Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jeykumar Sankaran | 9660 | 96.71% | 12 | 37.50% |
Sean Paul | 277 | 2.77% | 14 | 43.75% |
Jordan Crouse | 40 | 0.40% | 2 | 6.25% |
Shubhashree Dhar | 8 | 0.08% | 1 | 3.12% |
Thomas Gleixner | 2 | 0.02% | 1 | 3.12% |
Daniel Vetter | 1 | 0.01% | 1 | 3.12% |
Colin Ian King | 1 | 0.01% | 1 | 3.12% |
Total | 9989 | 32 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved. * Copyright (C) 2013 Red Hat * Author: Rob Clark <robdclark@gmail.com> */ #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ #include <linux/kthread.h> #include <linux/debugfs.h> #include <linux/seq_file.h> #include "msm_drv.h" #include "dpu_kms.h" #include <drm/drm_crtc.h> #include <drm/drm_probe_helper.h> #include "dpu_hwio.h" #include "dpu_hw_catalog.h" #include "dpu_hw_intf.h" #include "dpu_hw_ctl.h" #include "dpu_formats.h" #include "dpu_encoder_phys.h" #include "dpu_crtc.h" #include "dpu_trace.h" #include "dpu_core_irq.h" #define DPU_DEBUG_ENC(e, fmt, ...) DPU_DEBUG("enc%d " fmt,\ (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\ (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) #define DPU_DEBUG_PHYS(p, fmt, ...) DPU_DEBUG("enc%d intf%d pp%d " fmt,\ (p) ? (p)->parent->base.id : -1, \ (p) ? (p)->intf_idx - INTF_0 : -1, \ (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \ ##__VA_ARGS__) #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\ (p) ? (p)->parent->base.id : -1, \ (p) ? (p)->intf_idx - INTF_0 : -1, \ (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \ ##__VA_ARGS__) /* * Two to anticipate panels that can do cmd/vid dynamic switching * plan is to create all possible physical encoder types, and switch between * them at runtime */ #define NUM_PHYS_ENCODER_TYPES 2 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \ (MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES) #define MAX_CHANNELS_PER_ENC 2 #define IDLE_SHORT_TIMEOUT 1 #define MAX_VDISPLAY_SPLIT 1080 /* timeout in frames waiting for frame done */ #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5 /** * enum dpu_enc_rc_events - events for resource control state machine * @DPU_ENC_RC_EVENT_KICKOFF: * This event happens at NORMAL priority. * Event that signals the start of the transfer. When this event is * received, enable MDP/DSI core clocks. Regardless of the previous * state, the resource should be in ON state at the end of this event. * @DPU_ENC_RC_EVENT_FRAME_DONE: * This event happens at INTERRUPT level. * Event signals the end of the data transfer after the PP FRAME_DONE * event. At the end of this event, a delayed work is scheduled to go to * IDLE_PC state after IDLE_TIMEOUT time. * @DPU_ENC_RC_EVENT_PRE_STOP: * This event happens at NORMAL priority. * This event, when received during the ON state, leave the RC STATE * in the PRE_OFF state. It should be followed by the STOP event as * part of encoder disable. * If received during IDLE or OFF states, it will do nothing. * @DPU_ENC_RC_EVENT_STOP: * This event happens at NORMAL priority. * When this event is received, disable all the MDP/DSI core clocks, and * disable IRQs. It should be called from the PRE_OFF or IDLE states. * IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing. * PRE_OFF is expected when PRE_STOP was executed during the ON state. * Resource state should be in OFF at the end of the event. * @DPU_ENC_RC_EVENT_ENTER_IDLE: * This event happens at NORMAL priority from a work item. * Event signals that there were no frame updates for IDLE_TIMEOUT time. * This would disable MDP/DSI core clocks and change the resource state * to IDLE. */ enum dpu_enc_rc_events { DPU_ENC_RC_EVENT_KICKOFF = 1, DPU_ENC_RC_EVENT_FRAME_DONE, DPU_ENC_RC_EVENT_PRE_STOP, DPU_ENC_RC_EVENT_STOP, DPU_ENC_RC_EVENT_ENTER_IDLE }; /* * enum dpu_enc_rc_states - states that the resource control maintains * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state * @DPU_ENC_RC_STATE_ON: Resource is in ON state * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state */ enum dpu_enc_rc_states { DPU_ENC_RC_STATE_OFF, DPU_ENC_RC_STATE_PRE_OFF, DPU_ENC_RC_STATE_ON, DPU_ENC_RC_STATE_IDLE }; /** * struct dpu_encoder_virt - virtual encoder. Container of one or more physical * encoders. Virtual encoder manages one "logical" display. Physical * encoders manage one intf block, tied to a specific panel/sub-panel. * Virtual encoder defers as much as possible to the physical encoders. * Virtual encoder registers itself with the DRM Framework as the encoder. * @base: drm_encoder base class for registration with DRM * @enc_spinlock: Virtual-Encoder-Wide Spin Lock for IRQ purposes * @bus_scaling_client: Client handle to the bus scaling interface * @enabled: True if the encoder is active, protected by enc_lock * @num_phys_encs: Actual number of physical encoders contained. * @phys_encs: Container of physical encoders managed. * @cur_master: Pointer to the current master in this mode. Optimization * Only valid after enable. Cleared as disable. * @hw_pp Handle to the pingpong blocks used for the display. No. * pingpong blocks can be different than num_phys_encs. * @intfs_swapped Whether or not the phys_enc interfaces have been swapped * for partial update right-only cases, such as pingpong * split where virtual pingpong does not generate IRQs * @crtc: Pointer to the currently assigned crtc. Normally you * would use crtc->state->encoder_mask to determine the * link between encoder/crtc. However in this case we need * to track crtc in the disable() hook which is called * _after_ encoder_mask is cleared. * @crtc_kickoff_cb: Callback into CRTC that will flush & start * all CTL paths * @crtc_kickoff_cb_data: Opaque user data given to crtc_kickoff_cb * @debugfs_root: Debug file system root file node * @enc_lock: Lock around physical encoder * create/destroy/enable/disable * @frame_busy_mask: Bitmask tracking which phys_enc we are still * busy processing current command. * Bit0 = phys_encs[0] etc. * @crtc_frame_event_cb: callback handler for frame event * @crtc_frame_event_cb_data: callback handler private data * @frame_done_timeout_ms: frame done timeout in ms * @frame_done_timer: watchdog timer for frame done event * @vsync_event_timer: vsync timer * @disp_info: local copy of msm_display_info struct * @idle_pc_supported: indicate if idle power collaps is supported * @rc_lock: resource control mutex lock to protect * virt encoder over various state changes * @rc_state: resource controller state * @delayed_off_work: delayed worker to schedule disabling of * clks and resources after IDLE_TIMEOUT time. * @vsync_event_work: worker to handle vsync event for autorefresh * @topology: topology of the display * @mode_set_complete: flag to indicate modeset completion * @idle_timeout: idle timeout duration in milliseconds */ struct dpu_encoder_virt { struct drm_encoder base; spinlock_t enc_spinlock; uint32_t bus_scaling_client; bool enabled; unsigned int num_phys_encs; struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL]; struct dpu_encoder_phys *cur_master; struct dpu_encoder_phys *cur_slave; struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC]; bool intfs_swapped; struct drm_crtc *crtc; struct dentry *debugfs_root; struct mutex enc_lock; DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL); void (*crtc_frame_event_cb)(void *, u32 event); void *crtc_frame_event_cb_data; atomic_t frame_done_timeout_ms; struct timer_list frame_done_timer; struct timer_list vsync_event_timer; struct msm_display_info disp_info; bool idle_pc_supported; struct