Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Michal Wajdeczko | 419 | 28.68% | 7 | 21.21% |
Dave Gordon | 401 | 27.45% | 2 | 6.06% |
Alex Dai | 291 | 19.92% | 8 | 24.24% |
Michał Winiarski | 122 | 8.35% | 1 | 3.03% |
Sagar Arun Kamble | 85 | 5.82% | 1 | 3.03% |
Oscar Mateo | 57 | 3.90% | 4 | 12.12% |
Daniele Ceraolo Spurio | 33 | 2.26% | 3 | 9.09% |
Arkadiusz Hiler | 20 | 1.37% | 1 | 3.03% |
Joonas Lahtinen | 14 | 0.96% | 1 | 3.03% |
Piotr Piórkowski | 7 | 0.48% | 1 | 3.03% |
Anusha Srivatsa | 7 | 0.48% | 2 | 6.06% |
Michel Thierry | 4 | 0.27% | 1 | 3.03% |
Jani Nikula | 1 | 0.07% | 1 | 3.03% |
Total | 1461 | 33 |
/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #ifndef _INTEL_GUC_FWIF_H #define _INTEL_GUC_FWIF_H #define GUC_CLIENT_PRIORITY_KMD_HIGH 0 #define GUC_CLIENT_PRIORITY_HIGH 1 #define GUC_CLIENT_PRIORITY_KMD_NORMAL 2 #define GUC_CLIENT_PRIORITY_NORMAL 3 #define GUC_CLIENT_PRIORITY_NUM 4 #define GUC_MAX_STAGE_DESCRIPTORS 1024 #define GUC_INVALID_STAGE_ID GUC_MAX_STAGE_DESCRIPTORS #define GUC_RENDER_ENGINE 0 #define GUC_VIDEO_ENGINE 1 #define GUC_BLITTER_ENGINE 2 #define GUC_VIDEOENHANCE_ENGINE 3 #define GUC_VIDEO_ENGINE2 4 #define GUC_MAX_ENGINES_NUM (GUC_VIDEO_ENGINE2 + 1) /* * XXX: Beware that Gen9 firmware 32.x uses wrong definition for * GUC_MAX_INSTANCES_PER_CLASS (1) but this is harmless for us now * as we are not enabling GuC submission mode where this will be used */ #define GUC_MAX_ENGINE_CLASSES 5 #define GUC_MAX_INSTANCES_PER_CLASS 4 #define GUC_DOORBELL_INVALID 256 #define GUC_DB_SIZE (PAGE_SIZE) #define GUC_WQ_SIZE (PAGE_SIZE * 2) /* Work queue item header definitions */ #define WQ_STATUS_ACTIVE 1 #define WQ_STATUS_SUSPENDED 2 #define WQ_STATUS_CMD_ERROR 3 #define WQ_STATUS_ENGINE_ID_NOT_USED 4 #define WQ_STATUS_SUSPENDED_FROM_RESET 5 #define WQ_TYPE_SHIFT 0 #define WQ_TYPE_BATCH_BUF (0x1 << WQ_TYPE_SHIFT) #define WQ_TYPE_PSEUDO (0x2 << WQ_TYPE_SHIFT) #define WQ_TYPE_INORDER (0x3 << WQ_TYPE_SHIFT) #define WQ_TYPE_NOOP (0x4 << WQ_TYPE_SHIFT) #define WQ_TARGET_SHIFT 10 #define WQ_LEN_SHIFT 16 #define WQ_NO_WCFLUSH_WAIT (1 << 27) #define WQ_PRESENT_WORKLOAD (1 << 28) #define WQ_RING_TAIL_SHIFT 20 #define WQ_RING_TAIL_MAX 0x7FF /* 2^11 QWords */ #define WQ_RING_TAIL_MASK (WQ_RING_TAIL_MAX << WQ_RING_TAIL_SHIFT) #define GUC_STAGE_DESC_ATTR_ACTIVE BIT(0) #define GUC_STAGE_DESC_ATTR_PENDING_DB BIT(1) #define GUC_STAGE_DESC_ATTR_KERNEL BIT(2) #define GUC_STAGE_DESC_ATTR_PREEMPT BIT(3) #define GUC_STAGE_DESC_ATTR_RESET BIT(4) #define GUC_STAGE_DESC_ATTR_WQLOCKED BIT(5) #define GUC_STAGE_DESC_ATTR_PCH BIT(6) #define GUC_STAGE_DESC_ATTR_TERMINATED BIT(7) /* New GuC control data */ #define GUC_CTL_CTXINFO 0 #define GUC_CTL_CTXNUM_IN16_SHIFT 0 #define GUC_CTL_BASE_ADDR_SHIFT 12 #define GUC_CTL_LOG_PARAMS 1 #define GUC_LOG_VALID (1 << 0) #define GUC_LOG_NOTIFY_ON_HALF_FULL (1 << 1) #define GUC_LOG_ALLOC_IN_MEGABYTE (1 << 3) #define GUC_LOG_CRASH_SHIFT 4 #define GUC_LOG_CRASH_MASK (0x3 << GUC_LOG_CRASH_SHIFT) #define GUC_LOG_DPC_SHIFT 6 #define GUC_LOG_DPC_MASK (0x7 << GUC_LOG_DPC_SHIFT) #define GUC_LOG_ISR_SHIFT 9 #define GUC_LOG_ISR_MASK (0x7 << GUC_LOG_ISR_SHIFT) #define GUC_LOG_BUF_ADDR_SHIFT 12 #define GUC_CTL_WA 2 #define GUC_CTL_FEATURE 3 #define GUC_CTL_DISABLE_SCHEDULER (1 << 14) #define GUC_CTL_DEBUG 4 #define GUC_LOG_VERBOSITY_SHIFT 0 #define GUC_LOG_VERBOSITY_LOW (0 << GUC_LOG_VERBOSITY_SHIFT) #define GUC_LOG_VERBOSITY_MED (1 << GUC_LOG_VERBOSITY_SHIFT) #define GUC_LOG_VERBOSITY_HIGH (2 << GUC_LOG_VERBOSITY_SHIFT) #define GUC_LOG_VERBOSITY_ULTRA (3 << GUC_LOG_VERBOSITY_SHIFT) /* Verbosity range-check limits, without the shift */ #define GUC_LOG_VERBOSITY_MIN 0 #define GUC_LOG_VERBOSITY_MAX 3 #define GUC_LOG_VERBOSITY_MASK 0x0000000f #define GUC_LOG_DESTINATION_MASK (3 << 4) #define GUC_LOG_DISABLED (1 << 6) #define GUC_PROFILE_ENABLED (1 << 7) #define GUC_CTL_ADS 5 #define GUC_ADS_ADDR_SHIFT 1 #define GUC_ADS_ADDR_MASK (0xFFFFF << GUC_ADS_ADDR_SHIFT) #define GUC_CTL_MAX_DWORDS (SOFT_SCRATCH_COUNT - 2) /* [1..14] */ /** * DOC: GuC Firmware Layout * * The GuC firmware layout looks like this: * * +-------------------------------+ * | uc_css_header | * | | * | contains major/minor version | * +-------------------------------+ * | uCode | * +-------------------------------+ * | RSA signature | * +-------------------------------+ * | modulus key | * +-------------------------------+ * | exponent val | * +-------------------------------+ * * The firmware may or may not have modulus key and exponent data. The header, * uCode and RSA signature are must-have components that will be used by driver. * Length of each components, which is all in dwords, can be found in header. * In the case that modulus and exponent are not present in fw, a.k.a truncated * image, the length value still appears in header. * * Driver will do some basic fw size validation based on the following rules: * * 1. Header, uCode and RSA are must-have components. * 2. All firmware components, if they present, are in the sequence illustrated * in the layout table above. * 3. Length info of each component can be found in header, in dwords. * 4. Modulus and exponent key are not required by driver. They may not appear * in fw. So driver will load a truncated firmware in this case. * * HuC firmware layout is same as GuC firmware. * Only HuC version information is saved in a different way. */ struct uc_css_header { u32 module_type; /* header_size includes all non-uCode bits, including css_header, rsa * key, modulus key and exponent data. */ u32 header_size_dw; u32 header_version; u32 module_id; u32 module_vendor; u32 date; #define CSS_DATE_DAY (0xFF << 0) #define CSS_DATE_MONTH (0xFF << 8) #define CSS_DATE_YEAR (0xFFFF << 16) u32 size_dw; /* uCode plus header_size_dw */ u32 key_size_dw; u32 modulus_size_dw; u32 exponent_size_dw; u32 time; #define CSS_TIME_HOUR (0xFF << 0) #define CSS_DATE_MIN (0xFF << 8) #define CSS_DATE_SEC (0xFFFF << 16) char username[8]; char buildnumber[12]; u32 sw_version; #define CSS_SW_VERSION_GUC_MAJOR (0xFF << 16) #define CSS_SW_VERSION_GUC_MINOR (0xFF << 8) #define CSS_SW_VERSION_GUC_PATCH (0xFF << 0) #define CSS_SW_VERSION_HUC_MAJOR (0xFFFF << 16) #define CSS_SW_VERSION_HUC_MINOR (0xFFFF << 0) u32 reserved[14]; u32 header_info; } __packed; /* Work item for submitting workloads into work queue of GuC. */ struct guc_wq_item { u32 header; u32 context_desc; u32 submit_element_info; u32 fence_id; } __packed; struct guc_process_desc { u32 stage_id; u64 db_base_addr; u32 head; u32 tail; u32 error_offset; u64 wq_base_addr; u32 wq_size_bytes; u32 wq_status; u32 engine_presence; u32 priority; u32 reserved[30]; } __packed; /* engine id and context id is packed into guc_execlist_context.context_id*/ #define GUC_ELC_CTXID_OFFSET 0 #define GUC_ELC_ENGINE_OFFSET 29 /* The execlist context including software and HW information */ struct guc_execlist_context { u32 context_desc; u32 context_id; u32 ring_status; u32 ring_lrca; u32 ring_begin; u32 ring_end; u32 ring_next_free_location; u32 ring_current_tail_pointer_value; u8 engine_state_submit_value; u8 engine_state_wait_value; u16 pagefault_count; u16 engine_submit_queue_count; } __packed; /* * This structure describes a stage set arranged for a particular communication * between uKernel (GuC) and Driver (KMD). Technically, this is known as a * "GuC Context descriptor" in the specs, but we use the term "stage descriptor" * to avoid confusion with all the other things already named "context" in the * driver. A static pool of these descriptors are stored inside a GEM object * (stage_desc_pool) which is held for the entire lifetime of our interaction * with the GuC, being allocated before the GuC is loaded with its firmware. */ struct guc_stage_desc { u32 sched_common_area; u32 stage_id; u32 pas_id; u8 engines_used; u64 db_trigger_cpu; u32 db_trigger_uk; u64 db_trigger_phy; u16 db_id; struct guc_execlist_context lrc[GUC_MAX_ENGINES_NUM]; u8 attribute; u32 priority; u32 wq_sampled_tail_offset; u32 wq_total_submit_enqueues; u32 process_desc; u32 wq_addr; u32 wq_size; u32 engine_presence; u8 engine_suspended; u8 reserved0[3]; u64 reserved1[1]; u64 desc_private; } __packed; /** * DOC: CTB based communication * * The CTB (command transport buffer) communication between Host and GuC * is based on u32 data stream written to the shared buffer. One buffer can * be used to transmit data only in one direction (one-directional channel). * * Current status of the each buffer is stored in the buffer descriptor. * Buffer descriptor holds tail and head fields that represents active data * stream. The tail field is updated by the data producer (sender), and head * field is updated by the data consumer (receiver):: * * +------------+ * | DESCRIPTOR | +=================+============+========+ * +============+ | | MESSAGE(s) | | * | address |--------->+=================+============+========+ * +------------+ * | head | ^-----head--------^ * +------------+ * | tail | ^---------tail-----------------^ * +------------+ * | size | ^---------------size--------------------^ * +------------+ * * Each message in data stream starts with the single u32 treated as a header, * followed by optional set of u32 data that makes message specific payload:: * * +------------+---------+---------+---------+ * | MESSAGE | * +------------+---------+---------+---------+ * | msg[0] | [1] | ... | [n-1] | * +------------+---------+---------+---------+ * | MESSAGE | MESSAGE PAYLOAD | * + HEADER +---------+---------+---------+ * | | 0 | ... | n | * +======+=====+=========+=========+=========+ * | 31:16| code| | | | * +------+-----+ | | | * | 15:5|flags| | | | * +------+-----+ | | | * | 4:0| len| | | | * +------+-----+---------+---------+---------+ * * ^-------------len-------------^ * * The message header consists of: * * - **len**, indicates length of the message payload (in u32) * - **code**, indicates message code * - **flags**, holds various bits to control message handling */ /* * Describes single command transport buffer. * Used by both guc-master and clients. */ struct guc_ct_buffer_desc { u32 addr; /* gfx address */ u64 host_private; /* host private data */ u32 size; /* size in bytes */ u32 head; /* offset updated by GuC*/ u32 tail; /* offset updated by owner */ u32 is_in_error; /* error indicator */ u32 fence; /* fence updated by GuC */ u32 status; /* status updated by GuC */ u32 owner; /* id of the channel owner */ u32 owner_sub_id; /* owner-defined field for extra tracking */ u32 reserved[5]; } __packed; /* Type of command transport buffer */ #define INTEL_GUC_CT_BUFFER_TYPE_SEND 0x0u #define INTEL_GUC_CT_BUFFER_TYPE_RECV 0x1u /* * Definition of the command transport message header (DW0) * * bit[4..0] message len (in dwords) * bit[7..5] reserved * bit[8] response (G2H only) * bit[8] write fence to desc (H2G only) * bit[9] write status to H2G buff (H2G only) * bit[10] send status back via G2H (H2G only) * bit[15..11] reserved * bit[31..16] action code */ #define GUC_CT_MSG_LEN_SHIFT 0 #define GUC_CT_MSG_LEN_MASK 0x1F #define GUC_CT_MSG_IS_RESPONSE (1 << 8) #define GUC_CT_MSG_WRITE_FENCE_TO_DESC (1 << 8) #define GUC_CT_MSG_WRITE_STATUS_TO_BUFF (1 << 9) #define GUC_CT_MSG_SEND_STATUS (1 << 10) #define GUC_CT_MSG_ACTION_SHIFT 16 #define GUC_CT_MSG_ACTION_MASK 0xFFFF #define GUC_FORCEWAKE_RENDER (1 << 0) #define GUC_FORCEWAKE_MEDIA (1 << 1) #define GUC_POWER_UNSPECIFIED 0 #define GUC_POWER_D0 1 #define GUC_POWER_D1 2 #define GUC_POWER_D2 3 #define GUC_POWER_D3 4 /* Scheduling policy settings */ /* Reset engine upon preempt failure */ #define POLICY_RESET_ENGINE (1<<0) /* Preempt to idle on quantum expiry */ #define POLICY_PREEMPT_TO_IDLE (1<<1) #define POLICY_MAX_NUM_WI 15 #define POLICY_DEFAULT_DPC_PROMOTE_TIME_US 500000 #define POLICY_DEFAULT_EXECUTION_QUANTUM_US 1000000 #define POLICY_DEFAULT_PREEMPTION_TIME_US 500000 #define POLICY_DEFAULT_FAULT_TIME_US 250000 struct guc_policy { /* Time for one workload to execute. (in micro seconds) */ u32 execution_quantum; /* Time to wait for a preemption request to completed