Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Tomi Valkeinen | 17039 | 65.64% | 128 | 52.89% |
Archit Taneja | 5101 | 19.65% | 41 | 16.94% |
Laurent Pinchart | 3281 | 12.64% | 37 | 15.29% |
Chandrabhanu Mahapatra | 161 | 0.62% | 3 | 1.24% |
Peter Ujfalusi | 117 | 0.45% | 11 | 4.55% |
Tony Lindgren | 101 | 0.39% | 2 | 0.83% |
Ville Syrjälä | 42 | 0.16% | 2 | 0.83% |
Senthilvadivu Guruswamy | 35 | 0.13% | 2 | 0.83% |
Sebastian Reichel | 31 | 0.12% | 1 | 0.41% |
Julia Lawall | 13 | 0.05% | 2 | 0.83% |
H. Nikolaus Schaller | 9 | 0.03% | 1 | 0.41% |
Kees Cook | 8 | 0.03% | 2 | 0.83% |
Sumit Semwal | 4 | 0.02% | 2 | 0.83% |
Paul Gortmaker | 3 | 0.01% | 1 | 0.41% |
Rob Herring | 3 | 0.01% | 1 | 0.41% |
Thomas Gleixner | 2 | 0.01% | 1 | 0.41% |
Wei Yongjun | 2 | 0.01% | 1 | 0.41% |
Joe Perches | 2 | 0.01% | 1 | 0.41% |
Rusty Russell | 2 | 0.01% | 1 | 0.41% |
Dan Carpenter | 1 | 0.00% | 1 | 0.41% |
Tejun Heo | 1 | 0.00% | 1 | 0.41% |
Total | 25958 | 242 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2009 Nokia Corporation * Author: Tomi Valkeinen <tomi.valkeinen@ti.com> */ #define DSS_SUBSYS_NAME "DSI" #include <linux/kernel.h> #include <linux/mfd/syscon.h> #include <linux/regmap.h> #include <linux/io.h> #include <linux/clk.h> #include <linux/device.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/mutex.h> #include <linux/module.h> #include <linux/semaphore.h> #include <linux/seq_file.h> #include <linux/platform_device.h> #include <linux/regulator/consumer.h> #include <linux/wait.h> #include <linux/workqueue.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/debugfs.h> #include <linux/pm_runtime.h> #include <linux/of.h> #include <linux/of_graph.h> #include <linux/of_platform.h> #include <linux/component.h> #include <linux/sys_soc.h> #include <video/mipi_display.h> #include "omapdss.h" #include "dss.h" #define DSI_CATCH_MISSING_TE struct dsi_reg { u16 module; u16 idx; }; #define DSI_REG(mod, idx) ((const struct dsi_reg) { mod, idx }) /* DSI Protocol Engine */ #define DSI_PROTO 0 #define DSI_PROTO_SZ 0x200 #define DSI_REVISION DSI_REG(DSI_PROTO, 0x0000) #define DSI_SYSCONFIG DSI_REG(DSI_PROTO, 0x0010) #define DSI_SYSSTATUS DSI_REG(DSI_PROTO, 0x0014) #define DSI_IRQSTATUS DSI_REG(DSI_PROTO, 0x0018) #define DSI_IRQENABLE DSI_REG(DSI_PROTO, 0x001C) #define DSI_CTRL DSI_REG(DSI_PROTO, 0x0040) #define DSI_GNQ DSI_REG(DSI_PROTO, 0x0044) #define DSI_COMPLEXIO_CFG1 DSI_REG(DSI_PROTO, 0x0048) #define DSI_COMPLEXIO_IRQ_STATUS DSI_REG(DSI_PROTO, 0x004C) #define DSI_COMPLEXIO_IRQ_ENABLE DSI_REG(DSI_PROTO, 0x0050) #define DSI_CLK_CTRL DSI_REG(DSI_PROTO, 0x0054) #define DSI_TIMING1 DSI_REG(DSI_PROTO, 0x0058) #define DSI_TIMING2 DSI_REG(DSI_PROTO, 0x005C) #define DSI_VM_TIMING1 DSI_REG(DSI_PROTO, 0x0060) #define DSI_VM_TIMING2 DSI_REG(DSI_PROTO, 0x0064) #define DSI_VM_TIMING3 DSI_REG(DSI_PROTO, 0x0068) #define DSI_CLK_TIMING DSI_REG(DSI_PROTO, 0x006C) #define DSI_TX_FIFO_VC_SIZE DSI_REG(DSI_PROTO, 0x0070) #define DSI_RX_FIFO_VC_SIZE DSI_REG(DSI_PROTO, 0x0074) #define DSI_COMPLEXIO_CFG2 DSI_REG(DSI_PROTO, 0x0078) #define DSI_RX_FIFO_VC_FULLNESS DSI_REG(DSI_PROTO, 0x007C) #define DSI_VM_TIMING4 DSI_REG(DSI_PROTO, 0x0080) #define DSI_TX_FIFO_VC_EMPTINESS DSI_REG(DSI_PROTO, 0x0084) #define DSI_VM_TIMING5 DSI_REG(DSI_PROTO, 0x0088) #define DSI_VM_TIMING6 DSI_REG(DSI_PROTO, 0x008C) #define DSI_VM_TIMING7 DSI_REG(DSI_PROTO, 0x0090) #define DSI_STOPCLK_TIMING DSI_REG(DSI_PROTO, 0x0094) #define DSI_VC_CTRL(n) DSI_REG(DSI_PROTO, 0x0100 + (n * 0x20)) #define DSI_VC_TE(n) DSI_REG(DSI_PROTO, 0x0104 + (n * 0x20)) #define DSI_VC_LONG_PACKET_HEADER(n) DSI_REG(DSI_PROTO, 0x0108 + (n * 0x20)) #define DSI_VC_LONG_PACKET_PAYLOAD(n) DSI_REG(DSI_PROTO, 0x010C + (n * 0x20)) #define DSI_VC_SHORT_PACKET_HEADER(n) DSI_REG(DSI_PROTO, 0x0110 + (n * 0x20)) #define DSI_VC_IRQSTATUS(n) DSI_REG(DSI_PROTO, 0x0118 + (n * 0x20)) #define DSI_VC_IRQENABLE(n) DSI_REG(DSI_PROTO, 0x011C + (n * 0x20)) /* DSIPHY_SCP */ #define DSI_PHY 1 #define DSI_PHY_OFFSET 0x200 #define DSI_PHY_SZ 0x40 #define DSI_DSIPHY_CFG0 DSI_REG(DSI_PHY, 0x0000) #define DSI_DSIPHY_CFG1 DSI_REG(DSI_PHY, 0x0004) #define DSI_DSIPHY_CFG2 DSI_REG(DSI_PHY, 0x0008) #define DSI_DSIPHY_CFG5 DSI_REG(DSI_PHY, 0x0014) #define DSI_DSIPHY_CFG10 DSI_REG(DSI_PHY, 0x0028) /* DSI_PLL_CTRL_SCP */ #define DSI_PLL 2 #define DSI_PLL_OFFSET 0x300 #define DSI_PLL_SZ 0x20 #define DSI_PLL_CONTROL DSI_REG(DSI_PLL, 0x0000) #define DSI_PLL_STATUS DSI_REG(DSI_PLL, 0x0004) #define DSI_PLL_GO DSI_REG(DSI_PLL, 0x0008) #define DSI_PLL_CONFIGURATION1 DSI_REG(DSI_PLL, 0x000C) #define DSI_PLL_CONFIGURATION2 DSI_REG(DSI_PLL, 0x0010) #define REG_GET(dsi, idx, start, end) \ FLD_GET(dsi_read_reg(dsi, idx), start, end) #define REG_FLD_MOD(dsi, idx, val, start, end) \ dsi_write_reg(dsi, idx, FLD_MOD(dsi_read_reg(dsi, idx), val, start, end)) /* Global interrupts */ #define DSI_IRQ_VC0 (1 << 0) #define DSI_IRQ_VC1 (1 << 1) #define DSI_IRQ_VC2 (1 << 2) #define DSI_IRQ_VC3 (1 << 3) #define DSI_IRQ_WAKEUP (1 << 4) #define DSI_IRQ_RESYNC (1 << 5) #define DSI_IRQ_PLL_LOCK (1 << 7) #define DSI_IRQ_PLL_UNLOCK (1 << 8) #define DSI_IRQ_PLL_RECALL (1 << 9) #define DSI_IRQ_COMPLEXIO_ERR (1 << 10) #define DSI_IRQ_HS_TX_TIMEOUT (1 << 14) #define DSI_IRQ_LP_RX_TIMEOUT (1 << 15) #define DSI_IRQ_TE_TRIGGER (1 << 16) #define DSI_IRQ_ACK_TRIGGER (1 << 17) #define DSI_IRQ_SYNC_LOST (1 << 18) #define DSI_IRQ_LDO_POWER_GOOD (1 << 19) #define DSI_IRQ_TA_TIMEOUT (1 << 20) #define DSI_IRQ_ERROR_MASK \ (DSI_IRQ_HS_TX_TIMEOUT | DSI_IRQ_LP_RX_TIMEOUT | DSI_IRQ_SYNC_LOST | \ DSI_IRQ_TA_TIMEOUT) #define DSI_IRQ_CHANNEL_MASK 0xf /* Virtual channel interrupts */ #define DSI_VC_IRQ_CS (1 << 0) #define DSI_VC_IRQ_ECC_CORR (1 << 1) #define DSI_VC_IRQ_PACKET_SENT (1 << 2) #define DSI_VC_IRQ_FIFO_TX_OVF (1 << 3) #define DSI_VC_IRQ_FIFO_RX_OVF (1 << 4) #define DSI_VC_IRQ_BTA (1 << 5) #define DSI_VC_IRQ_ECC_NO_CORR (1 << 6) #define DSI_VC_IRQ_FIFO_TX_UDF (1 << 7) #define DSI_VC_IRQ_PP_BUSY_CHANGE (1 << 8) #define DSI_VC_IRQ_ERROR_MASK \ (DSI_VC_IRQ_CS | DSI_VC_IRQ_ECC_CORR | DSI_VC_IRQ_FIFO_TX_OVF | \ DSI_VC_IRQ_FIFO_RX_OVF | DSI_VC_IRQ_ECC_NO_CORR | \ DSI_VC_IRQ_FIFO_TX_UDF) /* ComplexIO interrupts */ #define DSI_CIO_IRQ_ERRSYNCESC1 (1 << 0) #define DSI_CIO_IRQ_ERRSYNCESC2 (1 << 1) #define DSI_CIO_IRQ_ERRSYNCESC3 (1 << 2) #define DSI_CIO_IRQ_ERRSYNCESC4 (1 << 3) #define DSI_CIO_IRQ_ERRSYNCESC5 (1 << 4) #define DSI_CIO_IRQ_ERRESC1 (1 << 5) #define DSI_CIO_IRQ_ERRESC2 (1 << 6) #define DSI_CIO_IRQ_ERRESC3 (1 << 7) #define DSI_CIO_IRQ_ERRESC4 (1 << 8) #define DSI_CIO_IRQ_ERRESC5 (1 << 9) #define DSI_CIO_IRQ_ERRCONTROL1 (1 << 10) #define DSI_CIO_IRQ_ERRCONTROL2 (1 << 11) #define DSI_CIO_IRQ_ERRCONTROL3 (1 << 12) #define DSI_CIO_IRQ_ERRCONTROL4 (1 << 13) #define DSI_CIO_IRQ_ERRCONTROL5 (1 << 14) #define DSI_CIO_IRQ_STATEULPS1 (1 << 15) #define DSI_CIO_IRQ_STATEULPS2 (1 << 16) #define DSI_CIO_IRQ_STATEULPS3 (1 << 17) #define DSI_CIO_IRQ_STATEULPS4 (1 << 18) #define DSI_CIO_IRQ_STATEULPS5 (1 << 19) #define DSI_CIO_IRQ_ERRCONTENTIONLP0_1 (1 << 20) #define DSI_CIO_IRQ_ERRCONTENTIONLP1_1 (1 << 