Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alexandre Courbot | 4500 | 95.20% | 35 | 87.50% |
Ben Skeggs | 136 | 2.88% | 3 | 7.50% |
Kees Cook | 86 | 1.82% | 1 | 2.50% |
Gustavo A. R. Silva | 5 | 0.11% | 1 | 2.50% |
Total | 4727 | 40 |
/* * Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "acr_r352.h" #include "hs_ucode.h" #include <core/gpuobj.h> #include <core/firmware.h> #include <engine/falcon.h> #include <subdev/pmu.h> #include <core/msgqueue.h> #include <engine/sec2.h> /** * struct acr_r352_flcn_bl_desc - DMEM bootloader descriptor * @signature: 16B signature for secure code. 0s if no secure code * @ctx_dma: DMA context to be used by BL while loading code/data * @code_dma_base: 256B-aligned Physical FB Address where code is located * (falcon's $xcbase register) * @non_sec_code_off: offset from code_dma_base where the non-secure code is * located. The offset must be multiple of 256 to help perf * @non_sec_code_size: the size of the nonSecure code part. * @sec_code_off: offset from code_dma_base where the secure code is * located. The offset must be multiple of 256 to help perf * @sec_code_size: offset from code_dma_base where the secure code is * located. The offset must be multiple of 256 to help perf * @code_entry_point: code entry point which will be invoked by BL after * code is loaded. * @data_dma_base: 256B aligned Physical FB Address where data is located. * (falcon's $xdbase register) * @data_size: size of data block. Should be multiple of 256B * * Structure used by the bootloader to load the rest of the code. This has * to be filled by host and copied into DMEM at offset provided in the * hsflcn_bl_desc.bl_desc_dmem_load_off. */ struct acr_r352_flcn_bl_desc { u32 reserved[4]; u32 signature[4]; u32 ctx_dma; u32 code_dma_base; u32 non_sec_code_off; u32 non_sec_code_size; u32 sec_code_off; u32 sec_code_size; u32 code_entry_point; u32 data_dma_base; u32 data_size; u32 code_dma_base1; u32 data_dma_base1; }; /** * acr_r352_generate_flcn_bl_desc - generate generic BL descriptor for LS image */ static void acr_r352_generate_flcn_bl_desc(const struct nvkm_acr *acr, const struct ls_ucode_img *img, u64 wpr_addr, void *_desc) { struct acr_r352_flcn_bl_desc *desc = _desc; const struct ls_ucode_img_desc *pdesc = &img->ucode_desc; u64 base, addr_code, addr_data; base = wpr_addr + img->ucode_off + pdesc->app_start_offset; addr_code = (base + pdesc->app_resident_code_offset) >> 8; addr_data = (base + pdesc->app_resident_data_offset) >> 8; desc->ctx_dma = FALCON_DMAIDX_UCODE; desc->code_dma_base = lower_32_bits(addr_code); desc->code_dma_base1 = upper_32_bits(addr_code); desc->non_sec_code_off = pdesc->app_resident_code_offset; desc->non_sec_code_size = pdesc->app_resident_code_size; desc->code_entry_point = pdesc->app_imem_entry; desc->data_dma_base = lower_32_bits(addr_data); desc->data_dma_base1 = upper_32_bits(addr_data); desc->data_size = pdesc->app_resident_data_size; } /** * struct hsflcn_acr_desc - data section of the HS firmware * * This header is to be copied at the beginning of DMEM by the HS bootloader. * * @signature: signature of ACR ucode * @wpr_region_id: region ID holding the WPR header and its details * @wpr_offset: offset from the WPR region holding the wpr header * @regions: region descriptors * @nonwpr_ucode_blob_size: size of LS blob * @nonwpr_ucode_blob_start: FB location of LS blob is */ struct hsflcn_acr_desc { union { u8 reserved_dmem[0x200]; u32 signatures[4]; } ucode_reserved_space; u32 wpr_region_id; u32 wpr_offset; u32 mmu_mem_range; #define FLCN_ACR_MAX_REGIONS 2 struct { u32 no_regions; struct { u32 start_addr; u32 end_addr; u32 region_id; u32 read_mask; u32 write_mask; u32 client_mask; } region_props[FLCN_ACR_MAX_REGIONS]; } regions; u32 ucode_blob_size; u64 ucode_blob_base __aligned(8); struct { u32 vpr_enabled; u32 vpr_start; u32 vpr_end; u32 hdcp_policies; } vpr_desc; }; /* * Low-secure blob creation */ /** * struct acr_r352_lsf_lsb_header - LS firmware header * @signature: signature to verify the firmware against * @ucode_off: offset of the ucode blob in the WPR region. The ucode * blob contains the bootloader, code and data of the * LS falcon * @ucode_size: size of the ucode blob, including bootloader * @data_size: size of the ucode blob data * @bl_code_size: size of the bootloader code * @bl_imem_off: offset in imem of the bootloader * @bl_data_off: offset of the bootloader data in WPR region * @bl_data_size: size of the bootloader data * @app_code_off: offset of the app code relative to ucode_off * @app_code_size: size of the app code * @app_data_off: offset of the app data relative to ucode_off * @app_data_size: size of the app data * @flags: flags for the secure bootloader * * This structure is written into the WPR region for each managed falcon. Each * instance is referenced by the lsb_offset member of the corresponding * lsf_wpr_header. */ struct acr_r352_lsf_lsb_header { /** * LS falcon signatures * @prd_keys: signature to use in production mode * @dgb_keys: signature to use in debug mode * @b_prd_present: whether the production key is present * @b_dgb_present: whether the debug key is present * @falcon_id: ID of the falcon the ucode applies to */ struct { u8 prd_keys[2][16]; u8 dbg_keys[2][16]; u32 b_prd_present; u32 b_dbg_present; u32 falcon_id; } signature; u32 ucode_off; u32 ucode_size; u32 data_size; u32 bl_code_size; u32 bl_imem_off; u32 bl_data_off; u32 bl_data_size; u32 app_code_off; u32 app_code_size; u32 app_data_off; u32 app_data_size; u32 flags; }; /** * struct acr_r352_lsf_wpr_header - LS blob WPR Header * @falcon_id: LS falcon ID * @lsb_offset: offset of the lsb_lsf_header in the WPR region * @bootstrap_owner: secure falcon reponsible for bootstrapping the LS falcon * @lazy_bootstrap: skip bootstrapping by ACR * @status: bootstrapping status * * An array of these is written at the beginning of the WPR region, one for * each managed falcon. The array is terminated by an instance which falcon_id * is LSF_FALCON_ID_INVALID. */ struct acr_r352_lsf_wpr_header { u32 falcon_id; u32 lsb_offset; u32 bootstrap_owner; u32 lazy_bootstrap; u32 status; #define LSF_IMAGE_STATUS_NONE 0 #define LSF_IMAGE_STATUS_COPY 1 #define LSF_IMAGE_STATUS_VALIDATION_CODE_FAILED 2 #define LSF_IMAGE_STATUS_VALIDATION_DATA_FAILED 3 #define LSF_IMAGE_STATUS_VALIDATION_DONE 4 #define LSF_IMAGE_STATUS_VALIDATION_SKIPPED 5 #define LSF_IMAGE_STATUS_BOOTSTRAP_READY 6 }; /** * struct ls_ucode_img_r352 - ucode image augmented with r352 headers */ struct ls_ucode_img_r352 { struct ls_ucode_img base; const struct acr_r352_lsf_func *func; struct acr_r352_lsf_wpr_header wpr_header; struct acr_r352_lsf_lsb_header lsb_header; }; #define ls_ucode_img_r352(i) container_of(i, struct ls_ucode_img_r352, base) /** * ls_ucode_img_load() - create a lsf_ucode_img and load it */ struct ls_ucode_img * acr_r352_ls_ucode_img_load(const struct acr_r352 *acr, const struct nvkm_secboot *sb, enum nvkm_secboot_falcon falcon_id) { const struct nvkm_subdev *subdev = acr->base.subdev; const struct acr_r352_ls_func *func = acr->func->ls_func[falcon_id]; struct ls_ucode_img_r352 *img; int ret; img = kzalloc(sizeof(*img), GFP_KERNEL); if (!img) return ERR_PTR(-ENOMEM); img->base.falcon_id = falcon_id; ret = func->load(sb, func->version_max, &img->base); if (ret < 0) { kfree(img->base.ucode_data); kfree(img->base.sig); kfree(img); return ERR_PTR(ret); } img->func = func->version[ret]; /* Check that the signature size matches our expectations... */ if (img->base.sig_size != sizeof(img->lsb_header.signature)) { nvkm_error(subdev, "invalid signature size for %s falcon!\n", nvkm_secboot_falcon_name[falcon_id]); return ERR_PTR(-EINVAL); } /* Copy signature to the right place */ memcpy(&img->lsb_header.signature, img->base.sig, img->base.sig_size); /* not needed? the signature should already have the right value */ img->lsb_header.signature.falcon_id = falcon_id; return &img->base; } #define LSF_LSB_HEADER_ALIGN 256 #define LSF_BL_DATA_ALIGN 256 #define LSF_BL_DATA_SIZE_ALIGN 256 #define LSF_BL_CODE_SIZE_ALIGN 256 #define LSF_UCODE_DATA_ALIGN 4096 /** * acr_r352_ls_img_fill_headers - fill the WPR and LSB headers of an image * @acr: ACR to use * @img: image to generate for * @offset: offset in the WPR region where this image starts * * Allocate space in the WPR area from offset and write