before issuing a * reset. (in micro seconds). */ u32 preemption_time; /* How much time to allow to run after the first fault is observed. * Then preempt afterwards. (in micro seconds) */ u32 fault_time; u32 policy_flags; u32 reserved[8]; } __packed; struct guc_policies { struct guc_policy policy[GUC_CLIENT_PRIORITY_NUM][GUC_MAX_ENGINE_CLASSES]; u32 submission_queue_depth[GUC_MAX_ENGINE_CLASSES]; /* In micro seconds. How much time to allow before DPC processing is * called back via interrupt (to prevent DPC queue drain starving). * Typically 1000s of micro seconds (example only, not granularity). */ u32 dpc_promote_time; /* Must be set to take these new values. */ u32 is_valid; /* Max number of WIs to process per call. A large value may keep CS * idle. */ u32 max_num_work_items; u32 reserved[4]; } __packed; /* GuC MMIO reg state struct */ #define GUC_REGSET_MAX_REGISTERS 64 #define GUC_S3_SAVE_SPACE_PAGES 10 struct guc_mmio_reg { u32 offset; u32 value; u32 flags; #define GUC_REGSET_MASKED (1 << 0) } __packed; struct guc_mmio_regset { struct guc_mmio_reg registers[GUC_REGSET_MAX_REGISTERS]; u32 values_valid; u32 number_of_registers; } __packed; /* GuC register sets */ struct guc_mmio_reg_state { struct guc_mmio_regset engine_reg[GUC_MAX_ENGINE_CLASSES][GUC_MAX_INSTANCES_PER_CLASS]; u32 reserved[98]; } __packed; /* HW info */ struct guc_gt_system_info { u32 slice_enabled; u32 rcs_enabled; u32 reserved0; u32 bcs_enabled; u32 vdbox_enable_mask; u32 vdbox_sfc_support_mask; u32 vebox_enable_mask; u32 reserved[9]; } __packed; /* Clients info */ struct guc_ct_pool_entry { struct guc_ct_buffer_desc desc; u32 reserved[7]; } __packed; #define GUC_CT_POOL_SIZE 2 struct guc_clients_info { u32 clients_num; u32 reserved0[13]; u32 ct_pool_addr; u32 ct_pool_count; u32 reserved[4]; } __packed; /* GuC Additional Data Struct */ struct guc_ads { u32 reg_state_addr; u32 reg_state_buffer; u32 scheduler_policies; u32 gt_system_info; u32 clients_info; u32 control_data; u32 golden_context_lrca[GUC_MAX_ENGINE_CLASSES]; u32 eng_state_size[GUC_MAX_ENGINE_CLASSES]; u32 reserved[16]; } __packed; /* GuC logging structures */ enum guc_log_buffer_type { GUC_ISR_LOG_BUFFER, GUC_DPC_LOG_BUFFER, GUC_CRASH_DUMP_LOG_BUFFER, GUC_MAX_LOG_BUFFER }; /** * struct guc_log_buffer_state - GuC log buffer state * * Below state structure is used for coordination of retrieval of GuC firmware * logs. Separate state is maintained for each log buffer type. * read_ptr points to the location where i915 read last in log buffer and * is read only for GuC firmware. write_ptr is incremented by GuC with number * of bytes written for each log entry and is read only for i915. * When any type of log buffer becomes half full, GuC sends a flush interrupt. * GuC firmware expects that while it is writing to 2nd half of the buffer, * first half would get consumed by Host and then get a flush completed * acknowledgment from Host, so that it does not end up doing any overwrite * causing loss of logs. So when buffer gets half