21) #define DSI_CIO_IRQ_ERRCONTENTIONLP0_2 (1 << 22) #define DSI_CIO_IRQ_ERRCONTENTIONLP1_2 (1 << 23) #define DSI_CIO_IRQ_ERRCONTENTIONLP0_3 (1 << 24) #define DSI_CIO_IRQ_ERRCONTENTIONLP1_3 (1 << 25) #define DSI_CIO_IRQ_ERRCONTENTIONLP0_4 (1 << 26) #define DSI_CIO_IRQ_ERRCONTENTIONLP1_4 (1 << 27) #define DSI_CIO_IRQ_ERRCONTENTIONLP0_5 (1 << 28) #define DSI_CIO_IRQ_ERRCONTENTIONLP1_5 (1 << 29) #define DSI_CIO_IRQ_ULPSACTIVENOT_ALL0 (1 << 30) #define DSI_CIO_IRQ_ULPSACTIVENOT_ALL1 (1 << 31) #define DSI_CIO_IRQ_ERROR_MASK \ (DSI_CIO_IRQ_ERRSYNCESC1 | DSI_CIO_IRQ_ERRSYNCESC2 | \ DSI_CIO_IRQ_ERRSYNCESC3 | DSI_CIO_IRQ_ERRSYNCESC4 | \ DSI_CIO_IRQ_ERRSYNCESC5 | \ DSI_CIO_IRQ_ERRESC1 | DSI_CIO_IRQ_ERRESC2 | \ DSI_CIO_IRQ_ERRESC3 | DSI_CIO_IRQ_ERRESC4 | \ DSI_CIO_IRQ_ERRESC5 | \ DSI_CIO_IRQ_ERRCONTROL1 | DSI_CIO_IRQ_ERRCONTROL2 | \ DSI_CIO_IRQ_ERRCONTROL3 | DSI_CIO_IRQ_ERRCONTROL4 | \ DSI_CIO_IRQ_ERRCONTROL5 | \ DSI_CIO_IRQ_ERRCONTENTIONLP0_1 | DSI_CIO_IRQ_ERRCONTENTIONLP1_1 | \ DSI_CIO_IRQ_ERRCONTENTIONLP0_2 | DSI_CIO_IRQ_ERRCONTENTIONLP1_2 | \ DSI_CIO_IRQ_ERRCONTENTIONLP0_3 | DSI_CIO_IRQ_ERRCONTENTIONLP1_3 | \ DSI_CIO_IRQ_ERRCONTENTIONLP0_4 | DSI_CIO_IRQ_ERRCONTENTIONLP1_4 | \ DSI_CIO_IRQ_ERRCONTENTIONLP0_5 | DSI_CIO_IRQ_ERRCONTENTIONLP1_5) typedef void (*omap_dsi_isr_t) (void *arg, u32 mask); struct dsi_data; static int dsi_display_init_dispc(struct dsi_data *dsi); static void dsi_display_uninit_dispc(struct dsi_data *dsi); static int dsi_vc_send_null(struct dsi_data *dsi, int channel); /* DSI PLL HSDIV indices */ #define HSDIV_DISPC 0 #define HSDIV_DSI 1 #define DSI_MAX_NR_ISRS 2 #define DSI_MAX_NR_LANES 5 enum dsi_model { DSI_MODEL_OMAP3, DSI_MODEL_OMAP4, DSI_MODEL_OMAP5, }; enum dsi_lane_function { DSI_LANE_UNUSED = 0, DSI_LANE_CLK, DSI_LANE_DATA1, DSI_LANE_DATA2, DSI_LANE_DATA3, DSI_LANE_DATA4, }; struct dsi_lane_config { enum dsi_lane_function function; u8 polarity; }; struct dsi_isr_data { omap_dsi_isr_t isr; void *arg; u32 mask; }; enum fifo_size { DSI_FIFO_SIZE_0 = 0, DSI_FIFO_SIZE_32 = 1, DSI_FIFO_SIZE_64 = 2, DSI_FIFO_SIZE_96 = 3, DSI_FIFO_SIZE_128 = 4, }; enum dsi_vc_source { DSI_VC_SOURCE_L4 = 0, DSI_VC_SOURCE_VP, }; struct dsi_irq_stats { unsigned long last_reset; unsigned int irq_count; unsigned int dsi_irqs[32]; unsigned int vc_irqs[4][32]; unsigned int cio_irqs[32]; }; struct dsi_isr_tables { struct dsi_isr_data isr_table[DSI_MAX_NR_ISRS]; struct dsi_isr_data isr_table_vc[4][DSI_MAX_NR_ISRS]; struct dsi_isr_data isr_table_cio[DSI_MAX_NR_ISRS]; }; struct dsi_clk_calc_ctx { struct dsi_data *dsi; struct dss_pll *pll; /* inputs */ const struct omap_dss_dsi_config *config; unsigned long req_pck_min, req_pck_nom, req_pck_max; /* outputs */ struct dss_pll_clock_info dsi_cinfo; struct dispc_clock_info dispc_cinfo; struct videomode vm; struct omap_dss_dsi_videomode_timings dsi_vm; }; struct dsi_lp_clock_info { unsigned long lp_clk; u16 lp_clk_div; }; struct dsi_module_id_data { u32 address; int id; }; enum dsi_quirks { DSI_QUIRK_PLL_PWR_BUG = (1 << 0), /* DSI-PLL power command 0x3 is not working */ DSI_QUIRK_DCS_CMD_CONFIG_VC = (1 << 1), DSI_QUIRK_VC_OCP_WIDTH = (1 << 2), DSI_QUIRK_REVERSE_TXCLKESC = (1 << 3), DSI_QUIRK_GNQ = (1 << 4), DSI_QUIRK_PHY_DCC = (1 << 5), }; struct dsi_of_data { enum dsi_model model; const struct dss_pll_hw *pll_hw; const struct dsi_module_id_data *modules; unsigned int max_fck_freq; unsigned int max_pll_lpdiv; enum dsi_quirks quirks; }; struct dsi_data { struct device *dev; void __iomem *proto_base; void __iomem *phy_base; void __iomem *pll_base; const struct dsi_of_data *data; int module_id; int irq; bool is_enabled; struct clk *dss_clk; struct regmap *syscon; struct dss_device *dss; struct dispc_clock_info user_dispc_cinfo; struct dss_pll_clock_info user_dsi_cinfo; struct dsi_lp_clock_info user_lp_cinfo; struct dsi_lp_clock_info current_lp_cinfo; struct dss_pll pll; bool vdds_dsi_enabled; struct regulator *vdds_dsi_reg; struct { enum dsi_vc_source source; struct omap_dss_device *dssdev; enum fifo_size tx_fifo_size; enum fifo_size rx_fifo_size; int vc_id; } vc[4]; struct mutex lock; struct semaphore bus_lock; spinlock_t irq_lock; struct dsi_isr_tables isr_tables; /* space for a copy used by the interrupt handler */ struct dsi_isr_tables isr_tables_copy; int update_channel; #ifdef DSI_PERF_MEASURE unsigned int update_bytes; #endif bool te_enabled; bool ulps_enabled; void (*framedone_callback)(int, void *); void *framedone_data; struct delayed_work framedone_timeout_work; #ifdef DSI_CATCH_MISSING_TE struct timer_list te_timer; #endif unsigned long cache_req_pck; unsigned long cache_clk_freq; struct dss_pll_clock_info cache_cinfo; u32 errors; spinlock_t errors_lock; #ifdef DSI_PERF_MEASURE ktime_t perf_setup_time; ktime_t perf_start_time; #endif int debug_read; int debug_write; struct { struct dss_debugfs_entry *irqs; struct dss_debugfs_entry *regs; struct dss_debugfs_entry *clks; } debugfs; #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS spinlock_t irq_stats_lock; struct dsi_irq_stats irq_stats; #endif unsigned int num_lanes_supported; unsigned int line_buffer_size; struct dsi_lane_config lanes[DSI_MAX_NR_LANES]; unsigned int num_lanes_used; unsigned int scp_clk_refcount; struct dss_lcd_mgr_config mgr_config; struct videomode vm; enum omap_dss_dsi_pixel_format pix_fmt; enum omap_dss_dsi_mode mode; struct omap_dss_dsi_videomode_timings vm_timings; struct omap_dss_device output; }; struct dsi_packet_sent_handler_data { struct dsi_data *dsi; struct completion *completion; }; #ifdef DSI_PERF_MEASURE static bool dsi_perf; module_param(dsi_perf, bool, 0644); #endif static inline struct dsi_data *to_dsi_data(struct omap_dss_device *dssdev) { return dev_get_drvdata(dssdev->dev); } static inline void dsi_write_reg(struct dsi_data *dsi, const struct dsi_reg idx, u32 val) { void __iomem *base; switch(idx.module) { case DSI_PROTO: base = dsi->proto_base; break; case DSI_PHY: base = dsi->phy_base; break; case DSI_PLL: base = dsi->pll_base; break; default: return; } __raw_writel(val, base + idx.idx); } static inline u32 dsi_read_reg(struct dsi_data *dsi, const struct dsi_reg idx) { void __iomem *base; switch(idx.module) { case DSI_PROTO: base = dsi->proto_base; break; case DSI_PHY: base = dsi->phy_base; break; case DSI_PLL: base = dsi->pll_base; break; default: return 0; } return __raw_readl(base + idx.idx); } static void dsi_bus_lock(struct omap_dss_device *dssdev) { struct dsi_data *dsi = to_dsi_data(dssdev); down(&dsi->bus_lock); } static void dsi_bus_unlock(struct omap_dss_device *dssdev) { struct dsi_data *dsi = to_dsi_data(dssdev); up(&dsi->bus_lock); } static bool dsi_bus_is_locked(struct dsi_data *dsi) { return dsi->bus_lock.count == 0; } static void dsi_completion_handler(void *data, u32 mask) { complete((struct completion *)data); } static inline bool wait_for_bit_change(struct dsi_data *dsi, const struct dsi_reg idx, int bitnum, int value) { unsigned long timeout; ktime_t wait; int t; /* first busyloop to see if the bit changes right away */ t = 100; while (t-- > 0) { if (REG_GET(dsi, idx, bitnum, bitnum) == value) return