mutex rc_lock; enum dpu_enc_rc_states rc_state; struct delayed_work delayed_off_work; struct kthread_work vsync_event_work; struct msm_display_topology topology; bool mode_set_complete; u32 idle_timeout; }; #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base) void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc, enum dpu_intr_idx intr_idx) { DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n", DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0, phys_enc->hw_pp->idx - PINGPONG_0, intr_idx); if (phys_enc->parent_ops->handle_frame_done) phys_enc->parent_ops->handle_frame_done( phys_enc->parent, phys_enc, DPU_ENCODER_FRAME_EVENT_ERROR); } static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id, int32_t hw_id, struct dpu_encoder_wait_info *info); int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc, enum dpu_intr_idx intr_idx, struct dpu_encoder_wait_info *wait_info) { struct dpu_encoder_irq *irq; u32 irq_status; int ret; if (!phys_enc || !wait_info || intr_idx >= INTR_IDX_MAX) { DPU_ERROR("invalid params\n"); return -EINVAL; } irq = &phys_enc->irq[intr_idx]; /* note: do master / slave checking outside */ /* return EWOULDBLOCK since we know the wait isn't necessary */ if (phys_enc->enable_state == DPU_ENC_DISABLED) { DRM_ERROR("encoder is disabled id=%u, intr=%d, hw=%d, irq=%d", DRMID(phys_enc->parent), intr_idx, irq->hw_idx, irq->irq_idx); return -EWOULDBLOCK; } if (irq->irq_idx < 0) { DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, hw=%d, irq=%s", DRMID(phys_enc->parent), intr_idx, irq->hw_idx, irq->name); return 0; } DRM_DEBUG_KMS("id=%u, intr=%d, hw=%d, irq=%d, pp=%d, pending_cnt=%d", DRMID(phys_enc->parent), intr_idx, irq->hw_idx, irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0, atomic_read(wait_info->atomic_cnt)); ret = dpu_encoder_helper_wait_event_timeout( DRMID(phys_enc->parent), irq->hw_idx, wait_info); if (ret <= 0) { irq_status = dpu_core_irq_read(phys_enc->dpu_kms, irq->irq_idx, true); if (irq_status) { unsigned long flags; DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, " "hw=%d, irq=%d, pp=%d, atomic_cnt=%d", DRMID(phys_enc->parent), intr_idx, irq->hw_idx, irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0, atomic_read(wait_info->atomic_cnt)); local_irq_save(flags); irq->cb.func(phys_enc, irq->irq_idx); local_irq_restore(flags); ret = 0; } else { ret = -ETIMEDOUT; DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, " "hw=%d, irq=%d, pp=%d, atomic_cnt=%d", DRMID(phys_enc->parent), intr_idx, irq->hw_idx, irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0, atomic_read(wait_info->atomic_cnt)); } } else { ret = 0; trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent), intr_idx, irq->hw_idx, irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0, atomic_read(wait_info->atomic_cnt)); } return ret; } int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc, enum dpu_intr_idx intr_idx) { struct dpu_encoder_irq *irq; int ret = 0; if (!phys_enc || intr_idx >= INTR_IDX_MAX) { DPU_ERROR("invalid params\n"); return -EINVAL; } irq = &phys_enc->irq[intr_idx]; if (irq->irq_idx >= 0) { DPU_DEBUG_PHYS(phys_enc, "skipping already registered irq %s type %d\n", irq->name, irq->intr_type); return 0; } irq->irq_idx = dpu_core_irq_idx_lookup(phys_enc->dpu_kms, irq->intr_type, irq->hw_idx); if (irq->irq_idx < 0) { DPU_ERROR_PHYS(phys_enc, "failed to lookup IRQ index for %s type:%d\n", irq->name, irq->intr_type); return -EINVAL; } ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx, &irq->cb); if (ret) { DPU_ERROR_PHYS(phys_enc, "failed to register IRQ callback for %s\n", irq->name); irq->irq_idx = -EINVAL; return ret; } ret = dpu_core_irq_enable(phys_enc->dpu_kms, &irq->irq_idx, 1); if (ret) { DRM_ERROR("enable failed id=%u, intr=%d, hw=%d, irq=%d", DRMID(phys_enc->parent), intr_idx, irq->hw_idx, irq->irq_idx); dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx, &irq->cb); irq->irq_idx = -EINVAL; return ret; } trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx, irq->hw_idx, irq->irq_idx); return ret; } int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc, enum dpu_intr_idx intr_idx) { struct dpu_encoder_irq *irq; int ret; if (!phys_enc) { DPU_ERROR("invalid encoder\n"); return -EINVAL; } irq = &phys_enc->irq[intr_idx]; /* silently skip irqs that weren't registered */ if (irq->irq_idx < 0) { DRM_ERROR("duplicate unregister id=%u, intr=%d, hw=%d, irq=%d", DRMID(phys_enc->parent), intr_idx, irq->hw_idx, irq->irq_idx); return 0; } ret = dpu_core_irq_disable(phys_enc->dpu_kms, &irq->irq_idx, 1); if (ret) { DRM_ERROR("disable failed id=%u, intr=%d, hw=%d, irq=%d ret=%d", DRMID(phys_enc->parent), intr_idx, irq->hw_idx, irq->irq_idx, ret); } ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx, &irq->cb); if (ret) { DRM_ERROR("unreg cb fail id=%u, intr=%d, hw=%d, irq=%d ret=%d", DRMID(phys_enc->parent), intr_idx, irq->hw_idx, irq->irq_idx, ret); } trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx, irq->hw_idx, irq->irq_idx); irq->irq_idx = -EINVAL; return 0; } void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc, struct dpu_encoder_hw_resources *hw_res) { struct dpu_encoder_virt *dpu_enc = NULL; int i = 0; dpu_enc = to_dpu_encoder_virt(drm_enc); DPU_DEBUG_ENC(dpu_enc, "\n"); /* Query resources used by phys encs, expected to be without overlap */ memset(hw_res, 0, sizeof(*hw_res)); for (i = 0; i < dpu_enc->num_phys_encs; i++) { struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; if (phys && phys->ops.get_hw_resources) phys->ops.get_hw_resources(phys, hw_res); } } static void dpu_encoder_destroy(struct drm_encoder *drm_enc) { struct dpu_encoder_virt *dpu_enc = NULL; int i = 0; if (!drm_enc) { DPU_ERROR("invalid encoder\n"); return; } dpu_enc = to_dpu_encoder_virt(drm_enc); DPU_DEBUG_ENC(dpu_enc, "\n"); mutex_lock(&dpu_enc->enc_lock); for (i = 0; i < dpu_enc->num_phys_encs; i++) { struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; if (phys && phys->ops.destroy) { phys->ops.destroy(phys); --dpu_enc->num_phys_encs; dpu_enc->phys_encs[i] = NULL; } } if (dpu_enc->num_phys_encs) DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n", dpu_enc->num_phys_encs); dpu_enc->num_phys_encs = 0; mutex_unlock(&dpu_enc->enc_lock); drm_encoder_cleanup(drm_enc); mutex_destroy(&dpu_enc->enc_lock); } void dpu_encoder_helper_split_config( struct dpu_encoder_phys *phys_enc, enum dpu_intf interface) { struct dpu_encoder_virt *dpu_enc; struct split_pipe_cfg cfg = { 0 }; struct dpu_hw_mdp *hw_mdptop; struct msm_display_info *disp_info; if (!phys_enc || !phys_enc->hw_mdptop || !phys_enc->parent) { DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != 0); return; } dpu_enc = to_dpu_encoder_virt(phys_enc->parent); hw_mdptop = phys_enc->hw_mdptop; disp_info = &dpu_enc->disp_info; if (disp_info->intf_type != DRM_MODE_ENCODER_DSI) return; /** * disable split modes since encoder will be operating in as the only * encoder, either for the entire use case in the case of, for example, * single DSI, or for this frame in the case of left/right only partial * update. */ if (phys_enc->split_role == ENC_ROLE_SOLO) { if (hw_mdptop->ops.setup_split_pipe) hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); return; } cfg.en = true; cfg.mode = phys_enc->intf_mode; cfg.intf = interface; if (cfg.en && phys_enc->ops.needs_single_flush && phys_enc->ops.needs_single_flush(phys_enc)) cfg.split_flush_en = true; if (phys_enc->split_role == ENC_ROLE_MASTER) { DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en); if (hw_mdptop->ops.setup_split_pipe) hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); } } static void _dpu_encoder_adjust_mode(struct drm_connector *connector, struct drm_display_mode *adj_mode) { struct drm_display_mode *cur_mode; if (!connector || !adj_mode) return; list_for_each_entry(cur_mode, &connector->modes, head) { if (cur_mode->vdisplay == adj_mode->vdisplay && cur_mode->hdisplay == adj_mode->hdisplay && drm_mode_vrefresh(cur_mode) == drm_mode_vrefresh(adj_mode)) { adj_mode->private = cur_mode->private; adj_mode->private_flags |= cur_mode->private_flags; } } } static struct msm_display_topology dpu_encoder_get_topology( struct dpu_encoder_virt *dpu_enc, struct dpu_kms *dpu_kms, struct drm_display_mode *mode) { struct msm_display_topology topology; int i, intf_count = 0; for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++) if (dpu_enc->phys_encs[i]) intf_count++; /* User split topology for width > 1080 */ topology.num_lm = (mode->vdisplay > MAX_VDISPLAY_SPLIT) ? 2 : 1; topology.num_enc = 0; topology.num_intf = intf_count; return topology; } static int dpu_encoder_virt_atomic_check( struct drm_encoder *drm_enc, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct dpu_encoder_virt *dpu_enc; struct msm_drm_private *priv; struct dpu_kms *dpu_kms; const struct drm_display_mode *mode; struct drm_display_mode *adj_mode; struct msm_display_topology topology; int i = 0; int ret = 0; if (!drm_enc || !crtc_state || !conn_state) { DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n", drm_enc != 0, crtc_state != 0, conn_state != 0); return -EINVAL; } dpu_enc = to_dpu_encoder_virt(drm_enc); DPU_DEBUG_ENC(dpu_enc, "\n"); priv = drm_enc->dev->dev_private; dpu_kms = to_dpu_kms(priv->kms); mode = &crtc_state->mode; adj_mode = &crtc_state->adjusted_mode; trace_dpu_enc_atomic_check(DRMID(drm_enc)); /* * display drivers may populate private fields of the drm display mode * structure while registering possible modes of a connector with DRM. * These private fields are not populated back while DRM invokes * the mode_set callbacks. This module retrieves and populates the * private fields of the given mode. */ _dpu_encoder_adjust_mode(conn_state->connector, adj_mode); /* perform atomic check on the first physical encoder (master) */ for (i = 0; i < dpu_enc->num_phys_encs; i++) { struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; if (phys && phys->ops.atomic_check) ret = phys->ops.atomic_check(phys, crtc_state, conn_state); else if (phys && phys->ops.mode_fixup) if (!phys->ops.mode_fixup(phys, mode, adj_mode)) ret = -EINVAL; if (ret) { DPU_ERROR_ENC(dpu_enc, "mode unsupported, phys idx %d\n", i); break; } } topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode); /* Reserve dynamic resources now. Indicating AtomicTest phase */ if (!ret) { /* * Avoid reserving resources when mode set is pending. Topology * info may not be available to complete reservation. */ if (drm_atomic_crtc_needs_modeset(crtc_state) && dpu_enc->mode_set_complete) { ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, crtc_state, topology, true); dpu_enc->mode_set_complete = false; } } trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags, adj_mode->private_flags); return ret; } static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc, struct msm_display_info *disp_info) { struct dpu_vsync_source_cfg vsync_cfg = { 0 }; struct msm_drm_private *priv; struct dpu_kms *dpu_kms; struct dpu_hw_mdp *hw_mdptop; struct drm_encoder *drm_enc; int i; if (!dpu_enc || !disp_info) { DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n", dpu_enc != NULL, disp_info != NULL); return; } else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) { DPU_ERROR("invalid num phys enc %d/%d\n", dpu_enc->num_phys_encs, (int) ARRAY_SIZE(dpu_enc->hw_pp)); return; } drm_enc = &dpu_enc->base; /* this pointers are checked in virt_enable_helper */ priv = drm_enc->dev->dev_private; dpu_kms = to_dpu_kms(priv->kms); if (!dpu_kms) { DPU_ERROR("invalid dpu_kms\n"); return; } hw_mdptop = dpu_kms->hw_mdp; if (!hw_mdptop) { DPU_ERROR("invalid mdptop\n"); return; } if (hw_mdptop->ops.setup_vsync_source && disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) { for (i = 0; i < dpu_enc->num_phys_encs; i++) vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx; vsync_cfg.pp_count = dpu_enc->num_phys_encs; if (disp_info->is_te_using_watchdog_timer) vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0; else vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO; hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg); } } static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable) { struct dpu_encoder_virt *dpu_enc; int i; if (!drm_enc) { DPU_ERROR("invalid encoder\n"); return; } dpu_enc = to_dpu_encoder_virt(drm_enc); DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable); for (i = 0; i < dpu_enc->num_phys_encs; i++) { struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; if (phys && phys->ops.irq_control) phys->ops.irq_control(phys, enable); } } static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc, bool enable) { struct msm_drm_private *priv; struct dpu_kms *dpu_kms; struct dpu_encoder_virt *dpu_enc; dpu_enc = to_dpu_encoder_virt(drm_enc); priv = drm_enc->dev->dev_private; dpu_kms = to_dpu_kms(priv->kms); trace_dpu_enc_rc_helper(DRMID(drm_enc), enable); if (!dpu_enc->cur_master) { DPU_ERROR("encoder master not set\n"); return; } if (enable) { /* enable DPU core clks */ pm_runtime_get_sync(&dpu_kms->pdev->dev); /* enable all the irq */ _dpu_encoder_irq_control(drm_enc, true); } else { /* disable all the irq */ _dpu_encoder_irq_control(drm_enc, false); /* disable DPU core clks */ pm_runtime_put_sync(&dpu_kms->pdev->dev); } } static int dpu_encoder_resource_control(struct drm_encoder *drm_enc, u32 sw_event) { struct dpu_encoder_virt *dpu_enc; struct msm_drm_private *priv; bool is_vid_mode = false; if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private || !drm_enc->crtc) { DPU_ERROR("invalid parameters\n"); return -EINVAL; } dpu_enc = to_dpu_encoder_virt(drm_enc); priv = drm_enc->dev->dev_private; is_vid_mode = dpu_enc->disp_info.capabilities & MSM_DISPLAY_CAP_VID_MODE; /* * when idle_pc is not supported, process only KICKOFF, STOP and MODESET * events and return early for other events (ie wb display). */ if (!dpu_enc->idle_pc_supported && (sw_event != DPU_ENC_RC_EVENT_KICKOFF && sw_event != DPU_ENC_RC_EVENT_STOP && sw_event != DPU_ENC_RC_EVENT_PRE_STOP)) return 0; trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported, dpu_enc->rc_state, "begin"); switch (sw_event) { case DPU_ENC_RC_EVENT_KICKOFF: /* cancel delayed off work, if any */ if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work)) DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", sw_event); mutex_lock(&dpu_enc->rc_lock); /* return if the resource control is already in ON state */ if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in ON state\n", DRMID(drm_enc), sw_event); mutex_unlock(&dpu_enc->rc_lock); return 0; } else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF && dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) { DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in state %d\n", DRMID(drm_enc), sw_event, dpu_enc->rc_state); mutex_unlock(&dpu_enc->rc_lock); return -EINVAL; } if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) _dpu_encoder_irq_control(drm_enc, true); else _dpu_encoder_resource_control_helper(drm_enc, true); dpu_enc->rc_state = DPU_ENC_RC_STATE_ON; trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported, dpu_enc->rc_state, "kickoff"); mutex_unlock(&dpu_enc->rc_lock); break; case DPU_ENC_RC_EVENT_FRAME_DONE: /* * mutex lock is not used as this event happens at interrupt * context. And locking is not required as, the other events * like KICKOFF and STOP does a wait-for-idle before executing * the resource_control */ if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n", DRMID(drm_enc), sw_event, dpu_enc->rc_state); return -EINVAL; } /* * schedule off work item only when there are no * frames pending */ if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) { DRM_DEBUG_KMS("id:%d skip schedule work\n", DRMID(drm_enc)); return 0; } queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work, msecs_to_jiffies(dpu_enc->idle_timeout)); trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported, dpu_enc->rc_state, "frame done"); break; case DPU_ENC_RC_EVENT_PRE_STOP: /* cancel delayed off work, if any */ if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work)) DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", sw_event); mutex_lock(&dpu_enc->rc_lock); if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { _dpu_encoder_irq_control(drm_enc, true); } /* skip if is already OFF or IDLE, resources are off already */ else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF || dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n", DRMID(drm_enc), sw_event, dpu_enc->rc_state); mutex_unlock(&dpu_enc->rc_lock); return 0; } dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF; trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported, dpu_enc->rc_state, "pre stop"); mutex_unlock(&dpu_enc->rc_lock); break; case DPU_ENC_RC_EVENT_STOP: mutex_lock(&dpu_enc->rc_lock); /* return if the resource control is already in OFF state */ if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) { DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n", DRMID(drm_enc), sw_event); mutex_unlock(&dpu_enc->rc_lock); return 0; } else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n", DRMID(drm_enc), sw_event, dpu_enc->rc_state); mutex_unlock(&dpu_enc->rc_lock); return -EINVAL; } /** * expect to arrive here only if in either idle state or pre-off * and in IDLE state the resources are already disabled */ if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF) _dpu_encoder_resource_control_helper(drm_enc, false); dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF; trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported, dpu_enc->rc_state, "stop"); mutex_unlock(&dpu_enc->rc_lock); break; case DPU_ENC_RC_EVENT_ENTER_IDLE: mutex_lock(&dpu_enc->rc_lock); if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n", DRMID(drm_enc), sw_event, dpu_enc->rc_state); mutex_unlock(&dpu_enc->rc_lock); return 0; } /* * if we are in ON but a frame was just kicked off, * ignore the IDLE event, it's probably a stale timer event */ if (dpu_enc->frame_busy_mask[0]) { DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n", DRMID(drm_enc), sw_event, dpu_enc->rc_state); mutex_unlock(&dpu_enc->rc_lock); return 0; } if (is_vid_mode) _dpu_encoder_irq_control(drm_enc, false); else _dpu_encoder_resource_control_helper(drm_enc, false); dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE; trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported, dpu_enc->rc_state, "idle"); mutex_unlock(&dpu_enc->rc_lock); break; default: DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc), sw_event); trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported, dpu_enc->rc_state, "error"); break; } trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported, dpu_enc->rc_state, "end"); return 0; } static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc, struct drm_display_mode *mode, struct drm_display_mode *adj_mode) { struct dpu_encoder_virt *dpu_enc; struct msm_drm_private *priv; struct dpu_kms *dpu_kms; struct list_head *connector_list; struct drm_connector *conn = NULL, *conn_iter; struct drm_crtc *drm_crtc; struct dpu_crtc_state *cstate; struct dpu_rm_hw_iter hw_iter; struct msm_display_topology topology; struct dpu_hw_ctl *hw_ctl[MAX_CHANNELS_PER_ENC] = { NULL }; struct dpu_hw_mixer *hw_lm[MAX_CHANNELS_PER_ENC] = { NULL }; int num_lm = 0, num_ctl = 0; int i, j, ret; if (!drm_enc) { DPU_ERROR("invalid encoder\n"); return; } dpu_enc = to_dpu_encoder_virt(drm_enc); DPU_DEBUG_ENC(dpu_enc, "\n"); priv = drm_enc->dev->dev_private; dpu_kms = to_dpu_kms(priv->kms); connector_list = &dpu_kms->dev->mode_config.connector_list; trace_dpu_enc_mode_set(DRMID(drm_enc)); list_for_each_entry(conn_iter, connector_list, head) if (conn_iter->encoder == drm_enc) conn = conn_iter; if (!conn) { DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n"); return; } else if (!conn->state) { DPU_ERROR_ENC(dpu_enc, "invalid connector state\n"); return; } drm_for_each_crtc(drm_crtc, drm_enc->dev) if (drm_crtc->state->encoder_mask & drm_encoder_mask(drm_enc)) break; topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode); /* Reserve dynamic resources now. Indicating non-AtomicTest phase */ ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, drm_crtc->state, topology, false); if (ret) { DPU_ERROR_ENC(dpu_enc, "failed to reserve hw resources, %d\n", ret); return; } dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_PINGPONG); for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { dpu_enc->hw_pp[i] = NULL; if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter)) break; dpu_enc->hw_pp[i] = (struct dpu_hw_pingpong *) hw_iter.hw; } dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_CTL); for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter)) break; hw_ctl[i] = (struct dpu_hw_ctl *)hw_iter.hw; num_ctl++; } dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_LM); for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter)) break; hw_lm[i] = (struct dpu_hw_mixer *)hw_iter.hw; num_lm++; } cstate = to_dpu_crtc_state(drm_crtc->state); for (i = 0; i < num_lm; i++) { int ctl_idx = (i < num_ctl) ? i : (num_ctl-1); cstate->mixers[i].hw_lm = hw_lm[i]; cstate->mixers[i].lm_ctl = hw_ctl[ctl_idx]; } cstate->num_mixers = num_lm; for (i = 0; i < dpu_enc->num_phys_encs; i++) { struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; if (phys) { if (!dpu_enc->hw_pp[i]) { DPU_ERROR_ENC(dpu_enc, "no pp block assigned" "at idx: %d\n", i); goto error; } if (!hw_ctl[i]) { DPU_ERROR_ENC(dpu_enc, "no ctl block assigned" "at idx: %d\n", i); goto error; } phys->hw_pp = dpu_enc->hw_pp[i]; phys->hw_ctl = hw_ctl[i]; dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_INTF); for (j = 0; j < MAX_CHANNELS_PER_ENC; j++) { struct dpu_hw_intf *hw_intf; if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter)) break; hw_intf = (struct dpu_hw_intf *)hw_iter.hw; if (hw_intf->idx == phys->intf_idx) phys->hw_intf = hw_intf; } if (!phys->hw_intf) { DPU_ERROR_ENC(dpu_enc, "no intf block assigned at idx: %d\n", i); goto error; } phys->connector = conn->state->connector; if (phys->ops.mode_set) phys->ops.mode_set(phys, mode, adj_mode); } } dpu_enc->mode_set_complete = true; error: dpu_rm_release(&dpu_kms->rm, drm_enc); } static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc) { struct dpu_encoder_virt *dpu_enc = NULL; struct msm_drm_private *priv; struct dpu_kms *dpu_kms; if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private) { DPU_ERROR("invalid parameters\n"); return; } priv = drm_enc->dev->dev_private; dpu_kms = to_dpu_kms(priv->kms); if (!dpu_kms) { DPU_ERROR("invalid