filled & i915 has requested * for interrupt, GuC will set flush_to_file field, set the sampled_write_ptr * to the value of write_ptr and raise the interrupt. * On receiving the interrupt i915 should read the buffer, clear flush_to_file * field and also update read_ptr with the value of sample_write_ptr, before * sending an acknowledgment to GuC. marker & version fields are for internal * usage of GuC and opaque to i915. buffer_full_cnt field is incremented every * time GuC detects the log buffer overflow. */ struct guc_log_buffer_state { u32 marker[2]; u32 read_ptr; u32 write_ptr; u32 size; u32 sampled_write_ptr; union { struct { u32 flush_to_file:1; u32 buffer_full_cnt:4; u32 reserved:27; }; u32 flags; }; u32 version; } __packed; struct guc_ctx_report { u32 report_return_status; u32 reserved1[64]; u32 affected_count; u32 reserved2[2]; } __packed; /* GuC Shared Context Data Struct */ struct guc_shared_ctx_data { u32 addr_of_last_preempted_data_low; u32 addr_of_last_preempted_data_high; u32 addr_of_last_preempted_data_high_tmp; u32 padding; u32 is_mapped_to_proxy; u32 proxy_ctx_id; u32 engine_reset_ctx_id; u32 media_reset_count; u32 reserved1[8]; u32 uk_last_ctx_switch_reason; u32 was_reset; u32 lrca_gpu_addr; u64 execlist_ctx; u32 reserved2[66]; struct guc_ctx_report preempt_ctx_report[GUC_MAX_ENGINES_NUM]; } __packed; /** * DOC: MMIO based communication * * The MMIO based communication between Host and GuC uses software scratch * registers, where first register holds data treated as message header, * and other registers are used to hold message payload. * * For Gen9+, GuC uses software scratch registers 0xC180-0xC1B8, * but no H2G command takes more than 8 parameters and the GuC FW * itself uses an 8-element array to store the H2G message. * * +-----------+---------+---------+---------+ * | MMIO[0] | MMIO[1] | ... | MMIO[n] | * +-----------+---------+---------+---------+ * | header | optional payload | * +======+====+=========+=========+=========+ * | 31:28|type| | | | * +------+----+ | | | * | 27:16|data| | | | * +------+----+ | | | * | 15:0|code| | | | * +------+----+---------+---------+---------+ * * The message header consists of: * * - **type**, indicates message type * - **code**, indicates message code, is specific for **type** * - **data**, indicates message data, optional, depends on **code** * * The following message **types** are supported: * * - **REQUEST**, indicates Host-to-GuC request, requested GuC action code * must be priovided in **code** field. Optional action specific parameters * can be provided in remaining payload registers or **data** field. * * - **RESPONSE**, indicates GuC-to-Host response from earlier GuC request, * action response status will be provided in **code** field. Optional * response data can be returned in remaining payload registers or **data** * field. */ #define GUC_MAX_MMIO_MSG_LEN 8 #define INTEL_GUC_MSG_TYPE_SHIFT 28 #define INTEL_GUC_MSG_TYPE_MASK (0xF << INTEL_GUC_MSG_TYPE_SHIFT) #define INTEL_GUC_MSG_DATA_SHIFT 