the WPR and LSB headers * accordingly. * * Return: offset at the end of this image. */ static u32 acr_r352_ls_img_fill_headers(struct acr_r352 *acr, struct ls_ucode_img_r352 *img, u32 offset) { struct ls_ucode_img *_img = &img->base; struct acr_r352_lsf_wpr_header *whdr = &img->wpr_header; struct acr_r352_lsf_lsb_header *lhdr = &img->lsb_header; struct ls_ucode_img_desc *desc = &_img->ucode_desc; const struct acr_r352_lsf_func *func = img->func; /* Fill WPR header */ whdr->falcon_id = _img->falcon_id; whdr->bootstrap_owner = acr->base.boot_falcon; whdr->status = LSF_IMAGE_STATUS_COPY; /* Skip bootstrapping falcons started by someone else than ACR */ if (acr->lazy_bootstrap & BIT(_img->falcon_id)) whdr->lazy_bootstrap = 1; /* Align, save off, and include an LSB header size */ offset = ALIGN(offset, LSF_LSB_HEADER_ALIGN); whdr->lsb_offset = offset; offset += sizeof(*lhdr); /* * Align, save off, and include the original (static) ucode * image size */ offset = ALIGN(offset, LSF_UCODE_DATA_ALIGN); _img->ucode_off = lhdr->ucode_off = offset; offset += _img->ucode_size; /* * For falcons that use a boot loader (BL), we append a loader * desc structure on the end of the ucode image and consider * this the boot loader data. The host will then copy the loader * desc args to this space within the WPR region (before locking * down) and the HS bin will then copy them to DMEM 0 for the * loader. */ lhdr->bl_code_size = ALIGN(desc->bootloader_size, LSF_BL_CODE_SIZE_ALIGN); lhdr->ucode_size = ALIGN(desc->app_resident_data_offset, LSF_BL_CODE_SIZE_ALIGN) + lhdr->bl_code_size; lhdr->data_size = ALIGN(desc->app_size, LSF_BL_CODE_SIZE_ALIGN) + lhdr->bl_code_size - lhdr->ucode_size; /* * Though the BL is located at 0th offset of the image, the VA * is different to make sure that it doesn't collide the actual * OS VA range */ lhdr->bl_imem_off = desc->bootloader_imem_offset; lhdr->app_code_off = desc->app_start_offset + desc->app_resident_code_offset; lhdr->app_code_size = desc->app_resident_code_size; lhdr->app_data_off = desc->app_start_offset + desc->app_resident_data_offset; lhdr->app_data_size = desc->app_resident_data_size; lhdr->flags = func->lhdr_flags; if (_img->falcon_id == acr->base.boot_falcon) lhdr->flags |= LSF_FLAG_DMACTL_REQ_CTX; /* Align and save off BL descriptor size */ lhdr->bl_data_size = ALIGN(func->bl_desc_size, LSF_BL_DATA_SIZE_ALIGN); /* * Align, save off, and include the additional BL data */ offset = ALIGN(offset, LSF_BL_DATA_ALIGN); lhdr->bl_data_off = offset; offset += lhdr->bl_data_size; return offset; } /** * acr_r352_ls_fill_headers - fill WPR and LSB headers of all managed images */ int acr_r352_ls_fill_headers(struct acr_r352 *acr, struct list_head *imgs) { struct ls_ucode_img_r352 *img; struct list_head *l; u32 count = 0; u32 offset; /* Count the number of images to manage */ list_for_each(l, imgs) count++; /* * Start with an array of WPR headers at the base of the WPR. * The expectation here is that the secure falcon will do a single DMA * read of this array and cache it internally so it's ok to pack these. * Also, we add 1 to the falcon count to indicate the end of the array. */ offset = sizeof(img->wpr_header) * (count + 1); /* * Walk the managed falcons, accounting for the LSB structs * as well as the ucode images. */ list_for_each_entry(img, imgs, base.node) { offset = acr_r352_ls_img_fill_headers(acr, img, offset); } return offset; } /** * acr_r352_ls_write_wpr - write the WPR blob contents */ int acr_r352_ls_write_wpr(struct acr_r352 *acr, struct list_head *imgs, struct nvkm_gpuobj *wpr_blob, u64 wpr_addr) { struct ls_ucode_img *_img; u32 pos = 0; u32 max_desc_size = 0; u8 *gdesc; /* Figure out how large we need gdesc to be. */ list_for_each_entry(_img, imgs, node) { struct ls_ucode_img_r352 *img = ls_ucode_img_r352(_img); const struct acr_r352_lsf_func *ls_func = img->func; max_desc_size = max(max_desc_size, ls_func->bl_desc_size); } gdesc = kmalloc(max_desc_size, GFP_KERNEL); if (!gdesc) return -ENOMEM; nvkm_kmap(wpr_blob); list_for_each_entry(_img, imgs, node) { struct ls_ucode_img_r352 *img = ls_ucode_img_r352(_img); const struct acr_r352_lsf_func *ls_func = img->func; nvkm_gpuobj_memcpy_to(wpr_blob, pos, &img->wpr_header, sizeof(img->wpr_header)); nvkm_gpuobj_memcpy_to(wpr_blob, img->wpr_header.lsb_offset, &img->lsb_header, sizeof(img->lsb_header)); /* Generate and write BL descriptor */ memset(gdesc, 0, ls_func->bl_desc_size); ls_func->generate_bl_desc(&acr->base, _img, wpr_addr, gdesc); nvkm_gpuobj_memcpy_to(wpr_blob, img->lsb_header.bl_data_off, gdesc, ls_func->bl_desc_size); /* Copy ucode */ nvkm_gpuobj_memcpy_to(wpr_blob, img->lsb_header.ucode_off, _img->ucode_data, _img->ucode_size); pos += sizeof(img->wpr_header); } nvkm_wo32(wpr_blob, pos, NVKM_SECBOOT_FALCON_INVALID); nvkm_done(wpr_blob); kfree(gdesc); return 0; } /* Both size and address of WPR need to be 256K-aligned */ #define WPR_ALIGNMENT 0x40000 /** * acr_r352_prepare_ls_blob() - prepare the LS blob * * For each securely managed falcon, load the FW, signatures and bootloaders and * prepare a ucode blob. Then, compute the offsets in the WPR region for each * blob, and finally write the headers and ucode blobs into a GPU object that * will be copied into the WPR region by the HS firmware. */ static int acr_r352_prepare_ls_blob(struct acr_r352 *acr, struct nvkm_secboot *sb) { const struct nvkm_subdev *subdev = acr->base.subdev; struct list_head imgs; struct ls_ucode_img *img, *t; unsigned long managed_falcons = acr->base.managed_falcons; u64 wpr_addr = sb->wpr_addr; u32 wpr_size = sb->wpr_size; int managed_count = 0; u32 image_wpr_size, ls_blob_size; int falcon_id; int ret; INIT_LIST_HEAD(&imgs); /* Load all LS blobs */ for_each_set_bit(falcon_id, &managed_falcons, NVKM_SECBOOT_FALCON_END) { struct ls_ucode_img *img; img = acr->func->ls_ucode_img_load(acr, sb, falcon_id); if (IS_ERR(img)) { if (acr->base.optional_falcons & BIT(falcon_id)) { managed_falcons &= ~BIT(falcon_id); nvkm_info(subdev, "skipping %s falcon...\n", nvkm_secboot_falcon_name[falcon_id]); continue; } ret = PTR_ERR(img); goto cleanup; } list_add_tail(&img->node, &imgs); managed_count++; } /* Commit the actual list of falcons we will manage from now on */ acr->base.managed_falcons = managed_falcons; /* * If the boot falcon has a firmare, let it manage the bootstrap of other * falcons. */ if (acr->func->ls_func[acr->base.boot_falcon] && (managed_falcons & BIT(acr->base.boot_falcon))) { for_each_set_bit(falcon_id, &managed_falcons, NVKM_SECBOOT_FALCON_END) { if (falcon_id == acr->base.boot_falcon) continue; acr->lazy_bootstrap |= BIT(falcon_id); } } /* * Fill the WPR and LSF headers with the right offsets and compute * required WPR size */ image_wpr_size = acr->func->ls_fill_headers(acr, &imgs); image_wpr_size = ALIGN(image_wpr_size, WPR_ALIGNMENT); ls_blob_size = image_wpr_size; /* * If we need a shadow area, allocate twice the size and use the * upper half as WPR */ if (wpr_size == 0 && acr->func->shadow_blob) ls_blob_size *= 2; /* Allocate GPU object that will contain the WPR region */ ret = nvkm_gpuobj_new(subdev->device, ls_blob_size, WPR_ALIGNMENT, false, NULL, &acr->ls_blob); if (ret) goto cleanup; nvkm_debug(subdev, "%d managed LS falcons, WPR size is %d bytes\n", managed_count, image_wpr_size); /* If WPR address and size are not fixed, set them to fit the LS blob */ if (wpr_size == 0) { wpr_addr = acr->ls_blob->addr; if (acr->func->shadow_blob) wpr_addr += acr->ls_blob->size / 2; wpr_size = image_wpr_size; /* * But if the WPR region is set by the bootloader, it is illegal for * the HS blob to be larger than this region. */ } else if (image_wpr_size > wpr_size) { nvkm_error(subdev, "WPR region too small for FW blob!