dpu_kms\n"); return; } dpu_enc = to_dpu_encoder_virt(drm_enc); if (!dpu_enc || !dpu_enc->cur_master) { DPU_ERROR("invalid dpu encoder/master\n"); return; } if (dpu_enc->cur_master->hw_mdptop && dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc) dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc( dpu_enc->cur_master->hw_mdptop, dpu_kms->catalog); _dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info); } void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc) { struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); mutex_lock(&dpu_enc->enc_lock); if (!dpu_enc->enabled) goto out; if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore) dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave); if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore) dpu_enc->cur_master->ops.restore(dpu_enc->cur_master); _dpu_encoder_virt_enable_helper(drm_enc); out: mutex_unlock(&dpu_enc->enc_lock); } static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc) { struct dpu_encoder_virt *dpu_enc = NULL; int ret = 0; struct drm_display_mode *cur_mode = NULL; if (!drm_enc) { DPU_ERROR("invalid encoder\n"); return; } dpu_enc = to_dpu_encoder_virt(drm_enc); mutex_lock(&dpu_enc->enc_lock); cur_mode = &dpu_enc->base.crtc->state->adjusted_mode; trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay, cur_mode->vdisplay); /* always enable slave encoder before master */ if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable) dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave); if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable) dpu_enc->cur_master->ops.enable(dpu_enc->cur_master); ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); if (ret) { DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n", ret); goto out; } _dpu_encoder_virt_enable_helper(drm_enc); dpu_enc->enabled = true; out: mutex_unlock(&dpu_enc->enc_lock); } static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc) { struct dpu_encoder_virt *dpu_enc = NULL; struct msm_drm_private *priv; struct dpu_kms *dpu_kms; struct drm_display_mode *mode; int i = 0; if (!drm_enc) { DPU_ERROR("invalid encoder\n"); return; } else if (!drm_enc->dev) { DPU_ERROR("invalid dev\n"); return; } else if (!drm_enc->dev->dev_private) { DPU_ERROR("invalid dev_private\n"); return; } dpu_enc = to_dpu_encoder_virt(drm_enc); DPU_DEBUG_ENC(dpu_enc, "\n"); mutex_lock(&dpu_enc->enc_lock); dpu_enc->enabled = false; mode = &drm_enc->crtc->state->adjusted_mode; priv = drm_enc->dev->dev_private; dpu_kms = to_dpu_kms(priv->kms); trace_dpu_enc_disable(DRMID(drm_enc)); /* wait for idle */ dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE); dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP); for (i = 0; i < dpu_enc->num_phys_encs; i++) { struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; if (phys && phys->ops.disable) phys->ops.disable(phys); } /* after phys waits for frame-done, should be no more frames pending */ if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) { DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id); del_timer_sync(&dpu_enc->frame_done_timer); } dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP); for (i = 0; i < dpu_enc->num_phys_encs; i++) { if (dpu_enc->phys_encs[i]) dpu_enc->phys_encs[i]->connector = NULL; } DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n"); dpu_rm_release(&dpu_kms->rm, drm_enc); mutex_unlock(&dpu_enc->enc_lock); } static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog, enum dpu_intf_type type, u32 controller_id) { int i = 0; for (i = 0; i < catalog->intf_count; i++) { if (catalog->intf[i].type == type && catalog->intf[i].controller_id == controller_id) { return catalog->intf[i].id; } } return INTF_MAX; } static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc, struct dpu_encoder_phys *phy_enc) { struct dpu_encoder_virt *dpu_enc = NULL; unsigned long lock_flags; if (!drm_enc || !phy_enc) return; DPU_ATRACE_BEGIN("encoder_vblank_callback"); dpu_enc = to_dpu_encoder_virt(drm_enc); spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); if (dpu_enc->crtc) dpu_crtc_vblank_callback(dpu_enc->crtc); spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); atomic_inc(&phy_enc->vsync_cnt); DPU_ATRACE_END("encoder_vblank_callback"); } static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc, struct dpu_encoder_phys *phy_enc) { if (!phy_enc) return; DPU_ATRACE_BEGIN("encoder_underrun_callback"); atomic_inc(&phy_enc->underrun_cnt); trace_dpu_enc_underrun_cb(DRMID(drm_enc), atomic_read(&phy_enc->underrun_cnt)); DPU_ATRACE_END("encoder_underrun_callback"); } void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc) { struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); unsigned long lock_flags; spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); /* crtc should always be cleared before re-assigning */ WARN_ON(crtc && dpu_enc->crtc); dpu_enc->crtc = crtc; spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); } void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc, bool enable) { struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); unsigned long lock_flags; int i; trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable); spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); if (dpu_enc->crtc != crtc) { spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); return; } spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); for (i = 0; i < dpu_enc->num_phys_encs; i++) { struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; if (phys && phys->ops.control_vblank_irq) phys->ops.control_vblank_irq(phys, enable); } } void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc, void (*frame_event_cb)(void *, u32 event), void *frame_event_cb_data) { struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); unsigned long lock_flags; bool enable; enable = frame_event_cb ? true : false; if (!drm_enc) { DPU_ERROR("invalid encoder\n"); return; } trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable); spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); dpu_enc->crtc_frame_event_cb = frame_event_cb; dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data; spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); } static void dpu_encoder_frame_done_callback( struct drm_encoder *drm_enc, struct dpu_encoder_phys *ready_phys, u32 event) { struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); unsigned int i; if (event & (DPU_ENCODER_FRAME_EVENT_DONE | DPU_ENCODER_FRAME_EVENT_ERROR | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) { if (!dpu_enc->frame_busy_mask[0]) { /** * suppress frame_done without waiter, * likely autorefresh */ trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), event, ready_phys->intf_idx); return; } /* One of the physical encoders has become idle */ for (i = 0; i < dpu_enc->num_phys_encs; i++) { if (dpu_enc->phys_encs[i] == ready_phys) { trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i, dpu_enc->frame_busy_mask[0]); clear_bit(i, dpu_enc->frame_busy_mask); } } if (!dpu_enc->frame_busy_mask[0]) { atomic_set(&dpu_enc->frame_done_timeout_ms, 0); del_timer(&dpu_enc->frame_done_timer); dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_FRAME_DONE); if (dpu_enc->crtc_frame_event_cb) dpu_enc->crtc_frame_event_cb( dpu_enc->crtc_frame_event_cb_data, event); } } else { if (dpu_enc->crtc_frame_event_cb) dpu_enc->crtc_frame_event_cb( dpu_enc->crtc_frame_event_cb_data, event); } } static void dpu_encoder_off_work(struct work_struct *work) { struct