Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jeykumar Sankaran | 2226 | 95.99% | 1 | 25.00% |
Sean Paul | 90 | 3.88% | 1 | 25.00% |
Thomas Gleixner | 2 | 0.09% | 1 | 25.00% |
Colin Ian King | 1 | 0.04% | 1 | 25.00% |
Total | 2319 | 4 |
// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved. */ #include <linux/delay.h> #include "dpu_hwio.h" #include "dpu_hw_ctl.h" #include "dpu_kms.h" #include "dpu_trace.h" #define CTL_LAYER(lm) \ (((lm) == LM_5) ? (0x024) : (((lm) - LM_0) * 0x004)) #define CTL_LAYER_EXT(lm) \ (0x40 + (((lm) - LM_0) * 0x004)) #define CTL_LAYER_EXT2(lm) \ (0x70 + (((lm) - LM_0) * 0x004)) #define CTL_LAYER_EXT3(lm) \ (0xA0 + (((lm) - LM_0) * 0x004)) #define CTL_TOP 0x014 #define CTL_FLUSH 0x018 #define CTL_START 0x01C #define CTL_PREPARE 0x0d0 #define CTL_SW_RESET 0x030 #define CTL_LAYER_EXTN_OFFSET 0x40 #define CTL_MIXER_BORDER_OUT BIT(24) #define CTL_FLUSH_MASK_CTL BIT(17) #define DPU_REG_RESET_TIMEOUT_US 2000 static struct dpu_ctl_cfg *_ctl_offset(enum dpu_ctl ctl, struct dpu_mdss_cfg *m, void __iomem *addr, struct dpu_hw_blk_reg_map *b) { int i; for (i = 0; i < m->ctl_count; i++) { if (ctl == m->ctl[i].id) { b->base_off = addr; b->blk_off = m->ctl[i].base; b->length = m->ctl[i].len; b->hwversion = m->hwversion; b->log_mask = DPU_DBG_MASK_CTL; return &m->ctl[i]; } } return ERR_PTR(-ENOMEM); } static int _mixer_stages(const struct dpu_lm_cfg *mixer, int count, enum dpu_lm lm) { int i; int stages = -EINVAL; for (i = 0; i < count; i++) { if (lm == mixer[i].id) { stages = mixer[i].sblk->maxblendstages; break; } } return stages; } static inline u32 dpu_hw_ctl_get_flush_register(struct dpu_hw_ctl *ctx) { struct dpu_hw_blk_reg_map *c = &ctx->hw; return DPU_REG_READ(c, CTL_FLUSH); } static inline void dpu_hw_ctl_trigger_start(struct dpu_hw_ctl *ctx) { trace_dpu_hw_ctl_trigger_start(ctx->pending_flush_mask, dpu_hw_ctl_get_flush_register(ctx)); DPU_REG_WRITE(&ctx->hw, CTL_START, 0x1); } static inline void dpu_hw_ctl_trigger_pending(struct dpu_hw_ctl *ctx) { trace_dpu_hw_ctl_trigger_prepare(ctx->pending_flush_mask, dpu_hw_ctl_get_flush_register(ctx)); DPU_REG_WRITE(&ctx->hw, CTL_PREPARE, 0x1); } static inline void dpu_hw_ctl_clear_pending_flush(struct dpu_hw_ctl *ctx) { trace_dpu_hw_ctl_clear_pending_flush(ctx->pending_flush_mask, dpu_hw_ctl_get_flush_register(ctx)); ctx->pending_flush_mask = 0x0; } static inline void dpu_hw_ctl_update_pending_flush(struct dpu_hw_ctl *ctx, u32 flushbits) { trace_dpu_hw_ctl_update_pending_flush(flushbits, ctx->pending_flush_mask); ctx->pending_flush_mask |= flushbits; } static u32 dpu_hw_ctl_get_pending_flush(struct dpu_hw_ctl *ctx) { if (!ctx) return 0x0; return ctx->pending_flush_mask; } static inline void dpu_hw_ctl_trigger_flush(struct dpu_hw_ctl *ctx) { trace_dpu_hw_ctl_trigger_pending_flush(ctx->pending_flush_mask, dpu_hw_ctl_get_flush_register(ctx)); DPU_REG_WRITE(&ctx->hw, CTL_FLUSH, ctx->pending_flush_mask); } static uint32_t dpu_hw_ctl_get_bitmask_sspp(struct dpu_hw_ctl *ctx, enum dpu_sspp sspp) { uint32_t flushbits = 0; switch (sspp) { case SSPP_VIG0: flushbits = BIT(0); break; case SSPP_VIG1: flushbits = BIT(1); break; case SSPP_VIG2: flushbits = BIT(2); break; case SSPP_VIG3: flushbits = BIT(18); break; case SSPP_RGB0: flushbits = BIT(3); break; case SSPP_RGB1: flushbits = BIT(4); break; case SSPP_RGB2: flushbits = BIT(5); break; case SSPP_RGB3: flushbits = BIT(19); break; case SSPP_DMA0: flushbits = BIT(11); break; case SSPP_DMA1: flushbits = BIT(12); break; case SSPP_DMA2: flushbits = BIT(24); break; case SSPP_DMA3: flushbits = BIT(25); break; case SSPP_CURSOR0: flushbits = BIT(22); break; case SSPP_CURSOR1: flushbits = BIT(23); break; default: break; } return flushbits; } static uint32_t dpu_hw_ctl_get_bitmask_mixer(struct dpu_hw_ctl *ctx, enum dpu_lm lm) { uint32_t flushbits = 0; switch (lm) { case LM_0: flushbits = BIT(6); break; case LM_1: flushbits = BIT(7); break; case LM_2: flushbits = BIT(8); break; case LM_3: flushbits = BIT(9); break; case LM_4: flushbits = BIT(10); break; case LM_5: flushbits = BIT(20); break; default: return -EINVAL; } flushbits |= CTL_FLUSH_MASK_CTL; return flushbits; } static int dpu_hw_ctl_get_bitmask_intf(struct dpu_hw_ctl *ctx, u32 *flushbits, enum dpu_intf intf) { switch (intf) { case INTF_0: *flushbits |= BIT(31); break; case INTF_1: *flushbits |= BIT(30); break; case INTF_2: *flushbits |= BIT(29); break; case INTF_3: *flushbits |= BIT(28); break; default: return -EINVAL; } return 0; } static u32 dpu_hw_ctl_poll_reset_status(struct dpu_hw_ctl *ctx, u32 timeout_us) { struct dpu_hw_blk_reg_map *c = &ctx->hw; ktime_t timeout; u32 status; timeout = ktime_add_us(ktime_get(), timeout_us); /* * it takes around 30us to have mdp finish resetting its ctl path * poll every 50us so that reset should be completed at 1st poll */ do { status = DPU_REG_READ(c, CTL_SW_RESET); status &= 0x1; if (status) usleep_range(20, 50); } while (status && ktime_compare_safe(ktime_get(), timeout) < 0); return status; } static int dpu_hw_ctl_reset_control(struct dpu_hw_ctl *ctx) { struct dpu_hw_blk_reg_map *c = &ctx->hw; pr_debug("issuing hw ctl reset for ctl:%d\n", ctx->idx); DPU_REG_WRITE(c, CTL_SW_RESET, 0x1); if (dpu_hw_ctl_poll_reset_status(ctx, DPU_REG_RESET_TIMEOUT_US)) return -EINVAL; return 0; } static int dpu_hw_ctl_wait_reset_status(struct dpu_hw_ctl *ctx) { struct dpu_hw_blk_reg_map *c = &ctx->hw; u32 status; status = DPU_REG_READ(c, CTL_SW_RESET); status &= 0x01; if (!status) return 0; pr_debug("hw ctl reset is set for ctl:%d\n", ctx->idx); if (dpu_hw_ctl_poll_reset_status(ctx, DPU_REG_RESET_TIMEOUT_US)) { pr_err("hw recovery is not complete for ctl:%d\n", ctx->idx); return -EINVAL; } return 0; } static void dpu_hw_ctl_clear_all_blendstages(struct dpu_hw_ctl *ctx) { struct dpu_hw_blk_reg_map *c = &ctx->hw; int i; for (i = 0; i < ctx->mixer_count; i++) { DPU_REG_WRITE(c, CTL_LAYER(LM_0 + i), 0); DPU_REG_WRITE(c, CTL_LAYER_EXT(LM_0 + i), 0); DPU_REG_WRITE(c, CTL_LAYER_EXT2(LM_0 + i), 0); DPU_REG_WRITE(c, CTL_LAYER_EXT3(LM_0 + i), 0); } } static void dpu_hw_ctl_setup_blendstage(struct dpu_hw_ctl *ctx, enum dpu_lm lm, struct dpu_hw_stage_cfg *stage_cfg) { struct dpu_hw_blk_reg_map *c = &ctx->hw; u32 mixercfg = 0, mixercfg_ext = 0, mix, ext; u32 mixercfg_ext2 = 0, mixercfg_ext3 = 0; int i, j; int stages; int pipes_per_stage; stages = _mixer_stages(ctx->mixer_hw_caps, ctx->mixer_count, lm); if (stages < 0) return; if (test_bit(DPU_MIXER_SOURCESPLIT, &ctx->mixer_hw_caps->features)) pipes_per_stage = PIPES_PER_STAGE; else pipes_per_stage = 1; mixercfg = CTL_MIXER_BORDER_OUT; /* always set BORDER_OUT */ if (!stage_cfg) goto exit; for (i = 0; i <= stages; i++) { /* overflow to ext register if 'i + 1 > 7' */ mix = (i + 1) & 0x7; ext = i >= 7; for (j = 0 ; j < pipes_per_stage; j++) { enum dpu_sspp_multirect_index rect_index = stage_cfg->multirect_index[i][j]; switch (stage_cfg->stage[i][j]) { case SSPP_VIG0: if (rect_index == DPU_SSPP_RECT_1) { mixercfg_ext3 |= ((i + 1) & 0xF) << 0; } else { mixercfg |= mix << 0; mixercfg_ext |= ext << 0; } break; case SSPP_VIG1: if (rect_index == DPU_SSPP_RECT_1) { mixercfg_ext3 |= ((i + 1) & 0xF) << 4; } else { mixercfg |= mix << 3; mixercfg_ext |= ext << 2; } break; case SSPP_VIG2: if (rect_index == DPU_SSPP_RECT_1) { mixercfg_ext3 |= ((i + 1) & 0xF) << 8; } else { mixercfg |= mix << 6; mixercfg_ext |= ext << 4; } break; case SSPP_VIG3: if (rect_index == DPU_SSPP_RECT_1) { mixercfg_ext3 |= ((i + 1) & 0xF) << 12; } else { mixercfg |= mix << 26; mixercfg_ext |= ext << 6; } break; case SSPP_RGB0: mixercfg |= mix << 9; mixercfg_ext |= ext << 8; break; case SSPP_RGB1: mixercfg |= mix << 12; mixercfg_ext |= ext << 10; break; case SSPP_RGB2: mixercfg |= mix << 15; mixercfg_ext |= ext << 12; break; case SSPP_RGB3: mixercfg |= mix << 29; mixercfg_ext |= ext << 14; break; case SSPP_DMA0: if (rect_index == DPU_SSPP_RECT_1) { mixercfg_ext2 |= ((i + 1) & 0xF) << 8; } else { mixercfg |= mix << 18; mixercfg_ext |= ext << 16; } break; case SSPP_DMA1: if (rect_index == DPU_SSPP_RECT_1) { mixercfg_ext2 |= ((i + 1) & 0xF) << 12; } else { mixercfg |= mix << 21; mixercfg_ext |= ext << 18; } break; case SSPP_DMA2: if (rect_index == DPU_SSPP_RECT_1) { mixercfg_ext2 |= ((i + 1) & 0xF) << 16; } else { mix |= (i + 1) & 0xF; mixercfg_ext2 |= mix << 