true; } /* then loop for 500ms, sleeping for 1ms in between */ timeout = jiffies + msecs_to_jiffies(500); while (time_before(jiffies, timeout)) { if (REG_GET(dsi, idx, bitnum, bitnum) == value) return true; wait = ns_to_ktime(1000 * 1000); set_current_state(TASK_UNINTERRUPTIBLE); schedule_hrtimeout(&wait, HRTIMER_MODE_REL); } return false; } static u8 dsi_get_pixel_size(enum omap_dss_dsi_pixel_format fmt) { switch (fmt) { case OMAP_DSS_DSI_FMT_RGB888: case OMAP_DSS_DSI_FMT_RGB666: return 24; case OMAP_DSS_DSI_FMT_RGB666_PACKED: return 18; case OMAP_DSS_DSI_FMT_RGB565: return 16; default: BUG(); return 0; } } #ifdef DSI_PERF_MEASURE static void dsi_perf_mark_setup(struct dsi_data *dsi) { dsi->perf_setup_time = ktime_get(); } static void dsi_perf_mark_start(struct dsi_data *dsi) { dsi->perf_start_time = ktime_get(); } static void dsi_perf_show(struct dsi_data *dsi, const char *name) { ktime_t t, setup_time, trans_time; u32 total_bytes; u32 setup_us, trans_us, total_us; if (!dsi_perf) return; t = ktime_get(); setup_time = ktime_sub(dsi->perf_start_time, dsi->perf_setup_time); setup_us = (u32)ktime_to_us(setup_time); if (setup_us == 0) setup_us = 1; trans_time = ktime_sub(t, dsi->perf_start_time); trans_us = (u32)ktime_to_us(trans_time); if (trans_us == 0) trans_us = 1; total_us = setup_us + trans_us; total_bytes = dsi->update_bytes; pr_info("DSI(%s): %u us + %u us = %u us (%uHz), %u bytes, %u kbytes/sec\n", name, setup_us, trans_us, total_us, 1000 * 1000 / total_us, total_bytes, total_bytes * 1000 / total_us); } #else static inline void dsi_perf_mark_setup(struct dsi_data *dsi) { } static inline void dsi_perf_mark_start(struct dsi_data *dsi) { } static inline void dsi_perf_show(struct dsi_data *dsi, const char *name) { } #endif static int verbose_irq; static void print_irq_status(u32 status) { if (status == 0) return; if (!verbose_irq && (status & ~DSI_IRQ_CHANNEL_MASK) == 0) return; #define PIS(x) (status & DSI_IRQ_##x) ? (#x " ") : "" pr_debug("DSI IRQ: 0x%x: %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", status, verbose_irq ? PIS(VC0) : "", verbose_irq ? PIS(VC1) : "", verbose_irq ? PIS(VC2) : "", verbose_irq ? PIS(VC3) : "", PIS(WAKEUP), PIS(RESYNC), PIS(PLL_LOCK), PIS(PLL_UNLOCK), PIS(PLL_RECALL), PIS(COMPLEXIO_ERR), PIS(HS_TX_TIMEOUT), PIS(LP_RX_TIMEOUT), PIS(TE_TRIGGER), PIS(ACK_TRIGGER), PIS(SYNC_LOST), PIS(LDO_POWER_GOOD), PIS(TA_TIMEOUT)); #undef PIS } static void print_irq_status_vc(int channel, u32 status) { if (status == 0) return; if (!verbose_irq && (status & ~DSI_VC_IRQ_PACKET_SENT) == 0) return; #define PIS(x) (status & DSI_VC_IRQ_##x) ? (#x " ") : "" pr_debug("DSI VC(%d) IRQ 0x%x: %s%s%s%s%s%s%s%s%s\n", channel, status, PIS(CS), PIS(ECC_CORR), PIS(ECC_NO_CORR), verbose_irq ? PIS(PACKET_SENT) : "", PIS(BTA), PIS(FIFO_TX_OVF), PIS(FIFO_RX_OVF), PIS(FIFO_TX_UDF), PIS(PP_BUSY_CHANGE)); #undef PIS } static void print_irq_status_cio(u32 status) { if (status == 0) return; #define PIS(x) (status & DSI_CIO_IRQ_##x) ? (#x " ") : "" pr_debug("DSI CIO IRQ 0x%x: %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", status, PIS(ERRSYNCESC1), PIS(ERRSYNCESC2), PIS(ERRSYNCESC3), PIS(ERRESC1), PIS(ERRESC2), PIS(ERRESC3), PIS(ERRCONTROL1), PIS(ERRCONTROL2), PIS(ERRCONTROL3), PIS(STATEULPS1), PIS(STATEULPS2), PIS(STATEULPS3), PIS(ERRCONTENTIONLP0_1), PIS(ERRCONTENTIONLP1_1), PIS(ERRCONTENTIONLP0_2), PIS(ERRCONTENTIONLP1_2), PIS(ERRCONTENTIONLP0_3), PIS(ERRCONTENTIONLP1_3), PIS(ULPSACTIVENOT_ALL0), PIS(ULPSACTIVENOT_ALL1)); #undef PIS } #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS static void dsi_collect_irq_stats(struct dsi_data *dsi, u32 irqstatus, u32 *vcstatus, u32 ciostatus) { int i; spin_lock(&dsi->irq_stats_lock); dsi->irq_stats.irq_count++; dss_collect_irq_stats(irqstatus, dsi->irq_stats.dsi_irqs); for (i = 0; i < 4; ++i) dss_collect_irq_stats(vcstatus[i], dsi->irq_stats.vc_irqs[i]); dss_collect_irq_stats(ciostatus, dsi->irq_stats.cio_irqs); spin_unlock(&dsi->irq_stats_lock); } #else #define dsi_collect_irq_stats(dsi, irqstatus, vcstatus, ciostatus) #endif static int debug_irq; static void dsi_handle_irq_errors(struct dsi_data *dsi, u32 irqstatus, u32 *vcstatus, u32 ciostatus) { int i; if (irqstatus & DSI_IRQ_ERROR_MASK) { DSSERR("DSI error, irqstatus %x\n", irqstatus); print_irq_status(irqstatus); spin_lock(&dsi->errors_lock); dsi->errors |= irqstatus & DSI_IRQ_ERROR_MASK; spin_unlock(&dsi->errors_lock); } else if (debug_irq) { print_irq_status(irqstatus); } for (i = 0; i < 4; ++i) { if (vcstatus[i] & DSI_VC_IRQ_ERROR_MASK) { DSSERR("DSI VC(%d) error, vc irqstatus %x\n", i, vcstatus[i]); print_irq_status_vc(i, vcstatus[i]); } else if (debug_irq) { print_irq_status_vc(i, vcstatus[i]); } } if (ciostatus & DSI_CIO_IRQ_ERROR_MASK) { DSSERR("DSI CIO error, cio irqstatus %x\n", ciostatus); print_irq_status_cio(ciostatus); } else if (debug_irq) { print_irq_status_cio(ciostatus); } } static void dsi_call_isrs(struct dsi_isr_data *isr_array, unsigned int isr_array_size, u32 irqstatus) { struct dsi_isr_data *isr_data; int i; for (i = 0; i < isr_array_size; i++) { isr_data = &isr_array[i]; if (isr_data->isr && isr_data->mask & irqstatus) isr_data->isr(isr_data->arg, irqstatus); } } static void dsi_handle_isrs(struct dsi_isr_tables *isr_tables, u32 irqstatus, u32 *vcstatus, u32 ciostatus) { int i; dsi_call_isrs(isr_tables->isr_table, ARRAY_SIZE(isr_tables->isr_table), irqstatus); for (i = 0; i < 4; ++i) { if (vcstatus[i] == 0) continue; dsi_call_isrs(isr_tables->isr_table_vc[i], ARRAY_SIZE(isr_tables->isr_table_vc[i]), vcstatus[i]); } if (ciostatus != 0) dsi_call_isrs(isr_tables->isr_table_cio, ARRAY_SIZE(isr_tables->isr_table_cio), ciostatus); } static irqreturn_t omap_dsi_irq_handler(int irq, void *arg) { struct dsi_data *dsi = arg; u32 irqstatus, vcstatus[4], ciostatus; int i; if (!dsi->is_enabled) return IRQ_NONE; spin_lock(&dsi->irq_lock); irqstatus = dsi_read_reg(dsi, DSI_IRQSTATUS); /* IRQ is not for us */ if (!irqstatus) { spin_unlock(&dsi->irq_lock); return IRQ_NONE; } dsi_write_reg(dsi, DSI_IRQSTATUS, irqstatus & ~DSI_IRQ_CHANNEL_MASK); /* flush posted write */ dsi_read_reg(dsi, DSI_IRQSTATUS); for (i = 0; i < 4; ++i) { if ((irqstatus & (1 << i)) == 0) { vcstatus[i] = 0; continue; } vcstatus[i] = dsi_read_reg(dsi, DSI_VC_IRQSTATUS(i)); dsi_write_reg(dsi, DSI_VC_IRQSTATUS(i), vcstatus[i]); /* flush posted write */ dsi_read_reg(dsi, DSI_VC_IRQSTATUS(i)); } if (irqstatus & DSI_IRQ_COMPLEXIO_ERR) { ciostatus = dsi_read_reg(dsi, DSI_COMPLEXIO_IRQ_STATUS); dsi_write_reg(dsi, DSI_COMPLEXIO_IRQ_STATUS, ciostatus); /* flush posted write */ dsi_read_reg(dsi, DSI_COMPLEXIO_IRQ_STATUS); } else { ciostatus = 0; } #ifdef DSI_CATCH_MISSING_TE if (irqstatus & DSI_IRQ_TE_TRIGGER) del_timer(&dsi->te_timer); #endif /* make a copy and unlock, so that isrs can unregister * themselves */ memcpy(&dsi->isr_tables_copy, &dsi->isr_tables, sizeof(dsi->isr_tables)); spin_unlock(&dsi->irq_lock); dsi_handle_isrs(&dsi->isr_tables_copy, irqstatus, vcstatus, ciostatus); dsi_handle_irq_errors(dsi, irqstatus, vcstatus, ciostatus); dsi_collect_irq_stats(dsi, irqstatus, vcstatus, ciostatus); return