dpu_encoder_virt *dpu_enc = container_of(work, struct dpu_encoder_virt, delayed_off_work.work); if (!dpu_enc) { DPU_ERROR("invalid dpu encoder\n"); return; } dpu_encoder_resource_control(&dpu_enc->base, DPU_ENC_RC_EVENT_ENTER_IDLE); dpu_encoder_frame_done_callback(&dpu_enc->base, NULL, DPU_ENCODER_FRAME_EVENT_IDLE); } /** * _dpu_encoder_trigger_flush - trigger flush for a physical encoder * drm_enc: Pointer to drm encoder structure * phys: Pointer to physical encoder structure * extra_flush_bits: Additional bit mask to include in flush trigger */ static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc, struct dpu_encoder_phys *phys, uint32_t extra_flush_bits, bool async) { struct dpu_hw_ctl *ctl; int pending_kickoff_cnt; u32 ret = UINT_MAX; if (!drm_enc || !phys) { DPU_ERROR("invalid argument(s), drm_enc %d, phys_enc %d\n", drm_enc != 0, phys != 0); return; } if (!phys->hw_pp) { DPU_ERROR("invalid pingpong hw\n"); return; } ctl = phys->hw_ctl; if (!ctl || !ctl->ops.trigger_flush) { DPU_ERROR("missing trigger cb\n"); return; } if (!async) pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys); else pending_kickoff_cnt = atomic_read(&phys->pending_kickoff_cnt); if (extra_flush_bits && ctl->ops.update_pending_flush) ctl->ops.update_pending_flush(ctl, extra_flush_bits); ctl->ops.trigger_flush(ctl); if (ctl->ops.get_pending_flush) ret = ctl->ops.get_pending_flush(ctl); trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx, pending_kickoff_cnt, ctl->idx, extra_flush_bits, ret); } /** * _dpu_encoder_trigger_start - trigger start for a physical encoder * phys: Pointer to physical encoder structure */ static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys) { if (!phys) { DPU_ERROR("invalid argument(s)\n"); return; } if (!phys->hw_pp) { DPU_ERROR("invalid pingpong hw\n"); return; } if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED) phys->ops.trigger_start(phys); } void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc) { struct dpu_hw_ctl *ctl; if (!phys_enc) { DPU_ERROR("invalid encoder\n"); return; } ctl = phys_enc->hw_ctl; if (ctl && ctl->ops.trigger_start) { ctl->ops.trigger_start(ctl); trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx); } } static int dpu_encoder_helper_wait_event_timeout( int32_t drm_id, int32_t hw_id, struct dpu_encoder_wait_info *info) { int rc = 0; s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms; s64 jiffies = msecs_to_jiffies(info->timeout_ms); s64 time; do { rc = wait_event_timeout(*(info->wq), atomic_read(info->atomic_cnt) == 0, jiffies); time = ktime_to_ms(ktime_get()); trace_dpu_enc_wait_event_timeout(drm_id, hw_id, rc, time, expected_time, atomic_read(info->atomic_cnt)); /* If we timed out, counter is valid and time is less, wait again */ } while (atomic_read(info->atomic_cnt) && (rc == 0) && (time < expected_time)); return rc; } static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc) { struct dpu_encoder_virt *dpu_enc; struct dpu_hw_ctl *ctl; int rc; if (!phys_enc) { DPU_ERROR("invalid encoder\n"); return; } dpu_enc = to_dpu_encoder_virt(phys_enc->parent); ctl = phys_enc->hw_ctl; if (!ctl || !ctl->ops.reset) return; DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(phys_enc->parent), ctl->idx); rc = ctl->ops.reset(ctl); if (rc) DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n", ctl->idx); phys_enc->enable_state = DPU_ENC_ENABLED; } /** * _dpu_encoder_kickoff_phys - handle physical encoder kickoff * Iterate through the physical encoders and perform consolidated flush * and/or control start triggering as needed. This is done in the virtual * encoder rather than the individual physical ones in order to handle * use cases that require visibility into multiple physical encoders at * a time. * dpu_enc: Pointer to virtual encoder structure */ static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc, bool async) { struct dpu_hw_ctl *ctl; uint32_t i, pending_flush; unsigned long lock_flags; if (!dpu_enc) { DPU_ERROR("invalid encoder\n"); return; } pending_flush = 0x0; /* update pending counts and trigger kickoff ctl flush atomically */ spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); /* don't perform flush/start operations for slave encoders */ for (i = 0; i < dpu_enc->num_phys_encs; i++) { struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; if (!phys || phys->enable_state == DPU_ENC_DISABLED) continue; ctl = phys->hw_ctl; if (!ctl) continue; /* * This is cleared in frame_done worker, which isn't invoked * for async commits. So don't set this for async, since it'll * roll over to the next commit. */ if (!async && phys->split_role != ENC_ROLE_SLAVE) set_bit(i, dpu_enc->frame_busy_mask); if (!phys->ops.needs_single_flush || !phys->ops.needs_single_flush(phys)) _dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0, async); else if (ctl->ops.get_pending_flush) pending_flush |= ctl->ops.get_pending_flush(ctl); } /* for split flush, combine pending flush masks and send to master */ if (pending_flush && dpu_enc->cur_master) { _dpu_encoder_trigger_flush( &dpu_enc->base, dpu_enc->cur_master, pending_flush, async); } _dpu_encoder_trigger_start(dpu_enc->cur_master); spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); } void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc) { struct dpu_encoder_virt *dpu_enc; struct dpu_encoder_phys *phys; unsigned int i; struct dpu_hw_ctl *ctl; struct msm_display_info *disp_info; if (!drm_enc) { DPU_ERROR("invalid encoder\n"); return; } dpu_enc = to_dpu_encoder_virt(drm_enc); disp_info = &dpu_enc->disp_info; for (i = 0; i < dpu_enc->num_phys_encs; i++) { phys = dpu_enc->phys_encs[i]; if (phys && phys->hw_ctl) { ctl = phys->hw_ctl; if (ctl->ops.clear_pending_flush) ctl->ops.clear_pending_flush(ctl); /* update only for command mode primary ctl */ if ((phys == dpu_enc->cur_master) && (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) && ctl->ops.trigger_pending) ctl->ops.trigger_pending(ctl); } } } static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc, struct drm_display_mode *mode) { u64 pclk_rate; u32 pclk_period; u32 line_time; /* * For linetime calculation, only operate on master encoder. */ if (!dpu_enc->cur_master) return 0; if (!dpu_enc->cur_master->ops.get_line_count) { DPU_ERROR("get_line_count function not defined\n"); return 0; } pclk_rate = mode->clock; /* pixel clock in kHz */ if (pclk_rate == 0) { DPU_ERROR("pclk is 0, cannot calculate line time\n"); return 0; } pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate); if (pclk_period == 0) { DPU_ERROR("pclk period is 0\n"); return 0; } /* * Line time calculation based on Pixel clock and HTOTAL. * Final unit is in ns. */ line_time = (pclk_period * mode->htotal) / 1000; if (line_time == 0) { DPU_ERROR("line time calculation is 0\n"); return 0; } DPU_DEBUG_ENC(dpu_enc, "clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n", pclk_rate, pclk_period, line_time); return line_time; } static int _dpu_encoder_wakeup_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time) { struct drm_display_mode *mode; struct dpu_encoder_virt *dpu_enc; u32 cur_line; u32 line_time; u32 vtotal, time_to_vsync; ktime_t cur_time; dpu_enc = to_dpu_encoder_virt(drm_enc); if (!drm_enc->crtc || !drm_enc->crtc->state) { DPU_ERROR("crtc/crtc state object is NULL\n"); return -EINVAL; } mode = &drm_enc->crtc->state->adjusted_mode; line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode); if (!line_time) return -EINVAL; cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master); vtotal = mode->vtotal; if (cur_line >= vtotal) time_to_vsync = line_time * vtotal; else time_to_vsync = line_time * (vtotal - cur_line); if (time_to_vsync == 0) { DPU_ERROR("time to vsync should not be zero, vtotal=%d\n", vtotal); return -EINVAL; } cur_time = ktime_get(); *wakeup_time = ktime_add_ns(cur_time, time_to_vsync); DPU_DEBUG_ENC(dpu_enc, "cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n", cur_line, vtotal, time_to_vsync, ktime_to_ms(cur_time), ktime_to_ms(*wakeup_time)); return 0; } static void dpu_encoder_vsync_event_handler(struct timer_list *t) { struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t, vsync_event_timer); struct drm_encoder *drm_enc = &dpu_enc->base; struct msm_drm_private *priv; struct msm_drm_thread *event_thread; if (!drm_enc->dev || !drm_enc->dev->dev_private || !drm_enc->crtc) { DPU_ERROR("invalid parameters\n"); return; } priv = drm_enc->dev->dev_private; if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) { DPU_ERROR("invalid crtc index\n"); return; } event_thread = &priv->event_thread[drm_enc->crtc->index]; if (!event_thread) { DPU_ERROR("event_thread not found for crtc:%d\n", drm_enc->crtc->index); return; } del_timer(&dpu_enc->vsync_event_timer); } static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work) { struct dpu_encoder_virt *dpu_enc = container_of(work, struct dpu_encoder_virt, vsync_event_work); ktime_t wakeup_time; if (!dpu_enc) { DPU_ERROR("invalid dpu encoder\n"); return; } if (_dpu_encoder_wakeup_time(&dpu_enc->base, &wakeup_time)) return; trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time); mod_timer(&dpu_enc->vsync_event_timer, nsecs_to_jiffies(ktime_to_ns(wakeup_time))); } void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc, bool async) { struct dpu_encoder_virt *dpu_enc; struct dpu_encoder_phys *phys; bool needs_hw_reset = false; unsigned int i; if (!drm_enc) { DPU_ERROR("invalid args\n"); return; } dpu_enc = to_dpu_encoder_virt(drm_enc); trace_dpu_enc_prepare_kickoff(DRMID(drm_enc)); /* prepare for next kickoff, may include waiting on previous kickoff */ DPU_ATRACE_BEGIN("enc_prepare_for_kickoff"); for (i = 0; i < dpu_enc->num_phys_encs; i++) { phys = dpu_enc->phys_encs[i]; if (phys) { if (phys->ops.prepare_for_kickoff) phys->ops.prepare_for_kickoff(phys); if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET) needs_hw_reset = true; } } DPU_ATRACE_END("enc_prepare_for_kickoff"); dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); /* if any phys needs reset, reset all phys, in-order */ if (needs_hw_reset) { trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc)); for (i = 0; i < dpu_enc->num_phys_encs; i++) { dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]); } } } void dpu_encoder_kickoff(struct drm_encoder *drm_enc, bool async) { struct dpu_encoder_virt *dpu_enc; struct dpu_encoder_phys *phys; ktime_t wakeup_time; unsigned int i; if (!drm_enc) { DPU_ERROR("invalid encoder\n"); return; } DPU_ATRACE_BEGIN("encoder_kickoff"); dpu_enc = to_dpu_encoder_virt(drm_enc); trace_dpu_enc_kickoff(DRMID(drm_enc)); /* * Asynchronous frames don't handle FRAME_DONE events. As such, they * shouldn't enable the frame_done watchdog since it will always time * out. */ if (!async) { unsigned long timeout_ms; timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 / drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode); atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms); mod_timer(&dpu_enc->frame_done_timer, jiffies + msecs_to_jiffies(timeout_ms)); } /* All phys encs are ready to go, trigger the kickoff */ _dpu_encoder_kickoff_phys(dpu_enc, async); /* allow phys encs to handle any post-kickoff business */ for (i = 0; i < dpu_enc->num_phys_encs; i++) { phys = dpu_enc->phys_encs[i]; if (phys && phys->ops.handle_post_kickoff) phys->ops.handle_post_kickoff(phys); } if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI && !_dpu_encoder_wakeup_time(drm_enc, &wakeup_time)) { trace_dpu_enc_early_kickoff(DRMID(drm_enc), ktime_to_ms(wakeup_time)); mod_timer(&dpu_enc->vsync_event_timer, nsecs_to_jiffies(ktime_to_ns(wakeup_time))); } DPU_ATRACE_END("encoder_kickoff"); } void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc) { struct dpu_encoder_virt *dpu_enc; struct dpu_encoder_phys *phys; int i; if (!drm_enc) { DPU_ERROR("invalid encoder\n"); return; } dpu_enc = to_dpu_encoder_virt(drm_enc); for (i = 0; i < dpu_enc->num_phys_encs; i++) { phys = dpu_enc->phys_encs[i]; if (phys && phys->ops.prepare_commit) phys->ops.prepare_commit(phys); } } #ifdef CONFIG_DEBUG_FS static int _dpu_encoder_status_show(struct seq_file *s, void *data) { struct dpu_encoder_virt *dpu_enc = s->private; int i; mutex_lock(&dpu_enc->enc_lock); for (i = 0; i < dpu_enc->num_phys_encs; i++) { struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; if (!phys) continue; seq_printf(s, "intf:%d vsync:%8d underrun:%8d ", phys->intf_idx - INTF_0, atomic_read(&phys->vsync_cnt), atomic_read(&phys->underrun_cnt)); switch (phys->intf_mode) { case INTF_MODE_VIDEO: seq_puts(s, "mode: video\n"); break; case INTF_MODE_CMD: seq_puts(s, "mode: command\n"); break; default: seq_puts(s, "mode: ???\n"); break; } } mutex_unlock(&dpu_enc->enc_lock); return 0; } static int _dpu_encoder_debugfs_status_open(struct inode *inode, struct file *file) { return single_open(file, _dpu_encoder_status_show, inode->i_private); } static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc) { struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); struct msm_drm_private *priv; struct dpu_kms *dpu_kms; int i; static const struct file_operations debugfs_status_fops = { .open = _dpu_encoder_debugfs_status_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; char name[DPU_NAME_SIZE]; if (!drm_enc->dev || !drm_enc->dev->dev_private) { DPU_ERROR("invalid encoder or kms\n"); return -EINVAL; } priv = drm_enc->dev->dev_private; dpu_kms = to_dpu_kms(priv->kms); snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id); /* create overall sub-directory for the encoder */ dpu_enc->debugfs_root = debugfs_create_dir(name, drm_enc->dev->primary->debugfs_root); /* don't error check these */ debugfs_create_file("status", 0600, dpu_enc->debugfs_root, dpu_enc, &debugfs_status_fops); for (i = 0; i < dpu_enc->num_phys_encs; i++) if (dpu_enc->phys_encs[i] && dpu_enc->phys_encs[i]->ops.late_register) dpu_enc->phys_encs[i]->ops.late_register( dpu_enc->phys_encs[i], dpu_enc->debugfs_root); return 0; } #else static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc) { return 0; } #endif static int dpu_encoder_late_register(struct drm_encoder *encoder) { return _dpu_encoder_init_debugfs(encoder); } static void dpu_encoder_early_unregister(struct drm_encoder *encoder) { struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder); debugfs_remove_recursive(dpu_enc->debugfs_root); } static int dpu_encoder_virt_add_phys_encs( u32 display_caps, struct dpu_encoder_virt *dpu_enc, struct dpu_enc_phys_init_params *params) { struct dpu_encoder_phys *enc = NULL; DPU_DEBUG_ENC(dpu_enc, "\n"); /* * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types * in this function, check up-front. */ if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >= ARRAY_SIZE(dpu_enc->phys_encs)) { DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n", dpu_enc->num_phys_encs); return -EINVAL; } if (display_caps & MSM_DISPLAY_CAP_VID_MODE) { enc = dpu_encoder_phys_vid_init(params); if (IS_ERR_OR_NULL(enc)) { DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n", PTR_ERR(enc)); return enc == 0 ? -EINVAL : PTR_ERR(enc); } dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; ++dpu_enc->num_phys_encs; } if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) { enc = dpu_encoder_phys_cmd_init(params); if (IS_ERR_OR_NULL(enc)) { DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n", PTR_ERR(enc)); return enc == 0 ? -EINVAL : PTR_ERR(enc); } dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; ++dpu_enc->num_phys_encs; } if (params->split_role == ENC_ROLE_SLAVE) dpu_enc->cur_slave = enc; else dpu_enc->cur_master = enc; return 0; } static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = { .handle_vblank_virt = dpu_encoder_vblank_callback, .handle_underrun_virt = dpu_encoder_underrun_callback, .handle_frame_done = dpu_encoder_frame_done_callback, }; static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc, struct dpu_kms *dpu_kms, struct msm_display_info *disp_info) { int ret = 0; int i = 0; enum dpu_intf_type intf_type; struct dpu_enc_phys_init_params phys_params; if (!dpu_enc || !dpu_kms) { DPU_ERROR("invalid arg(s), enc %d kms %d\n", dpu_enc != 0, dpu_kms != 0); return -EINVAL; } dpu_enc->cur_master = NULL; memset(&phys_params, 0, sizeof(phys_params)); phys_params.dpu_kms = dpu_kms; phys_params.parent = &dpu_enc->base; phys_params.parent_ops = &dpu_encoder_parent_ops; phys_params.enc_spinlock = &dpu_enc->enc_spinlock; DPU_DEBUG("\n"); switch (disp_info->intf_type) { case DRM_MODE_ENCODER_DSI: intf_type = INTF_DSI; break; default: DPU_ERROR_ENC(dpu_enc, "unsupported display interface type\n"); return -EINVAL; } WARN_ON(disp_info->num_of_h_tiles < 1); DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles); if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) || (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE)) dpu_enc->idle_pc_supported = dpu_kms->catalog->caps->has_idle_pc; mutex_lock(&dpu_enc->enc_lock); for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) { /* * Left-most tile is at index 0, content is controller id * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right */ u32 controller_id = disp_info->h_tile_instance[i]; if (disp_info->num_of_h_tiles > 1) { if (i == 0) phys_params.split_role = ENC_ROLE_MASTER; else phys_params.split_role = ENC_ROLE_SLAVE; } else { phys_params.split_role = ENC_ROLE_SOLO; } DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n", i, controller_id, phys_params.split_role); phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog, intf_type, controller_id); if (phys_params.intf_idx == INTF_MAX) { DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n", intf_type, controller_id); ret = -EINVAL; } if (!ret) { ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities, dpu_enc, &phys_params); if (ret) DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n"); } } for (i = 0; i < dpu_enc->num_phys_encs; i++) { struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; if (phys) { atomic_set(&phys->vsync_cnt, 0); atomic_set(&phys->underrun_cnt, 0); } } mutex_unlock(&dpu_enc->enc_lock); return ret; } static void dpu_encoder_frame_done_timeout(struct timer_list *t) { struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t, frame_done_timer); struct drm_encoder *drm_enc = &dpu_enc->base; struct msm_drm_private *priv; u32 event; if (!drm_enc->dev || !drm_enc->dev->dev_private) { DPU_ERROR("invalid parameters\n"); return; } priv = drm_enc->dev->dev_private; if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) { DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n", DRMID(drm_enc), dpu_enc->frame_busy_mask[0]); return; } else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) { DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc)); return; } DPU_ERROR_ENC(dpu_enc, "frame done timeout\n"); event = DPU_ENCODER_FRAME_EVENT_ERROR; trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event); dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event); } static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = { .mode_set = dpu_encoder_virt_mode_set, .disable = dpu_encoder_virt_disable, .enable = dpu_kms_encoder_enable, .atomic_check = dpu_encoder_virt_atomic_check, /* This is called by dpu_kms_encoder_enable */ .commit = dpu_encoder_virt_enable, }; static const struct drm_encoder_funcs dpu_encoder_funcs = { .destroy = dpu_encoder_destroy, .late_register = dpu_encoder_late_register, .early_unregister = dpu_encoder_early_unregister, }; int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc, struct msm_display_info *disp_info) { struct msm_drm_private *priv = dev->dev_private; struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); struct drm_encoder *drm_enc = NULL; struct dpu_encoder_virt *dpu_enc = NULL; int ret = 0; dpu_enc = to_dpu_encoder_virt(enc); mutex_init(&dpu_enc->enc_lock); ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info); if (ret) goto fail; atomic_set(&dpu_enc->frame_done_timeout_ms, 0); timer_setup(&dpu_enc->frame_done_timer, dpu_encoder_frame_done_timeout, 0); if (disp_info->intf_type == DRM_MODE_ENCODER_DSI) timer_setup(&dpu_enc->vsync_event_timer, dpu_encoder_vsync_event_handler, 0); mutex_init(&dpu_enc->rc_lock); INIT_DELAYED_WORK(&dpu_enc->delayed_off_work, dpu_encoder_off_work); dpu_enc->idle_timeout = IDLE_TIMEOUT; kthread_init_work(&dpu_enc->vsync_event_work, dpu_encoder_vsync_event_work_handler); memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info)); DPU_DEBUG_ENC(dpu_enc, "created\n"); return ret; fail: DPU_ERROR("failed to create encoder\n"); if (drm_enc) dpu_encoder_destroy(drm_enc); return ret; } struct drm_encoder *dpu_encoder_init(struct drm_device *dev, int drm_enc_mode) { struct dpu_encoder_virt *dpu_enc = NULL; int rc = 0; dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL); if (!dpu_enc) return ERR_PTR(ENOMEM); rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs, drm_enc_mode, NULL); if (rc) { devm_kfree(dev->dev, dpu_enc); return ERR_PTR(rc); } drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs); spin_lock_init(&dpu_enc->enc_spinlock); dpu_enc->enabled = false; return &dpu_enc->base; } int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc, enum msm_event_wait event) { int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL; struct dpu_encoder_virt *dpu_enc = NULL; int i, ret = 0; if (!drm_enc) { DPU_ERROR("invalid encoder\n"); return -EINVAL; } dpu_enc = to_dpu_encoder_virt(drm_enc); DPU_DEBUG_ENC(dpu_enc, "\n"); for (i = 0; i < dpu_enc->num_phys_encs; i++) { struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; if (!phys) continue; switch (event) { case MSM_ENC_COMMIT_DONE: fn_wait = phys->ops.wait_for_commit_done; break; case MSM_ENC_TX_COMPLETE: fn_wait = phys->ops.wait_for_tx_complete; break; case MSM_ENC_VBLANK: fn_wait = phys->ops.wait_for_vblank; break; default: DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n", event); return -EINVAL; }; if (fn_wait) { DPU_ATRACE_BEGIN("wait_for_completion_event"); ret = fn_wait(phys); DPU_ATRACE_END("wait_for_completion_event"); if (ret) return ret; } } return ret; } enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder) { struct dpu_encoder_virt *dpu_enc = NULL; int i; if (!encoder) { DPU_ERROR("invalid encoder\n"); return INTF_MODE_NONE; } dpu_enc = to_dpu_encoder_virt(encoder); if (dpu_enc->cur_master) return dpu_enc->cur_master->intf_mode; for (i = 0; i < dpu_enc->num_phys_encs; i++) { struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; if (phys) return phys->intf_mode; } return INTF_MODE_NONE; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1