\n"); nvkm_error(subdev, "required: %dB\n", image_wpr_size); nvkm_error(subdev, "available: %dB\n", wpr_size); ret = -ENOSPC; goto cleanup; } /* Write LS blob */ ret = acr->func->ls_write_wpr(acr, &imgs, acr->ls_blob, wpr_addr); if (ret) nvkm_gpuobj_del(&acr->ls_blob); cleanup: list_for_each_entry_safe(img, t, &imgs, node) { kfree(img->ucode_data); kfree(img->sig); kfree(img); } return ret; } void acr_r352_fixup_hs_desc(struct acr_r352 *acr, struct nvkm_secboot *sb, void *_desc) { struct hsflcn_acr_desc *desc = _desc; struct nvkm_gpuobj *ls_blob = acr->ls_blob; /* WPR region information if WPR is not fixed */ if (sb->wpr_size == 0) { u64 wpr_start = ls_blob->addr; u64 wpr_end = wpr_start + ls_blob->size; desc->wpr_region_id = 1; desc->regions.no_regions = 2; desc->regions.region_props[0].start_addr = wpr_start >> 8; desc->regions.region_props[0].end_addr = wpr_end >> 8; desc->regions.region_props[0].region_id = 1; desc->regions.region_props[0].read_mask = 0xf; desc->regions.region_props[0].write_mask = 0xc; desc->regions.region_props[0].client_mask = 0x2; } else { desc->ucode_blob_base = ls_blob->addr; desc->ucode_blob_size = ls_blob->size; } } static void acr_r352_generate_hs_bl_desc(const struct hsf_load_header *hdr, void *_bl_desc, u64 offset) { struct acr_r352_flcn_bl_desc *bl_desc = _bl_desc; u64 addr_code, addr_data; addr_code = offset >> 8; addr_data = (offset + hdr->data_dma_base) >> 8; bl_desc->ctx_dma = FALCON_DMAIDX_VIRT; bl_desc->code_dma_base = lower_32_bits(addr_code); bl_desc->non_sec_code_off = hdr->non_sec_code_off; bl_desc->non_sec_code_size = hdr->non_sec_code_size; bl_desc->sec_code_off = hsf_load_header_app_off(hdr, 0); bl_desc->sec_code_size = hsf_load_header_app_size(hdr, 0); bl_desc->code_entry_point = 0; bl_desc->data_dma_base = lower_32_bits(addr_data); bl_desc->data_size = hdr->data_size; } /** * acr_r352_prepare_hs_blob - load and prepare a HS blob and BL descriptor * * @sb secure boot instance to prepare for * @fw name of the HS firmware to load * @blob pointer to gpuobj that will be allocated to receive the HS FW payload * @bl_desc pointer to the BL descriptor to write for this firmware * @patch whether we should patch the HS descriptor (only for HS loaders) */ static int acr_r352_prepare_hs_blob(struct acr_r352 *acr, struct nvkm_secboot *sb, const char *fw, struct nvkm_gpuobj **blob, struct hsf_load_header *load_header, bool patch) { struct nvkm_subdev *subdev = &sb->subdev; void *acr_image; struct fw_bin_header *hsbin_hdr; struct hsf_fw_header *fw_hdr; struct hsf_load_header *load_hdr; void *acr_data; int ret; acr_image = hs_ucode_load_blob(subdev, sb->boot_falcon, fw); if (IS_ERR(acr_image)) return PTR_ERR(acr_image); hsbin_hdr = acr_image; fw_hdr = acr_image + hsbin_hdr->header_offset; load_hdr = acr_image + fw_hdr->hdr_offset; acr_data = acr_image + hsbin_hdr->data_offset; /* Patch descriptor with WPR information? */ if (patch) { struct hsflcn_acr_desc *desc; desc = acr_data + load_hdr->data_dma_base; acr->func->fixup_hs_desc(acr, sb, desc); } if (load_hdr->num_apps > ACR_R352_MAX_APPS) { nvkm_error(subdev, "more apps (%d) than supported (%d)!", load_hdr->num_apps, ACR_R352_MAX_APPS); ret = -EINVAL; goto cleanup; } memcpy(load_header, load_hdr, sizeof(*load_header) + (sizeof(load_hdr->apps[0]) * 2 * load_hdr->num_apps)); /* Create ACR blob and copy HS data to it */ ret = nvkm_gpuobj_new(subdev->device, ALIGN(hsbin_hdr->data_size, 256), 0x1000, false, NULL, blob); if (ret) goto cleanup; nvkm_kmap(*blob); nvkm_gpuobj_memcpy_to(*blob, 0, acr_data, hsbin_hdr->data_size); nvkm_done(*blob); cleanup: kfree(acr_image); return ret; } /** * acr_r352_load_blobs - load blobs common to all ACR V1 versions. * * This includes the LS blob, HS ucode loading blob, and HS bootloader. * * The HS ucode unload blob is only used on dGPU if the WPR region is variable. */ int acr_r352_load_blobs(struct acr_r352 *acr, struct nvkm_secboot *sb) { struct nvkm_subdev *subdev = &sb->subdev; int ret; /* Firmware already loaded? */ if (acr->firmware_ok) return 0; /* Load and prepare the managed falcon's firmwares */ ret = acr_r352_prepare_ls_blob(acr, sb); if (ret) return ret; /* Load the HS firmware that will load the LS firmwares */ if (!acr->load_blob) { ret = acr_r352_prepare_hs_blob(acr, sb, "acr/ucode_load", &acr->load_blob, &acr->load_bl_header, true); if (ret) return ret; } /* If the ACR region is dynamically programmed, we need an unload FW */ if (sb->wpr_size == 0) { ret = acr_r352_prepare_hs_blob(acr, sb, "acr/ucode_unload", &acr->unload_blob, &acr->unload_bl_header, false); if (ret) return ret; } /* Load the HS firmware bootloader */ if (!acr->hsbl_blob) { acr->hsbl_blob = nvkm_acr_load_firmware(subdev, "acr/bl", 0); if (IS_ERR(acr->hsbl_blob)) { ret = PTR_ERR(acr->hsbl_blob); acr->hsbl_blob = NULL; return ret; } if (acr->base.boot_falcon != NVKM_SECBOOT_FALCON_PMU) { acr->hsbl_unload_blob = nvkm_acr_load_firmware(subdev, "acr/unload_bl", 0); if (IS_ERR(acr->hsbl_unload_blob)) { ret = PTR_ERR(acr->hsbl_unload_blob); acr->hsbl_unload_blob = NULL; return ret; } } else { acr->hsbl_unload_blob = acr->hsbl_blob; } } acr->firmware_ok = true; nvkm_debug(&sb->subdev, "LS blob successfully created\n"); return 0; } /** * acr_r352_load() - prepare HS falcon to run the specified blob, mapped. * * Returns the start address to use, or a negative error value. */ static int acr_r352_load(struct nvkm_acr *_acr, struct nvkm_falcon *falcon, struct nvkm_gpuobj *blob, u64 offset) { struct acr_r352 *acr = acr_r352(_acr); const u32 bl_desc_size = acr->func->hs_bl_desc_size; const struct hsf_load_header *load_hdr; struct fw_bin_header *bl_hdr; struct fw_bl_desc *hsbl_desc; void *bl, *blob_data, *hsbl_code, *hsbl_data; u32 code_size; u8 *bl_desc; bl_desc = kzalloc(bl_desc_size, GFP_KERNEL); if (!bl_desc) return -ENOMEM; /* Find the bootloader descriptor for our blob and copy it */ if (blob == acr->load_blob) { load_hdr = &acr->load_bl_header; bl = acr->hsbl_blob; } else if (blob == acr->unload_blob) { load_hdr = &acr->unload_bl_header; bl = acr->hsbl_unload_blob; } else { nvkm_error(_acr->subdev, "invalid secure boot blob!\n"); kfree(bl_desc); return -EINVAL; } bl_hdr = bl; hsbl_desc = bl + bl_hdr->header_offset; blob_data = bl + bl_hdr->data_offset; hsbl_code = blob_data + hsbl_desc->code_off; hsbl_data = blob_data + hsbl_desc->data_off; code_size = ALIGN(hsbl_desc->code_size, 256); /* * Copy HS bootloader data */ nvkm_falcon_load_dmem(falcon, hsbl_data, 0x0, hsbl_desc->data_size, 0); /* Copy HS bootloader code to end of IMEM */ nvkm_falcon_load_imem(falcon, hsbl_code, falcon->code.limit - code_size, code_size, hsbl_desc->start_tag, 0, false); /* Generate the BL header */ acr->func->generate_hs_bl_desc(load_hdr, bl_desc, offset); /* * Copy HS BL header where the HS descriptor expects it to be */ nvkm_falcon_load_dmem(falcon, bl_desc, hsbl_desc->dmem_load_off, bl_desc_size, 0); kfree(bl_desc); return hsbl_desc->start_tag << 8; } static int acr_r352_shutdown(struct acr_r352 *acr, struct nvkm_secboot *sb) { struct nvkm_subdev *subdev = &sb->subdev; int i; /* Run the unload blob to unprotect the WPR region */ if (acr->unload_blob && sb->wpr_set) { int ret; nvkm_debug(subdev, "running HS unload blob\n"); ret = sb->func->run_blob(sb, acr->unload_blob, sb->halt_falcon); if (ret < 0) return ret; /* * Unload blob will return this error code - it is not an error * and the expected behavior on RM as well */ if (ret && ret != 0x1d) { nvkm_error(subdev, "HS unload failed, ret 0x%08x\n", ret); return -EINVAL; } nvkm_debug(subdev, "HS unload blob completed\n"); } for (i = 0; i < NVKM_SECBOOT_FALCON_END; i++) acr->falcon_state[i] = NON_SECURE; sb->wpr_set = false; return 0; } /** * Check if the WPR region has been indeed set by the ACR firmware, and * matches where it should be. */ static bool acr_r352_wpr_is_set(const struct acr_r352 *acr, const struct nvkm_secboot *sb) { const struct nvkm_subdev *subdev = &sb->subdev; const struct nvkm_device *device = subdev->device; u64 wpr_lo, wpr_hi; u64 wpr_range_lo, wpr_range_hi; nvkm_wr32(device, 0x100cd4, 0x2); wpr_lo = (nvkm_rd32(device, 0x100cd4) & ~0xff); wpr_lo <<= 8; nvkm_wr32(device, 0x100cd4, 0x3); wpr_hi = (nvkm_rd32(device, 0x100cd4) & ~0xff); wpr_hi <<= 8; if (sb->wpr_size != 0) { wpr_range_lo = sb->wpr_addr; wpr_range_hi = wpr_range_lo + sb->wpr_size; } else { wpr_range_lo = acr->ls_blob->addr; wpr_range_hi = wpr_range_lo + acr->ls_blob->size; } return (wpr_lo >= wpr_range_lo && wpr_lo < wpr_range_hi && wpr_hi > wpr_range_lo && wpr_hi <= wpr_range_hi); } static int acr_r352_bootstrap(struct acr_r352 *acr, struct nvkm_secboot *sb) { const struct nvkm_subdev *subdev = &sb->subdev; unsigned long managed_falcons = acr->base.managed_falcons; int falcon_id; int ret; if (sb->wpr_set) return 0; /* Make sure all blobs are ready */ ret = acr_r352_load_blobs(acr, sb); if (ret) return ret; nvkm_debug(subdev, "running HS load blob\n"); ret = sb->func->run_blob(sb, acr->load_blob, sb->boot_falcon); /* clear halt interrupt */ nvkm_falcon_clear_interrupt(sb->boot_falcon, 0x10); sb->wpr_set = acr_r352_wpr_is_set(acr, sb); if (ret < 0) { return ret; } else if (ret > 0) { nvkm_error(subdev, "HS load failed, ret 0x%08x\n", ret); return -EINVAL; } nvkm_debug(subdev, "HS load blob completed\n"); /* WPR must be set at this point */ if (!sb->wpr_set) { nvkm_error(subdev, "ACR blob completed but WPR not set!