IRQ_HANDLED; } /* dsi->irq_lock has to be locked by the caller */ static void _omap_dsi_configure_irqs(struct dsi_data *dsi, struct dsi_isr_data *isr_array, unsigned int isr_array_size, u32 default_mask, const struct dsi_reg enable_reg, const struct dsi_reg status_reg) { struct dsi_isr_data *isr_data; u32 mask; u32 old_mask; int i; mask = default_mask; for (i = 0; i < isr_array_size; i++) { isr_data = &isr_array[i]; if (isr_data->isr == NULL) continue; mask |= isr_data->mask; } old_mask = dsi_read_reg(dsi, enable_reg); /* clear the irqstatus for newly enabled irqs */ dsi_write_reg(dsi, status_reg, (mask ^ old_mask) & mask); dsi_write_reg(dsi, enable_reg, mask); /* flush posted writes */ dsi_read_reg(dsi, enable_reg); dsi_read_reg(dsi, status_reg); } /* dsi->irq_lock has to be locked by the caller */ static void _omap_dsi_set_irqs(struct dsi_data *dsi) { u32 mask = DSI_IRQ_ERROR_MASK; #ifdef DSI_CATCH_MISSING_TE mask |= DSI_IRQ_TE_TRIGGER; #endif _omap_dsi_configure_irqs(dsi, dsi->isr_tables.isr_table, ARRAY_SIZE(dsi->isr_tables.isr_table), mask, DSI_IRQENABLE, DSI_IRQSTATUS); } /* dsi->irq_lock has to be locked by the caller */ static void _omap_dsi_set_irqs_vc(struct dsi_data *dsi, int vc) { _omap_dsi_configure_irqs(dsi, dsi->isr_tables.isr_table_vc[vc], ARRAY_SIZE(dsi->isr_tables.isr_table_vc[vc]), DSI_VC_IRQ_ERROR_MASK, DSI_VC_IRQENABLE(vc), DSI_VC_IRQSTATUS(vc)); } /* dsi->irq_lock has to be locked by the caller */ static void _omap_dsi_set_irqs_cio(struct dsi_data *dsi) { _omap_dsi_configure_irqs(dsi, dsi->isr_tables.isr_table_cio, ARRAY_SIZE(dsi->isr_tables.isr_table_cio), DSI_CIO_IRQ_ERROR_MASK, DSI_COMPLEXIO_IRQ_ENABLE, DSI_COMPLEXIO_IRQ_STATUS); } static void _dsi_initialize_irq(struct dsi_data *dsi) { unsigned long flags; int vc; spin_lock_irqsave(&dsi->irq_lock, flags); memset(&dsi->isr_tables, 0, sizeof(dsi->isr_tables)); _omap_dsi_set_irqs(dsi); for (vc = 0; vc < 4; ++vc) _omap_dsi_set_irqs_vc(dsi, vc); _omap_dsi_set_irqs_cio(dsi); spin_unlock_irqrestore(&dsi->irq_lock, flags); } static int _dsi_register_isr(omap_dsi_isr_t isr, void *arg, u32 mask, struct dsi_isr_data *isr_array, unsigned int isr_array_size) { struct dsi_isr_data *isr_data; int free_idx; int i; BUG_ON(isr == NULL); /* check for duplicate entry and find a free slot */ free_idx = -1; for (i = 0; i < isr_array_size; i++) { isr_data = &isr_array[i]; if (isr_data->isr == isr && isr_data->arg == arg && isr_data->mask == mask) { return -EINVAL; } if (isr_data->isr == NULL && free_idx == -1) free_idx = i; } if (free_idx == -1) return -EBUSY; isr_data = &isr_array[free_idx]; isr_data->isr = isr; isr_data->arg = arg; isr_data->mask = mask; return 0; } static int _dsi_unregister_isr(omap_dsi_isr_t isr, void *arg, u32 mask, struct dsi_isr_data *isr_array, unsigned int isr_array_size) { struct dsi_isr_data *isr_data; int i; for (i = 0; i < isr_array_size; i++) { isr_data = &isr_array[i]; if (isr_data->isr != isr || isr_data->arg != arg || isr_data->mask != mask) continue; isr_data->isr = NULL; isr_data->arg = NULL; isr_data->mask = 0; return 0; } return -EINVAL; } static int dsi_register_isr(struct dsi_data *dsi, omap_dsi_isr_t isr, void *arg, u32 mask) { unsigned long flags; int r; spin_lock_irqsave(&dsi->irq_lock, flags); r = _dsi_register_isr(isr, arg, mask, dsi->isr_tables.isr_table, ARRAY_SIZE(dsi->isr_tables.isr_table)); if (r == 0) _omap_dsi_set_irqs(dsi); spin_unlock_irqrestore(&dsi->irq_lock, flags); return r; } static int dsi_unregister_isr(struct dsi_data *dsi, omap_dsi_isr_t isr, void *arg, u32 mask) { unsigned long flags; int r; spin_lock_irqsave(&dsi->irq_lock, flags); r = _dsi_unregister_isr(isr, arg, mask, dsi->isr_tables.isr_table, ARRAY_SIZE(dsi->isr_tables.isr_table)); if (r == 0) _omap_dsi_set_irqs(dsi); spin_unlock_irqrestore(&dsi->irq_lock, flags); return r; } static int dsi_register_isr_vc(struct dsi_data *dsi, int channel, omap_dsi_isr_t isr, void *arg, u32 mask) { unsigned long flags; int r; spin_lock_irqsave(&dsi->irq_lock, flags); r = _dsi_register_isr(isr, arg, mask, dsi->isr_tables.isr_table_vc[channel], ARRAY_SIZE(dsi->isr_tables.isr_table_vc[channel])); if (r == 0) _omap_dsi_set_irqs_vc(dsi, channel); spin_unlock_irqrestore(&dsi->irq_lock, flags); return r; } static int dsi_unregister_isr_vc(struct dsi_data *dsi, int channel, omap_dsi_isr_t isr, void *arg, u32 mask) { unsigned long flags; int r; spin_lock_irqsave(&dsi->irq_lock, flags); r = _dsi_unregister_isr(isr, arg, mask, dsi->isr_tables.isr_table_vc[channel], ARRAY_SIZE(dsi->isr_tables.isr_table_vc[channel])); if (r == 0) _omap_dsi_set_irqs_vc(dsi, channel); spin_unlock_irqrestore(&dsi->irq_lock, flags); return r; } static int dsi_register_isr_cio(struct dsi_data *dsi, omap_dsi_isr_t isr, void *arg, u32 mask) { unsigned long flags; int r; spin_lock_irqsave(&dsi->irq_lock, flags); r = _dsi_register_isr(isr, arg, mask, dsi->isr_tables.isr_table_cio, ARRAY_SIZE(dsi->isr_tables.isr_table_cio)); if (r == 0) _omap_dsi_set_irqs_cio(dsi); spin_unlock_irqrestore(&dsi->irq_lock, flags); return r; } static int dsi_unregister_isr_cio(struct dsi_data *dsi, omap_dsi_isr_t isr, void *arg, u32 mask) { unsigned long flags; int r; spin_lock_irqsave(&dsi->irq_lock, flags); r = _dsi_unregister_isr(isr, arg, mask, dsi->isr_tables.isr_table_cio, ARRAY_SIZE(dsi->isr_tables.isr_table_cio)); if (r == 0) _omap_dsi_set_irqs_cio(dsi); spin_unlock_irqrestore(&dsi->irq_lock, flags); return r; } static u32 dsi_get_errors(struct dsi_data *dsi) { unsigned long flags; u32 e; spin_lock_irqsave(&dsi->errors_lock, flags); e = dsi->errors; dsi->errors = 0; spin_unlock_irqrestore(&dsi->errors_lock, flags); return e; } static int dsi_runtime_get(struct dsi_data *dsi) { int r; DSSDBG("dsi_runtime_get\n"); r = pm_runtime_get_sync(dsi->dev); WARN_ON(r < 0); return r < 0 ? r : 0; } static void dsi_runtime_put(struct dsi_data *dsi) { int r; DSSDBG("dsi_runtime_put\n"); r = pm_runtime_put_sync(dsi->dev); WARN_ON(r < 0 && r != -ENOSYS); } static void _dsi_print_reset_status(struct dsi_data *dsi) { u32 l; int b0, b1, b2; /* A dummy read using the SCP interface to any DSIPHY register is * required after DSIPHY reset to complete the reset of the DSI complex * I/O. */ l = dsi_read_reg(dsi, DSI_DSIPHY_CFG5); if (dsi->data->quirks & DSI_QUIRK_REVERSE_TXCLKESC) { b0 = 28; b1 = 27; b2 = 26; } else { b0 = 24; b1 = 25; b2 = 26; } #define DSI_FLD_GET(fld, start, end)\ FLD_GET(dsi_read_reg(dsi, DSI_##fld), start, end) pr_debug("DSI resets: PLL (%d) CIO (%d) PHY (%x%x%x, %d, %d, %d)\n", DSI_FLD_GET(PLL_STATUS, 0, 0), DSI_FLD_GET(COMPLEXIO_CFG1, 29, 29), DSI_FLD_GET(DSIPHY_CFG5, b0, b0), DSI_FLD_GET(DSIPHY_CFG5, b1, b1), DSI_FLD_GET(DSIPHY_CFG5, b2, b2), DSI_FLD_GET(DSIPHY_CFG5, 29, 29), DSI_FLD_GET(DSIPHY_CFG5, 30, 30), DSI_FLD_GET(DSIPHY_CFG5, 31, 31)); #undef DSI_FLD_GET } static inline int dsi_if_enable(struct dsi_data *dsi, bool enable) { DSSDBG("dsi_if_enable(%d)\n", enable); enable = enable ? 