * Load the GuC firmware blob into the MinuteIA. */ static int guc_fw_xfer(struct intel_uc_fw *guc_fw) { struct intel_guc *guc = container_of(guc_fw, struct intel_guc, fw); struct drm_i915_private *dev_priv = guc_to_i915(guc); int ret; GEM_BUG_ON(guc_fw->type != INTEL_UC_FW_TYPE_GUC); intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL); guc_prepare_xfer(guc); /* * Note that GuC needs the CSS header plus uKernel code to be copied * by the DMA engine in one operation, whereas the RSA signature is * loaded via MMIO. */ guc_xfer_rsa(guc); ret = guc_xfer_ucode(guc); intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL); return ret; } /** * intel_guc_fw_upload() - load GuC uCode to device * @guc: intel_guc structure * * Called from intel_uc_init_hw() during driver load, resume from sleep and * after a GPU reset. * * The firmware image should have already been fetched into memory, so only * check that fetch succeeded, and then transfer the image to the h/w. * * Return: non-zero code on error */ int intel_guc_fw_upload(struct intel_guc *guc) { return intel_uc_fw_upload(&guc->fw, guc_fw_xfer); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1