\n"); return -EINVAL; } /* Run LS firmwares post_run hooks */ for_each_set_bit(falcon_id, &managed_falcons, NVKM_SECBOOT_FALCON_END) { const struct acr_r352_ls_func *func = acr->func->ls_func[falcon_id]; if (func->post_run) { ret = func->post_run(&acr->base, sb); if (ret) return ret; } } return 0; } /** * acr_r352_reset_nopmu - dummy reset method when no PMU firmware is loaded * * Reset is done by re-executing secure boot from scratch, with lazy bootstrap * disabled. This has the effect of making all managed falcons ready-to-run. */ static int acr_r352_reset_nopmu(struct acr_r352 *acr, struct nvkm_secboot *sb, unsigned long falcon_mask) { int falcon; int ret; /* * Perform secure boot each time we are called on FECS. Since only FECS * and GPCCS are managed and started together, this ought to be safe. */ if (!(falcon_mask & BIT(NVKM_SECBOOT_FALCON_FECS))) goto end; ret = acr_r352_shutdown(acr, sb); if (ret) return ret; ret = acr_r352_bootstrap(acr, sb); if (ret) return ret; end: for_each_set_bit(falcon, &falcon_mask, NVKM_SECBOOT_FALCON_END) { acr->falcon_state[falcon] = RESET; } return 0; } /* * acr_r352_reset() - execute secure boot from the prepared state * * Load the HS bootloader and ask the falcon to run it. This will in turn * load the HS firmware and run it, so once the falcon stops all the managed * falcons should have their LS firmware loaded and be ready to run. */ static int acr_r352_reset(struct nvkm_acr *_acr, struct nvkm_secboot *sb, unsigned long falcon_mask) { struct acr_r352 *acr = acr_r352(_acr); struct nvkm_msgqueue *queue; int falcon; bool wpr_already_set = sb->wpr_set; int ret; /* Make sure secure boot is performed */ ret = acr_r352_bootstrap(acr, sb); if (ret) return ret; /* No PMU interface? */ if (!nvkm_secboot_is_managed(sb, _acr->boot_falcon)) { /* Redo secure boot entirely if it was already done */ if (wpr_already_set) return acr_r352_reset_nopmu(acr, sb, falcon_mask); /* Else return the result of the initial invokation */ else return ret; } switch (_acr->boot_falcon) { case NVKM_SECBOOT_FALCON_PMU: queue = sb->subdev.device->pmu->queue; break; case NVKM_SECBOOT_FALCON_SEC2: queue = sb->subdev.device->sec2->queue; break; default: return -EINVAL; } /* Otherwise just ask the LS firmware to reset the falcon */ for_each_set_bit(falcon, &falcon_mask, NVKM_SECBOOT_FALCON_END) nvkm_debug(&sb->subdev, "resetting %s falcon\n", nvkm_secboot_falcon_name[falcon]); ret = nvkm_msgqueue_acr_boot_falcons(queue, falcon_mask); if (ret) { nvkm_error(&sb->subdev, "error during falcon reset: %d\n", ret); return ret; } nvkm_debug(&sb->subdev, "falcon reset done\n"); return 0; } static int acr_r352_fini(struct nvkm_acr *_acr, struct nvkm_secboot *sb, bool suspend) { struct acr_r352 *acr = acr_r352(_acr); return acr_r352_shutdown(acr, sb); } static void acr_r352_dtor(struct nvkm_acr *_acr) { struct acr_r352 *acr = acr_r352(_acr); nvkm_gpuobj_del(&acr->unload_blob); if (_acr->boot_falcon != NVKM_SECBOOT_FALCON_PMU) kfree(acr->hsbl_unload_blob); kfree(acr->hsbl_blob); nvkm_gpuobj_del(&acr->load_blob); nvkm_gpuobj_del(&acr->ls_blob); kfree(acr); } static const struct acr_r352_lsf_func acr_r352_ls_fecs_func_0 = { .generate_bl_desc = acr_r352_generate_flcn_bl_desc, .bl_desc_size = sizeof(struct acr_r352_flcn_bl_desc), }; const struct acr_r352_ls_func acr_r352_ls_fecs_func = { .load = acr_ls_ucode_load_fecs, .version_max = 0, .version = { &acr_r352_ls_fecs_func_0, } }; static const struct acr_r352_lsf_func acr_r352_ls_gpccs_func_0 = { .generate_bl_desc = acr_r352_generate_flcn_bl_desc, .bl_desc_size = sizeof(struct acr_r352_flcn_bl_desc), /* GPCCS will be loaded using PRI */ .lhdr_flags = LSF_FLAG_FORCE_PRIV_LOAD, }; const struct acr_r352_ls_func