1 : 0; REG_FLD_MOD(dsi, DSI_CTRL, enable, 0, 0); /* IF_EN */ if (!wait_for_bit_change(dsi, DSI_CTRL, 0, enable)) { DSSERR("Failed to set dsi_if_enable to %d\n", enable); return -EIO; } return 0; } static unsigned long dsi_get_pll_hsdiv_dispc_rate(struct dsi_data *dsi) { return dsi->pll.cinfo.clkout[HSDIV_DISPC]; } static unsigned long dsi_get_pll_hsdiv_dsi_rate(struct dsi_data *dsi) { return dsi->pll.cinfo.clkout[HSDIV_DSI]; } static unsigned long dsi_get_txbyteclkhs(struct dsi_data *dsi) { return dsi->pll.cinfo.clkdco / 16; } static unsigned long dsi_fclk_rate(struct dsi_data *dsi) { unsigned long r; enum dss_clk_source source; source = dss_get_dsi_clk_source(dsi->dss, dsi->module_id); if (source == DSS_CLK_SRC_FCK) { /* DSI FCLK source is DSS_CLK_FCK */ r = clk_get_rate(dsi->dss_clk); } else { /* DSI FCLK source is dsi_pll_hsdiv_dsi_clk */ r = dsi_get_pll_hsdiv_dsi_rate(dsi); } return r; } static int dsi_lp_clock_calc(unsigned long dsi_fclk, unsigned long lp_clk_min, unsigned long lp_clk_max, struct dsi_lp_clock_info *lp_cinfo) { unsigned int lp_clk_div; unsigned long lp_clk; lp_clk_div = DIV_ROUND_UP(dsi_fclk, lp_clk_max * 2); lp_clk = dsi_fclk / 2 / lp_clk_div; if (lp_clk < lp_clk_min || lp_clk > lp_clk_max) return -EINVAL; lp_cinfo->lp_clk_div = lp_clk_div; lp_cinfo->lp_clk = lp_clk; return 0; } static int dsi_set_lp_clk_divisor(struct dsi_data *dsi) { unsigned long dsi_fclk; unsigned int lp_clk_div; unsigned long lp_clk; unsigned int lpdiv_max = dsi->data->max_pll_lpdiv; lp_clk_div = dsi->user_lp_cinfo.lp_clk_div; if (lp_clk_div == 0 || lp_clk_div > lpdiv_max) return -EINVAL; dsi_fclk = dsi_fclk_rate(dsi); lp_clk = dsi_fclk / 2 / lp_clk_div; DSSDBG("LP_CLK_DIV %u, LP_CLK %lu\n", lp_clk_div, lp_clk); dsi->current_lp_cinfo.lp_clk = lp_clk; dsi->current_lp_cinfo.lp_clk_div = lp_clk_div; /* LP_CLK_DIVISOR */ REG_FLD_MOD(dsi, DSI_CLK_CTRL, lp_clk_div, 12, 0); /* LP_RX_SYNCHRO_ENABLE */ REG_FLD_MOD(dsi, DSI_CLK_CTRL, dsi_fclk > 30000000 ? 1 : 0, 21, 21); return 0; } static void dsi_enable_scp_clk(struct dsi_data *dsi) { if (dsi->scp_clk_refcount++ == 0) REG_FLD_MOD(dsi, DSI_CLK_CTRL, 1, 14, 14); /* CIO_CLK_ICG */ } static void dsi_disable_scp_clk(struct dsi_data *dsi) { WARN_ON(dsi->scp_clk_refcount == 0); if (--dsi->scp_clk_refcount == 0) REG_FLD_MOD(dsi, DSI_CLK_CTRL, 0, 14, 14); /* CIO_CLK_ICG */ } enum dsi_pll_power_state { DSI_PLL_POWER_OFF = 0x0, DSI_PLL_POWER_ON_HSCLK = 0x1, DSI_PLL_POWER_ON_ALL = 0x2, DSI_PLL_POWER_ON_DIV = 0x3, }; static int dsi_pll_power(struct dsi_data *dsi, enum dsi_pll_power_state state) { int t = 0; /* DSI-PLL power command 0x3 is not working */ if ((dsi->data->quirks & DSI_QUIRK_PLL_PWR_BUG) && state == DSI_PLL_POWER_ON_DIV) state = DSI_PLL_POWER_ON_ALL; /* PLL_PWR_CMD */ REG_FLD_MOD(dsi, DSI_CLK_CTRL, state, 31, 30); /* PLL_PWR_STATUS */ while (FLD_GET(dsi_read_reg(dsi, DSI_CLK_CTRL), 29, 28) != state) { if (++t > 1000) { DSSERR("Failed to set DSI PLL power mode to %d\n", state); return -ENODEV; } udelay(1); } return 0; } static void dsi_pll_calc_dsi_fck(struct dsi_data *dsi, struct dss_pll_clock_info *cinfo) { unsigned long max_dsi_fck; max_dsi_fck = dsi->data->max_fck_freq; cinfo->mX[HSDIV_DSI] = DIV_ROUND_UP(cinfo->clkdco, max_dsi_fck); cinfo->clkout[HSDIV_DSI] = cinfo->clkdco / cinfo->mX[HSDIV_DSI]; } static int dsi_pll_enable(struct dss_pll *pll) { struct dsi_data *dsi = container_of(pll, struct dsi_data, pll); int r = 0; DSSDBG("PLL init\n"); r = dsi_runtime_get(dsi); if (r) return r; /* * Note: SCP CLK is not required on OMAP3, but it is required on OMAP4. */ dsi_enable_scp_clk(dsi); r = regulator_enable(dsi->vdds_dsi_reg); if (r) goto err0; /* XXX PLL does not come out of reset without this... */ dispc_pck_free_enable(dsi->dss->dispc, 1); if (!wait_for_bit_change(dsi, DSI_PLL_STATUS, 0, 1)) { DSSERR("PLL not coming out of reset.\n"); r = -ENODEV; dispc_pck_free_enable(dsi->dss->dispc, 0); goto err1; } /* XXX ... but if left on, we get problems when planes do not * fill the whole display. No idea about this */ dispc_pck_free_enable(dsi->dss->dispc, 0); r = dsi_pll_power(dsi, DSI_PLL_POWER_ON_ALL); if (r) goto err1; DSSDBG("PLL init done\n"); return 0; err1: regulator_disable(dsi->vdds_dsi_reg); err0: dsi_disable_scp_clk(dsi); dsi_runtime_put(dsi); return r; } static void dsi_pll_disable(struct dss_pll *pll) { struct dsi_data *dsi = container_of(pll, struct dsi_data, pll); dsi_pll_power(dsi, DSI_PLL_POWER_OFF); regulator_disable(dsi->vdds_dsi_reg); dsi_disable_scp_clk(dsi); dsi_runtime_put(dsi); DSSDBG("PLL disable done\n"); } static int dsi_dump_dsi_clocks(struct seq_file *s, void *p) { struct dsi_data *dsi = s->private; struct dss_pll_clock_info *cinfo = &dsi->pll.cinfo; enum dss_clk_source dispc_clk_src, dsi_clk_src; int dsi_module = dsi->module_id; struct dss_pll *pll = &dsi->pll; dispc_clk_src = dss_get_dispc_clk_source(dsi->dss); dsi_clk_src = dss_get_dsi_clk_source(dsi->dss, dsi_module); if (dsi_runtime_get(dsi)) return 0; seq_printf(s, "- DSI%d PLL -\n", dsi_module + 1); seq_printf(s, "dsi pll clkin\t%lu\n", clk_get_rate(pll->clkin)); seq_printf(s, "Fint\t\t%-16lun %u\n", cinfo->fint, cinfo->n); seq_printf(s, "CLKIN4DDR\t%-16lum %u\n", cinfo->clkdco, cinfo->m); seq_printf(s, "DSI_PLL_HSDIV_DISPC (%s)\t%-16lum_dispc %u\t(%s)\n", dss_get_clk_source_name(dsi_module == 0 ? DSS_CLK_SRC_PLL1_1 : DSS_CLK_SRC_PLL2_1), cinfo->clkout[HSDIV_DISPC], cinfo->mX[HSDIV_DISPC], dispc_clk_src == DSS_CLK_SRC_FCK ? "off" : "on"); seq_printf(s, "DSI_PLL_HSDIV_DSI (%s)\t%-16lum_dsi %u\t(%s)\n", dss_get_clk_source_name(dsi_module == 0 ? DSS_CLK_SRC_PLL1_2 : DSS_CLK_SRC_PLL2_2), cinfo->clkout[HSDIV_DSI], cinfo->mX[HSDIV_DSI], dsi_clk_src == DSS_CLK_SRC_FCK ? "off" : "on"); seq_printf(s, "- DSI%d -\n", dsi_module + 1); seq_printf(s, "dsi fclk source = %s\n", dss_get_clk_source_name(dsi_clk_src)); seq_printf(s, "DSI_FCLK\t%lu\n", dsi_fclk_rate(dsi)); seq_printf(s, "DDR_CLK\t\t%lu\n", cinfo->clkdco / 4); seq_printf(s, "TxByteClkHS\t%lu\n", dsi_get_txbyteclkhs(dsi)); seq_printf(s, "LP_CLK\t\t%lu\n", dsi->current_lp_cinfo.lp_clk); dsi_runtime_put(dsi); return 0; } #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS static int dsi_dump_dsi_irqs(struct seq_file *s, void *p) { struct dsi_data *dsi = s->private; unsigned long flags; struct dsi_irq_stats stats; spin_lock_irqsave(&dsi->irq_stats_lock, flags); stats = dsi->irq_stats; memset(&dsi->irq_stats, 0, sizeof(dsi->irq_stats)); dsi->irq_stats.last_reset = jiffies; spin_unlock_irqrestore(&dsi->irq_stats_lock, flags); seq_printf(s, "period %u ms\n", jiffies_to_msecs(jiffies - stats.last_reset)); seq_printf(s, "irqs %d\n", stats.irq_count); #define PIS(x) \ seq_printf(s, "%-20s %10d\n", #x, stats.dsi_irqs[ffs(DSI_IRQ_##x)-1]); seq_printf(s, "-- DSI%d interrupts --\n", dsi->module_id + 1); PIS(VC0); PIS(VC1); PIS(VC2); PIS(VC3); PIS(WAKEUP); PIS(RESYNC); PIS(PLL_LOCK); PIS(PLL_UNLOCK); PIS(PLL_RECALL); PIS(COMPLEXIO_ERR); PIS(HS_TX_TIMEOUT); PIS(LP_RX_TIMEOUT); PIS(TE_TRIGGER); PIS(ACK_TRIGGER); PIS(SYNC_LOST); PIS(LDO_POWER_GOOD); PIS(TA_TIMEOUT); #undef PIS #define PIS(x) \ seq_printf(s, "%-20s %10d %10d %10d %10d\n", #x, \ stats.vc_irqs[0][ffs(DSI_VC_IRQ_##x)-1], \ stats.vc_irqs[1][ffs(DSI_VC_IRQ_##x)-1], \ stats.vc_irqs[2][ffs(DSI_VC_IRQ_##x)-1], \ stats.vc_irqs[3][ffs(DSI_VC_IRQ_##x)-1]); seq_printf(s, "-- VC interrupts --\n"); PIS(CS); PIS(ECC_CORR); PIS(PACKET_SENT); PIS(FIFO_TX_OVF); PIS(FIFO_RX_OVF); PIS(BTA); PIS(ECC_NO_CORR); PIS(FIFO_TX_UDF); PIS(PP_BUSY_CHANGE); #undef PIS #define PIS(x) \ seq_printf(s, "%-20s %10d\n", #x, \ stats.cio_irqs[ffs(DSI_CIO_IRQ_##x)-1]); seq_printf(s, "-- CIO interrupts --\n"); PIS(ERRSYNCESC1); PIS(ERRSYNCESC2); PIS(ERRSYNCESC3); PIS(ERRESC1); PIS(ERRESC2); PIS(ERRESC3); PIS(ERRCONTROL1); PIS(ERRCONTROL2); PIS(ERRCONTROL3); PIS(STATEULPS1); PIS(STATEULPS2); PIS(STATEULPS3); PIS(ERRCONTENTIONLP0_1); PIS(ERRCONTENTIONLP1_1); PIS(ERRCONTENTIONLP0_2); PIS(ERRCONTENTIONLP1_2); PIS(ERRCONTENTIONLP0_3); PIS(ERRCONTENTIONLP1_3); PIS(ULPSACTIVENOT_ALL0); PIS(ULPSACTIVENOT_ALL1); #undef PIS return 0; } #endif static int dsi_dump_dsi_regs(struct seq_file *s, void *p) { struct dsi_data *dsi = s->private; if (dsi_runtime_get(dsi)) return 0; dsi_enable_scp_clk(dsi); #define DUMPREG(r) seq_printf(s, "%-35s %08x\n", #r, dsi_read_reg(dsi, r)) DUMPREG(DSI_REVISION); DUMPREG(DSI_SYSCONFIG); DUMPREG(DSI_SYSSTATUS); DUMPREG(DSI_IRQSTATUS); DUMPREG(DSI_IRQENABLE); DUMPREG(DSI_CTRL); DUMPREG(DSI_COMPLEXIO_CFG1); DUMPREG(DSI_COMPLEXIO_IRQ_STATUS); DUMPREG(DSI_COMPLEXIO_IRQ_ENABLE); DUMPREG(DSI_CLK_CTRL); DUMPREG(DSI_TIMING1); DUMPREG(DSI_TIMING2); DUMPREG(DSI_VM_TIMING1); DUMPREG(DSI_VM_TIMING2); DUMPREG(DSI_VM_TIMING3); DUMPREG(DSI_CLK_TIMING); DUMPREG(DSI_TX_FIFO_VC_SIZE); DUMPREG(DSI_RX_FIFO_VC_SIZE); DUMPREG(DSI_COMPLEXIO_CFG2); DUMPREG(DSI_RX_FIFO_VC_FULLNESS); DUMPREG(DSI_VM_TIMING4); DUMPREG(DSI_TX_FIFO_VC_EMPTINESS); DUMPREG(DSI_VM_TIMING5); DUMPREG(DSI_VM_TIMING6); DUMPREG(DSI_VM_TIMING7); DUMPREG(DSI_STOPCLK_TIMING); DUMPREG(DSI_VC_CTRL(0)); DUMPREG(DSI_VC_TE(0)); DUMPREG(DSI_VC_LONG_PACKET_HEADER(0)); DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(0)); DUMPREG(DSI_VC_SHORT_PACKET_HEADER(0)); DUMPREG(DSI_VC_IRQSTATUS(0)); DUMPREG(DSI_VC_IRQENABLE(0)); DUMPREG(DSI_VC_CTRL(1)); DUMPREG(DSI_VC_TE(1)); DUMPREG(DSI_VC_LONG_PACKET_HEADER(1)); DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(1)); DUMPREG(DSI_VC_SHORT_PACKET_HEADER(1)); DUMPREG(DSI_VC_IRQSTATUS(1)); DUMPREG(DSI_VC_IRQENABLE(1)); DUMPREG(DSI_VC_CTRL(2)); DUMPREG(DSI_VC_TE(2)); DUMPREG(DSI_VC_LONG_PACKET_HEADER(2)); DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(2)); DUMPREG(DSI_VC_SHORT_PACKET_HEADER(2)); DUMPREG(DSI_VC_IRQSTATUS(2)); DUMPREG(DSI_VC_IRQENABLE(2)); DUMPREG(DSI_VC_CTRL(3)); DUMPREG(DSI_VC_TE(3)); DUMPREG(DSI_VC_LONG_PACKET_HEADER(3)); DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(3)); DUMPREG(DSI_VC_SHORT_PACKET_HEADER(3)); DUMPREG(DSI_VC_IRQSTATUS(3)); DUMPREG(DSI_VC_IRQENABLE(3)); DUMPREG(DSI_DSIPHY_CFG0); DUMPREG(DSI_DSIPHY_CFG1); DUMPREG(DSI_DSIPHY_CFG2); DUMPREG(DSI_DSIPHY_CFG5); DUMPREG(DSI_PLL_CONTROL); DUMPREG(DSI_PLL_STATUS); DUMPREG(DSI_PLL_GO); DUMPREG(DSI_PLL_CONFIGURATION1); DUMPREG(DSI_PLL_CONFIGURATION2); #undef DUMPREG dsi_disable_scp_clk(dsi); dsi_runtime_put(dsi); return 0; } enum dsi_cio_power_state { DSI_COMPLEXIO_POWER_OFF = 0x0, DSI_COMPLEXIO_POWER_ON = 0x1, DSI_COMPLEXIO_POWER_ULPS = 0x2, }; static int dsi_cio_power(struct dsi_data *dsi, enum dsi_cio_power_state state) { int t = 0; /* PWR_CMD */ REG_FLD_MOD(dsi, DSI_COMPLEXIO_CFG1, state, 28, 27); /* PWR_STATUS */ while (FLD_GET(dsi_read_reg(dsi, DSI_COMPLEXIO_CFG1), 26, 25) != state) { if (++t > 1000) { DSSERR("failed to set complexio power state to " "%d\n", state); return -ENODEV; } udelay(1); } return 0; } static unsigned int dsi_get_line_buf_size(struct dsi_data *dsi) { int val; /* line buffer on OMAP3 is 1024 x 24bits */ /* XXX: for some reason using full buffer size causes * considerable TX slowdown with update sizes that fill the * whole buffer */ if (!(dsi->data->quirks & DSI_QUIRK_GNQ)) return 1023 * 3; val = REG_GET(dsi, DSI_GNQ, 14, 12); /* VP1_LINE_BUFFER_SIZE */ switch (val) { case 1: return 512 * 3; /* 512x24 bits */ case 2: return 682 * 3; /* 682x24 bits */ case 3: return 853 * 3; /* 853x24 bits */ case 4: return 1024 * 3; /* 1024x24 bits */ case 5: return 1194 * 3; /* 1194x24 bits */ case 6: return 1365 * 3; /* 1365x24 bits */ case 7: return 1920 * 3; /* 1920x24 bits */ default: BUG(); return 0; } } static int dsi_set_lane_config(struct dsi_data *dsi) { static const u8 offsets[] = { 0, 4, 8, 12, 16 }; static const enum dsi_lane_function functions[] = { DSI_LANE_CLK, DSI_LANE_DATA1, DSI_LANE_DATA2, DSI_LANE_DATA3, DSI_LANE_DATA4, }; u32 r; int i; r = dsi_read_reg(dsi, DSI_COMPLEXIO_CFG1); for (i = 0; i < dsi->num_lanes_used; ++i) { unsigned int offset = offsets[i]; unsigned int polarity, lane_number; unsigned int t; for (t = 0; t < dsi->num_lanes_supported; ++t) if (dsi->lanes[t].function == functions[i]) break; if (t == dsi->num_lanes_supported) return -EINVAL; lane_number = t; polarity = dsi->lanes[t].polarity; r = FLD_MOD(r, lane_number + 1, offset + 2, offset); r = FLD_MOD(r, polarity, offset + 3, offset + 3); } /* clear the unused lanes */ for (; i < dsi->num_lanes_supported; ++i) { unsigned int offset = offsets[i]; r = FLD_MOD(r, 0, offset + 2, offset); r = FLD_MOD(r, 0, offset + 3, offset + 3); } dsi_write_reg(dsi, DSI_COMPLEXIO_CFG1, r); return 0; } static inline unsigned int ns2ddr(struct dsi_data *dsi, unsigned int ns) { /* convert time in ns to ddr ticks, rounding up */ unsigned long ddr_clk = dsi->pll.cinfo.clkdco / 4; return (ns * (ddr_clk / 1000 / 1000) + 999) / 1000; } static inline unsigned int ddr2ns(struct dsi_data *dsi, unsigned int ddr) { unsigned long ddr_clk = dsi->pll.cinfo.clkdco / 4; return ddr * 1000 * 1000 / (ddr_clk / 1000); } static void dsi_cio_timings(struct dsi_data *dsi) { u32 r; u32 ths_prepare, ths_prepare_ths_zero, ths_trail, ths_exit; u32 tlpx_half, tclk_trail, tclk_zero; u32 tclk_prepare; /* calculate timings */ /* 1 * DDR_CLK = 2 * UI */ /* min 40ns + 4*UI max 85ns + 6*UI */ ths_prepare = ns2ddr(dsi, 70) + 2; /* min 145ns + 10*UI */ ths_prepare_ths_zero = ns2ddr(dsi, 175) + 2; /* min max(8*UI, 60ns+4*UI) */ ths_trail = ns2ddr(dsi, 60) + 5; /* min 100ns */ ths_exit = ns2ddr(dsi, 145); /* tlpx min 50n */ tlpx_half = ns2ddr(dsi, 25); /* min 60ns */ tclk_trail = ns2ddr(dsi, 60) + 2; /* min 38ns, max 95ns */ tclk_prepare = ns2ddr(dsi, 65); /* min tclk-prepare + tclk-zero = 300ns */ tclk_zero = ns2ddr(dsi, 260); DSSDBG("ths_prepare %u (%uns), ths_prepare_ths_zero %u (%uns)\n", ths_prepare, ddr2ns(dsi, ths_prepare), ths_prepare_ths_zero, ddr2ns(dsi, ths_prepare_ths_zero)); DSSDBG("ths_trail %u (%uns), ths_exit %u (%uns)\n", ths_trail, ddr2ns(dsi, ths_trail), ths_exit, ddr2ns(dsi, ths_exit)); DSSDBG("tlpx_half %u (%uns), tclk_trail %u (%uns), " "tclk_zero %u (%uns)\n", tlpx_half, ddr2ns(dsi, tlpx_half), tclk_trail, ddr2ns(dsi, tclk_trail), tclk_zero, ddr2ns(dsi, tclk_zero)); DSSDBG("tclk_prepare %u (%uns)\n", tclk_prepare, ddr2ns(dsi, tclk_prepare)); /* program timings */ r = dsi_read_reg(dsi, DSI_DSIPHY_CFG0); r = FLD_MOD(r, ths_prepare, 31, 24); r = FLD_MOD(r, ths_prepare_ths_zero, 23, 16); r = FLD_MOD(r, ths_trail, 15, 8); r = FLD_MOD(r, ths_exit, 7, 0); dsi_write_reg(dsi, DSI_DSIPHY_CFG0, r); r = dsi_read_reg(dsi, DSI_DSIPHY_CFG1); r = FLD_MOD(r, tlpx_half, 20, 16); r = FLD_MOD(r, tclk_trail, 15, 8); r = FLD_MOD(r, tclk_zero, 7, 0); if (dsi->data->quirks & DSI_QUIRK_PHY_DCC) { r = FLD_MOD(r, 0, 21, 21); /* DCCEN = disable */ r = FLD_MOD(r, 1, 22, 22); /* CLKINP_DIVBY2EN = enable */ r = FLD_MOD(r, 1, 23, 23); /* CLKINP_SEL = enable */ } dsi_write_reg(dsi, DSI_DSIPHY_CFG1, r); r = dsi_read_reg(dsi, DSI_DSIPHY_CFG2); r = FLD_MOD(r, tclk_prepare, 7, 0); dsi_write_reg(dsi, DSI_DSIPHY_CFG2, r); } /* lane masks have lane 0 at lsb. mask_p for positive lines, n for negative */ static void dsi_cio_enable_lane_override(struct dsi_data *dsi, unsigned int mask_p, unsigned int mask_n) { int i; u32 l; u8 lptxscp_start = dsi->num_lanes_supported == 3 ? 