16 #define INTEL_GUC_MSG_DATA_MASK (0xFFF << INTEL_GUC_MSG_DATA_SHIFT) #define INTEL_GUC_MSG_CODE_SHIFT 0 #define INTEL_GUC_MSG_CODE_MASK (0xFFFF << INTEL_GUC_MSG_CODE_SHIFT) #define __INTEL_GUC_MSG_GET(T, m) \ (((m) & INTEL_GUC_MSG_ ## T ## _MASK) >> INTEL_GUC_MSG_ ## T ## _SHIFT) #define INTEL_GUC_MSG_TO_TYPE(m) __INTEL_GUC_MSG_GET(TYPE, m) #define INTEL_GUC_MSG_TO_DATA(m) __INTEL_GUC_MSG_GET(DATA, m) #define INTEL_GUC_MSG_TO_CODE(m) __INTEL_GUC_MSG_GET(CODE, m) enum intel_guc_msg_type { INTEL_GUC_MSG_TYPE_REQUEST = 0x0, INTEL_GUC_MSG_TYPE_RESPONSE = 0xF, }; #define __INTEL_GUC_MSG_TYPE_IS(T, m) \ (INTEL_GUC_MSG_TO_TYPE(m) == INTEL_GUC_MSG_TYPE_ ## T) #define INTEL_GUC_MSG_IS_REQUEST(m) __INTEL_GUC_MSG_TYPE_IS(REQUEST, m) #define INTEL_GUC_MSG_IS_RESPONSE(m) __INTEL_GUC_MSG_TYPE_IS(RESPONSE, m) enum intel_guc_action { INTEL_GUC_ACTION_DEFAULT = 0x0, INTEL_GUC_ACTION_REQUEST_PREEMPTION = 0x2, INTEL_GUC_ACTION_REQUEST_ENGINE_RESET = 0x3, INTEL_GUC_ACTION_ALLOCATE_DOORBELL = 0x10, INTEL_GUC_ACTION_DEALLOCATE_DOORBELL = 0x20, INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE = 0x30, INTEL_GUC_ACTION_FORCE_LOG_BUFFER_FLUSH = 0x302, INTEL_GUC_ACTION_ENTER_S_STATE = 0x501, INTEL_GUC_ACTION_EXIT_S_STATE = 0x502, INTEL_GUC_ACTION_SLPC_REQUEST = 0x3003, INTEL_GUC_ACTION_SAMPLE_FORCEWAKE = 0x3005, INTEL_GUC_ACTION_AUTHENTICATE_HUC = 0x4000, INTEL_GUC_ACTION_REGISTER_COMMAND_TRANSPORT_BUFFER = 0x4505, INTEL_GUC_ACTION_DEREGISTER_COMMAND_TRANSPORT_BUFFER = 0x4506, INTEL_GUC_ACTION_UK_LOG_ENABLE_LOGGING = 0x0E000, INTEL_GUC_ACTION_LIMIT }; enum intel_guc_preempt_options { INTEL_GUC_PREEMPT_OPTION_DROP_WORK_Q = 0x4, INTEL_GUC_PREEMPT_OPTION_DROP_SUBMIT_Q = 0x8, }; enum intel_guc_report_status { INTEL_GUC_REPORT_STATUS_UNKNOWN = 0x0, INTEL_GUC_REPORT_STATUS_ACKED = 0x1, INTEL_GUC_REPORT_STATUS_ERROR = 0x2, INTEL_GUC_REPORT_STATUS_COMPLETE = 0x4, }; enum intel_guc_sleep_state_status { INTEL_GUC_SLEEP_STATE_SUCCESS = 0x1, INTEL_GUC_SLEEP_STATE_PREEMPT_TO_IDLE_FAILED = 0x2, INTEL_GUC_SLEEP_STATE_ENGINE_RESET_FAILED = 0x3 #define INTEL_GUC_SLEEP_STATE_INVALID_MASK 0x80000000 }; #define GUC_LOG_CONTROL_LOGGING_ENABLED (1 << 0) #define GUC_LOG_CONTROL_VERBOSITY_SHIFT 4 #define GUC_LOG_CONTROL_VERBOSITY_MASK (0xF << GUC_LOG_CONTROL_VERBOSITY_SHIFT) #define GUC_LOG_CONTROL_DEFAULT_LOGGING (1 << 8) enum intel_guc_response_status { INTEL_GUC_RESPONSE_STATUS_SUCCESS = 0x0, INTEL_GUC_RESPONSE_STATUS_GENERIC_FAIL = 0xF000, }; #define INTEL_GUC_MSG_IS_RESPONSE_SUCCESS(m) \ (typecheck(u32, (m)) && \ ((m) & (INTEL_GUC_MSG_TYPE_MASK | INTEL_GUC_MSG_CODE_MASK)) == \ ((INTEL_GUC_MSG_TYPE_RESPONSE << INTEL_GUC_MSG_TYPE_SHIFT) | \ (INTEL_GUC_RESPONSE_STATUS_SUCCESS << INTEL_GUC_MSG_CODE_SHIFT))) /* This action will be programmed in C1BC - SOFT_SCRATCH_15_REG */ enum intel_guc_recv_message { INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED = BIT(1), INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER = BIT(3) }; #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1