acr_r352_ls_gpccs_func = { .load = acr_ls_ucode_load_gpccs, .version_max = 0, .version = { &acr_r352_ls_gpccs_func_0, } }; /** * struct acr_r352_pmu_bl_desc - PMU DMEM bootloader descriptor * @dma_idx: DMA context to be used by BL while loading code/data * @code_dma_base: 256B-aligned Physical FB Address where code is located * @total_code_size: total size of the code part in the ucode * @code_size_to_load: size of the code part to load in PMU IMEM. * @code_entry_point: entry point in the code. * @data_dma_base: Physical FB address where data part of ucode is located * @data_size: Total size of the data portion. * @overlay_dma_base: Physical Fb address for resident code present in ucode * @argc: Total number of args * @argv: offset where args are copied into PMU's DMEM. * * Structure used by the PMU bootloader to load the rest of the code */ struct acr_r352_pmu_bl_desc { u32 dma_idx; u32 code_dma_base; u32 code_size_total; u32 code_size_to_load; u32 code_entry_point; u32 data_dma_base; u32 data_size; u32 overlay_dma_base; u32 argc; u32 argv; u16 code_dma_base1; u16 data_dma_base1; u16 overlay_dma_base1; }; /** * acr_r352_generate_pmu_bl_desc() - populate a DMEM BL descriptor for PMU LS image * */ static void acr_r352_generate_pmu_bl_desc(const struct nvkm_acr *acr, const struct ls_ucode_img *img, u64 wpr_addr, void *_desc) { const struct ls_ucode_img_desc *pdesc = &img->ucode_desc; const struct nvkm_pmu *pmu = acr->subdev->device->pmu; struct acr_r352_pmu_bl_desc *desc = _desc; u64 base; u64 addr_code; u64 addr_data; u32 addr_args; base = wpr_addr + img->ucode_off + pdesc->app_start_offset; addr_code = (base + pdesc->app_resident_code_offset) >> 8; addr_data = (base + pdesc->app_resident_data_offset) >> 8; addr_args = pmu->falcon->data.limit; addr_args -= NVKM_MSGQUEUE_CMDLINE_SIZE; desc->dma_idx = FALCON_DMAIDX_UCODE; desc->code_dma_base = lower_32_bits(addr_code); desc->code_dma_base1 = upper_32_bits(addr_code); desc->code_size_total = pdesc->app_size; desc->code_size_to_load = pdesc->app_resident_code_size; desc->code_entry_point = pdesc->app_imem_entry; desc->data_dma_base = lower_32_bits(addr_data); desc->data_dma_base1 = upper_32_bits(addr_data); desc->data_size = pdesc->app_resident_data_size; desc->overlay_dma_base = lower_32_bits(addr_code); desc->overlay_dma_base1 = upper_32_bits(addr_code); desc->argc = 1; desc->argv = addr_args; } static const struct acr_r352_lsf_func acr_r352_ls_pmu_func_0 = { .generate_bl_desc = acr_r352_generate_pmu_bl_desc, .bl_desc_size = sizeof(struct acr_r352_pmu_bl_desc), }; static const struct acr_r352_ls_func acr_r352_ls_pmu_func = { .load = acr_ls_ucode_load_pmu, .post_run = acr_ls_pmu_post_run, .version_max = 0, .version = { &acr_r352_ls_pmu_func_0, } }; const struct acr_r352_func acr_r352_func = { .fixup_hs_desc = acr_r352_fixup_hs_desc, .generate_hs_bl_desc = acr_r352_generate_hs_bl_desc, .hs_bl_desc_size = sizeof(struct acr_r352_flcn_bl_desc), .ls_ucode_img_load = acr_r352_ls_ucode_img_load, .ls_fill_headers = acr_r352_ls_fill_headers, .ls_write_wpr = acr_r352_ls_write_wpr, .ls_func = { [NVKM_SECBOOT_FALCON_FECS] = &acr_r352_ls_fecs_func, [NVKM_SECBOOT_FALCON_GPCCS] = &acr_r352_ls_gpccs_func, [NVKM_SECBOOT_FALCON_PMU] = &acr_r352_ls_pmu_func, }, }; static const struct nvkm_acr_func acr_r352_base_func = { .dtor = acr_r352_dtor, .fini = acr_r352_fini, .load = acr_r352_load, .reset = acr_r352_reset, }; struct nvkm_acr * acr_r352_new_(const struct acr_r352_func *func, enum nvkm_secboot_falcon boot_falcon, unsigned long managed_falcons) { struct acr_r352 *acr; int i; /* Check that all requested falcons are supported */ for_each_set_bit(i, &managed_falcons, NVKM_SECBOOT_FALCON_END) { if (!func->ls_func[i]) return ERR_PTR(-ENOTSUPP); } acr = kzalloc(sizeof(*acr), GFP_KERNEL); if (!acr) return ERR_PTR(-ENOMEM); acr->base.boot_falcon = boot_falcon; acr->base.managed_falcons = managed_falcons; acr->base.func = &acr_r352_base_func; acr->func = func; return &acr->base; } struct nvkm_acr * acr_r352_new(unsigned long managed_falcons) { return acr_r352_new_(&acr_r352_func, NVKM_SECBOOT_FALCON_PMU, managed_falcons); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1