22 : 26; l = 0; for (i = 0; i < dsi->num_lanes_supported; ++i) { unsigned int p = dsi->lanes[i].polarity; if (mask_p & (1 << i)) l |= 1 << (i * 2 + (p ? 0 : 1)); if (mask_n & (1 << i)) l |= 1 << (i * 2 + (p ? 1 : 0)); } /* * Bits in REGLPTXSCPDAT4TO0DXDY: * 17: DY0 18: DX0 * 19: DY1 20: DX1 * 21: DY2 22: DX2 * 23: DY3 24: DX3 * 25: DY4 26: DX4 */ /* Set the lane override configuration */ /* REGLPTXSCPDAT4TO0DXDY */ REG_FLD_MOD(dsi, DSI_DSIPHY_CFG10, l, lptxscp_start, 17); /* Enable lane override */ /* ENLPTXSCPDAT */ REG_FLD_MOD(dsi, DSI_DSIPHY_CFG10, 1, 27, 27); } static void dsi_cio_disable_lane_override(struct dsi_data *dsi) { /* Disable lane override */ REG_FLD_MOD(dsi, DSI_DSIPHY_CFG10, 0, 27, 27); /* ENLPTXSCPDAT */ /* Reset the lane override configuration */ /* REGLPTXSCPDAT4TO0DXDY */ REG_FLD_MOD(dsi, DSI_DSIPHY_CFG10, 0, 22, 17); } static int dsi_cio_wait_tx_clk_esc_reset(struct dsi_data *dsi) { int t, i; bool in_use[DSI_MAX_NR_LANES]; static const u8 offsets_old[] = { 28, 27, 26 }; static const u8 offsets_new[] = { 24, 25, 26, 27, 28 }; const u8 *offsets; if (dsi->data->quirks & DSI_QUIRK_REVERSE_TXCLKESC) offsets = offsets_old; else offsets = offsets_new; for (i = 0; i < dsi->num_lanes_supported; ++i) in_use[i] = dsi->lanes[i].function != DSI_LANE_UNUSED; t = 100000; while (true) { u32 l; int ok; l = dsi_read_reg(dsi, DSI_DSIPHY_CFG5); ok = 0; for (i = 0; i < dsi->num_lanes_supported; ++i) { if (!in_use[i] || (l & (1 << offsets[i]))) ok++; } if (ok == dsi->num_lanes_supported) break; if (--t == 0) { for (i = 0; i < dsi->num_lanes_supported; ++i) { if (!in_use[i] || (l & (1 << offsets[i]))) continue; DSSERR("CIO TXCLKESC%d domain not coming " \ "out of reset\n", i); } return -EIO; } } return 0; } /* return bitmask of enabled lanes, lane0 being the lsb */ static unsigned int dsi_get_lane_mask(struct dsi_data *dsi) { unsigned int mask = 0; int i; for (i = 0; i < dsi->num_lanes_supported; ++i) { if (dsi->lanes[i].function != DSI_LANE_UNUSED) mask |= 1 << i; } return mask; } /* OMAP4 CONTROL_DSIPHY */ #define OMAP4_DSIPHY_SYSCON_OFFSET 0x78 #define OMAP4_DSI2_LANEENABLE_SHIFT 29 #define OMAP4_DSI2_LANEENABLE_MASK (0x7 << 29) #define OMAP4_DSI1_LANEENABLE_SHIFT 24 #define OMAP4_DSI1_LANEENABLE_MASK (0x1f << 24) #define OMAP4_DSI1_PIPD_SHIFT 19 #define OMAP4_DSI1_PIPD_MASK (0x1f << 19) #define OMAP4_DSI2_PIPD_SHIFT 14 #define OMAP4_DSI2_PIPD_MASK (0x1f << 14) static int dsi_omap4_mux_pads(struct dsi_data *dsi, unsigned int lanes) { u32 enable_mask, enable_shift; u32 pipd_mask, pipd_shift; if (dsi->module_id == 0) { enable_mask = OMAP4_DSI1_LANEENABLE_MASK; enable_shift = OMAP4_DSI1_LANEENABLE_SHIFT; pipd_mask = OMAP4_DSI1_PIPD_MASK; pipd_shift = OMAP4_DSI1_PIPD_SHIFT; } else if (dsi->module_id == 1) { enable_mask = OMAP4_DSI2_LANEENABLE_MASK; enable_shift = OMAP4_DSI2_LANEENABLE_SHIFT; pipd_mask = OMAP4_DSI2_PIPD_MASK; pipd_shift = OMAP4_DSI2_PIPD_SHIFT; } else { return -ENODEV; } return regmap_update_bits(dsi->syscon, OMAP4_DSIPHY_SYSCON_OFFSET, enable_mask | pipd_mask, (lanes << enable_shift) | (lanes << pipd_shift)); } /* OMAP5 CONTROL_DSIPHY */ #define OMAP5_DSIPHY_SYSCON_OFFSET 0x74 #define OMAP5_DSI1_LANEENABLE_SHIFT 24 #define OMAP5_DSI2_LANEENABLE_SHIFT 19 #define OMAP5_DSI_LANEENABLE_MASK 0x1f static int dsi_omap5_mux_pads(struct dsi_data *dsi, unsigned int lanes) { u32 enable_shift; if (dsi->module_id == 0) enable_shift = OMAP5_DSI1_LANEENABLE_SHIFT; else if (dsi->module_id == 1) enable_shift = OMAP5_DSI2_LANEENABLE_SHIFT; else return -ENODEV; return regmap_update_bits(dsi->syscon, OMAP5_DSIPHY_SYSCON_OFFSET, OMAP5_DSI_LANEENABLE_MASK << enable_shift, lanes << enable_shift); } static int dsi_enable_pads(struct dsi_data *dsi, unsigned int lane_mask) { if (dsi->data->model == DSI_MODEL_OMAP4) return dsi_omap4_mux_pads(dsi, lane_mask); if (dsi->data->model == DSI_MODEL_OMAP5) return dsi_omap5_mux_pads(dsi, lane_mask); return 0; } static void dsi_disable_pads(struct dsi_data *dsi) { if (dsi->data->model == DSI_MODEL_OMAP4) dsi_omap4_mux_pads(dsi, 0); else if (dsi->data->model == DSI_MODEL_OMAP5) dsi_omap5_mux_pads(dsi, 0); } static int dsi_cio_init(struct dsi_data *dsi) { int r; u32 l; DSSDBG("DSI CIO init starts"); r = dsi_enable_pads(dsi, dsi_get_lane_mask(dsi)); if (r) return r; dsi_enable_scp_clk(dsi); /* A dummy read using the SCP interface to any DSIPHY register is * required after DSIPHY reset to complete the reset of the DSI complex * I/O. */ dsi_read_reg(dsi, DSI_DSIPHY_CFG5); if (!wait_for_bit_change(dsi, DSI_DSIPHY_CFG5, 30, 1)) { DSSERR("CIO SCP Clock domain not coming out of reset.\n"); r = -EIO; goto err_scp_clk_dom; } r = dsi_set_lane_config(dsi); if (r) goto err_scp_clk_dom; /* set TX STOP MODE timer to maximum for this operation */ l = dsi_read_reg(dsi, DSI_TIMING1); l = FLD_MOD(l, 1, 15, 15); /* FORCE_TX_STOP_MODE_IO */ l = FLD_MOD(l, 1, 14, 14); /* STOP_STATE_X16_IO */ l = FLD_MOD(l, 1, 13, 13); /* STOP_STATE_X4_IO */ l = FLD_MOD(l, 0x1fff, 12, 0); /* STOP_STATE_COUNTER_IO */ dsi_write_reg(dsi, DSI_TIMING1, l); if (dsi->ulps_enabled) { unsigned int mask_p; int i; DSSDBG("manual ulps exit\n"); /* ULPS is exited by Mark-1 state for 1ms, followed by * stop state. DSS HW cannot do this via the normal * ULPS exit sequence, as after reset the DSS HW thinks * that we are not in ULPS mode, and refuses to send the * sequence. So we need to send the ULPS exit sequence * manually by setting positive lines high and negative lines * low for 1ms. */ mask_p = 0; for (i = 0; i < dsi->num_lanes_supported; ++i) { if (dsi->lanes[i].function == DSI_LANE_UNUSED) continue; mask_p |= 1 << i; } dsi_cio_enable_lane_override(dsi, mask_p, 0); } r = dsi_cio_power(dsi, DSI_COMPLEXIO_POWER_ON); if (r) goto err_cio_pwr; if (!wait_for_bit_change(dsi, DSI_COMPLEXIO_CFG1, 29, 1)) { DSSERR("CIO PWR clock domain not coming out of reset.