0; } break; case SSPP_DMA3: if (rect_index == DPU_SSPP_RECT_1) { mixercfg_ext2 |= ((i + 1) & 0xF) << 20; } else { mix |= (i + 1) & 0xF; mixercfg_ext2 |= mix << 4; } break; case SSPP_CURSOR0: mixercfg_ext |= ((i + 1) & 0xF) << 20; break; case SSPP_CURSOR1: mixercfg_ext |= ((i + 1) & 0xF) << 26; break; default: break; } } } exit: DPU_REG_WRITE(c, CTL_LAYER(lm), mixercfg); DPU_REG_WRITE(c, CTL_LAYER_EXT(lm), mixercfg_ext); DPU_REG_WRITE(c, CTL_LAYER_EXT2(lm), mixercfg_ext2); DPU_REG_WRITE(c, CTL_LAYER_EXT3(lm), mixercfg_ext3); } static void dpu_hw_ctl_intf_cfg(struct dpu_hw_ctl *ctx, struct dpu_hw_intf_cfg *cfg) { struct dpu_hw_blk_reg_map *c = &ctx->hw; u32 intf_cfg = 0; intf_cfg |= (cfg->intf & 0xF) << 4; if (cfg->mode_3d) { intf_cfg |= BIT(19); intf_cfg |= (cfg->mode_3d - 0x1) << 20; } switch (cfg->intf_mode_sel) { case DPU_CTL_MODE_SEL_VID: intf_cfg &= ~BIT(17); intf_cfg &= ~(0x3 << 15); break; case DPU_CTL_MODE_SEL_CMD: intf_cfg |= BIT(17); intf_cfg |= ((cfg->stream_sel & 0x3) << 15); break; default: pr_err("unknown interface type %d\n", cfg->intf_mode_sel); return; } DPU_REG_WRITE(c, CTL_TOP, intf_cfg); } static void _setup_ctl_ops(struct dpu_hw_ctl_ops *ops, unsigned long cap) { ops->clear_pending_flush = dpu_hw_ctl_clear_pending_flush; ops->update_pending_flush = dpu_hw_ctl_update_pending_flush; ops->get_pending_flush = dpu_hw_ctl_get_pending_flush; ops->trigger_flush = dpu_hw_ctl_trigger_flush; ops->get_flush_register = dpu_hw_ctl_get_flush_register; ops->trigger_start = dpu_hw_ctl_trigger_start; ops->trigger_pending = dpu_hw_ctl_trigger_pending; ops->setup_intf_cfg = dpu_hw_ctl_intf_cfg; ops->reset = dpu_hw_ctl_reset_control; ops->wait_reset_status = dpu_hw_ctl_wait_reset_status; ops->clear_all_blendstages = dpu_hw_ctl_clear_all_blendstages; ops->setup_blendstage = dpu_hw_ctl_setup_blendstage; ops->get_bitmask_sspp = dpu_hw_ctl_get_bitmask_sspp; ops->get_bitmask_mixer = dpu_hw_ctl_get_bitmask_mixer; ops->get_bitmask_intf = dpu_hw_ctl_get_bitmask_intf; }; static struct dpu_hw_blk_ops dpu_hw_ops; struct dpu_hw_ctl *dpu_hw_ctl_init(enum dpu_ctl idx, void __iomem *addr, struct dpu_mdss_cfg *m) { struct dpu_hw_ctl *c; struct dpu_ctl_cfg *cfg; c = kzalloc(sizeof(*c), GFP_KERNEL); if (!c) return ERR_PTR(-ENOMEM); cfg = _ctl_offset(idx, m, addr, &c->hw); if (IS_ERR_OR_NULL(cfg)) { kfree(c); pr_err("failed to create dpu_hw_ctl %d\n", idx); return ERR_PTR(-EINVAL); } c->caps = cfg; _setup_ctl_ops(&c->ops, c->caps->features); c->idx = idx; c->mixer_count = m->mixer_count; c->mixer_hw_caps = m->mixer; dpu_hw_blk_init(&c->base, DPU_HW_BLK_CTL, idx, &dpu_hw_ops); return c; } void dpu_hw_ctl_destroy(struct dpu_hw_ctl *ctx) { if (ctx) dpu_hw_blk_destroy(&ctx->base); kfree(ctx); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1