\n"); r = -ENODEV; goto err_cio_pwr_dom; } dsi_if_enable(dsi, true); dsi_if_enable(dsi, false); REG_FLD_MOD(dsi, DSI_CLK_CTRL, 1, 20, 20); /* LP_CLK_ENABLE */ r = dsi_cio_wait_tx_clk_esc_reset(dsi); if (r) goto err_tx_clk_esc_rst; if (dsi->ulps_enabled) { /* Keep Mark-1 state for 1ms (as per DSI spec) */ ktime_t wait = ns_to_ktime(1000 * 1000); set_current_state(TASK_UNINTERRUPTIBLE); schedule_hrtimeout(&wait, HRTIMER_MODE_REL); /* Disable the override. The lanes should be set to Mark-11 * state by the HW */ dsi_cio_disable_lane_override(dsi); } /* FORCE_TX_STOP_MODE_IO */ REG_FLD_MOD(dsi, DSI_TIMING1, 0, 15, 15); dsi_cio_timings(dsi); if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) { /* DDR_CLK_ALWAYS_ON */ REG_FLD_MOD(dsi, DSI_CLK_CTRL, dsi->vm_timings.ddr_clk_always_on, 13, 13); } dsi->ulps_enabled = false; DSSDBG("CIO init done\n"); return 0; err_tx_clk_esc_rst: REG_FLD_MOD(dsi, DSI_CLK_CTRL, 0, 20, 20); /* LP_CLK_ENABLE */ err_cio_pwr_dom: dsi_cio_power(dsi, DSI_COMPLEXIO_POWER_OFF); err_cio_pwr: if (dsi->ulps_enabled) dsi_cio_disable_lane_override(dsi); err_scp_clk_dom: dsi_disable_scp_clk(dsi); dsi_disable_pads(dsi); return r; } static void dsi_cio_uninit(struct dsi_data *dsi) { /* DDR_CLK_ALWAYS_ON */ REG_FLD_MOD(dsi, DSI_CLK_CTRL, 0, 13, 13); dsi_cio_power(dsi, DSI_COMPLEXIO_POWER_OFF); dsi_disable_scp_clk(dsi); dsi_disable_pads(dsi); } static void dsi_config_tx_fifo(struct dsi_data *dsi, enum fifo_size size1, enum fifo_size size2, enum fifo_size size3, enum fifo_size size4) { u32 r = 0; int add = 0; int i; dsi->vc[0].tx_fifo_size = size1; dsi->vc[1].tx_fifo_size = size2; dsi->vc[2].tx_fifo_size = size3; dsi->vc[3].tx_fifo_size = size4; for (i = 0; i < 4; i++) { u8 v; int size = dsi->vc[i].tx_fifo_size; if (add + size > 4) { DSSERR("Illegal FIFO configuration\n"); BUG(); return; } v = FLD_VAL(add, 2, 0) | FLD_VAL(size, 7, 4); r |= v << (8 * i); /*DSSDBG("TX FIFO vc %d: size %d, add %d\n", i, size, add); */ add += size; } dsi_write_reg(dsi, DSI_TX_FIFO_VC_SIZE, r); } static void dsi_config_rx_fifo(struct dsi_data *dsi, enum fifo_size size1, enum fifo_size size2, enum fifo_size size3, enum fifo_size size4) { u32 r = 0; int add = 0; int i; dsi->vc[0].rx_fifo_size = size1; dsi->vc[1].rx_fifo_size = size2; dsi->vc[2].rx_fifo_size = size3; dsi->vc[3].rx_fifo_size = size4; for (i = 0; i < 4; i++) { u8 v; int size = dsi->vc[i].rx_fifo_size; if (add + size > 4) { DSSERR("Illegal FIFO configuration\n"); BUG(); return; } v = FLD_VAL(add, 2, 0) | FLD_VAL(size, 7, 4); r |= v << (8 * i); /*DSSDBG("RX FIFO vc %d: size %d, add %d\n", i, size, add); */ add += size; } dsi_write_reg(dsi, DSI_RX_FIFO_VC_SIZE, r); } static int dsi_force_tx_stop_mode_io(struct dsi_data *dsi) { u32 r; r = dsi_read_reg(dsi, DSI_TIMING1); r = FLD_MOD(r, 1, 15, 15); /* FORCE_TX_STOP_MODE_IO */ dsi_write_reg(dsi, DSI_TIMING1, r); if (!wait_for_bit_change(dsi, DSI_TIMING1, 15, 0)) { DSSERR("TX_STOP bit not going down\n"); return -EIO; } return 0; } static bool dsi_vc_is_enabled(struct dsi_data *dsi, int channel) { return REG_GET(dsi, DSI_VC_CTRL(channel), 0, 0); } static void dsi_packet_sent_handler_vp(void *data, u32 mask) { struct dsi_packet_sent_handler_data *vp_data = (struct dsi_packet_sent_handler_data *) data; struct dsi_data *dsi = vp_data->dsi; const int channel = dsi->update_channel; u8 bit = dsi->te_enabled ? 30 : 31; if (REG_GET(dsi, DSI_VC_TE(channel), bit, bit) == 0) complete(vp_data->completion); } static int dsi_sync_vc_vp(struct dsi_data *dsi, int channel) { DECLARE_COMPLETION_ONSTACK(completion); struct dsi_packet_sent_handler_data vp_data = { .dsi = dsi, .completion = &completion }; int r = 0; u8 bit; bit = dsi->te_enabled ? 30 : 31; r = dsi_register_isr_vc(dsi, channel, dsi_packet_sent_handler_vp, &vp_data, DSI_VC_IRQ_PACKET_SENT); if (r) goto err0; /* Wait for completion only if TE_EN/TE_START is still set */ if (REG_GET(dsi, DSI_VC_TE(channel), bit, bit)) { if (wait_for_completion_timeout(&completion, msecs_to_jiffies(10)) == 0) { DSSERR("Failed to complete previous frame transfer\n"); r = -EIO; goto err1; } } dsi_unregister_isr_vc(dsi, channel, dsi_packet_sent_handler_vp, &vp_data, DSI_VC_IRQ_PACKET_SENT); return 0; err1: dsi_unregister_isr_vc(dsi, channel, dsi_packet_sent_handler_vp, &vp_data, DSI_VC_IRQ_PACKET_SENT); err0: return r; } static void dsi_packet_sent_handler_l4(void *data, u32 mask) { struct dsi_packet_sent_handler_data *l4_data = (struct dsi_packet_sent_handler_data *) data; struct dsi_data *dsi = l4_data->dsi; const int channel = dsi->update_channel; if (REG_GET(dsi, DSI_VC_CTRL(channel), 5, 5) == 0) complete(l4_data->completion); } static int dsi_sync_vc_l4(struct dsi_data *dsi, int channel) { DECLARE_COMPLETION_ONSTACK(completion); struct dsi_packet_sent_handler_data l4_data = { .dsi = dsi, .completion = &completion }; int r = 0; r = dsi_register_isr_vc(dsi, channel, dsi_packet_sent_handler_l4, &l4_data, DSI_VC_IRQ_PACKET_SENT); if (r) goto err0; /* Wait for completion only if TX_FIFO_NOT_EMPTY is still set */ if (REG_GET(dsi, DSI_VC_CTRL(channel), 5, 5)) { if (wait_for_completion_timeout(&completion, msecs_to_jiffies(10)) == 0) { DSSERR("Failed to complete previous l4 transfer\n"); r = -EIO; goto err1; } } dsi_unregister_isr_vc(dsi, channel, dsi_packet_sent_handler_l4, &l4_data, DSI_VC_IRQ_PACKET_SENT); return 0; err1: dsi_unregister_isr_vc(dsi, channel, dsi_packet_sent_handler_l4, &l4_data, DSI_VC_IRQ_PACKET_SENT); err0: return r; } static int dsi_sync_vc(struct dsi_data *dsi, int channel) { WARN_ON(!dsi_bus_is_locked(dsi)); WARN_ON(in_interrupt()); if (!dsi_vc_is_enabled(dsi, channel)) return 0; switch (dsi->vc[channel].source) { case DSI_VC_SOURCE_VP: return dsi_sync_vc_vp(dsi, channel); case DSI_VC_SOURCE_L4: return dsi_sync_vc_l4(dsi, channel); default: BUG(); return -EINVAL; } } static int dsi_vc_enable(struct dsi_data *dsi, int channel, bool enable) { DSSDBG("dsi_vc_enable channel %d, enable %d\n", channel, enable); enable = enable ? 1 : 0; REG_FLD_MOD(dsi, DSI_VC_CTRL(channel), enable, 0, 0); if (!wait_for_bit_change(dsi, DSI_VC_CTRL(channel), 0, enable)) { DSSERR("Failed to set dsi_vc_enable to %d\n", enable); return -EIO; } return 0; } static void dsi_vc_initial_config(struct dsi_data *dsi, int channel) { u32 r; DSSDBG("Initial config of virtual channel %d", channel); r = dsi_read_reg(dsi, DSI_VC_CTRL(channel)); if (FLD_GET(r, 15, 15)) /* VC_BUSY */ DSSERR("VC(%d) busy when trying to configure it!\n", channel); r = FLD_MOD(r, 0, 1, 1); /* SOURCE, 0 = L4 */ r = FLD_MOD(r, 0, 2, 2); /* BTA_SHORT_EN */ r = FLD_MOD(r, 0, 3, 3); /* BTA_LONG_EN */ r = FLD_MOD(r, 0, 4, 4); /* MODE, 0 = command */ r = FLD_MOD(r, 1, 7, 7); /* CS_TX_EN */ r = FLD_MOD(r, 1, 8, 8); /* ECC_TX_EN */ r = FLD_MOD(r, 0, 9, 9); /* MODE_SPEED, high speed on/off */ if (dsi->data->quirks & DSI_QUIRK_VC_OCP_WIDTH) r = FLD_MOD(r, 3, 11, 10); /* OCP_WIDTH = 32 bit */ r = FLD_MOD(r, 4, 29, 27); /* DMA_RX_REQ_NB = no dma */ r = FLD_MOD(r, 4, 23, 21); /* DMA_TX_REQ_NB = no dma */ dsi_write_reg(dsi, DSI_VC_CTRL(channel), r); dsi->vc[channel].source = DSI_VC_SOURCE_L4; } static int dsi_vc_config_source(struct dsi_data *dsi, int channel, enum dsi_vc_source source) { if (dsi->vc[channel].source == source) return 0; DSSDBG("Source config of virtual channel %d", channel); dsi_sync_vc(dsi, channel); dsi_vc_enable(dsi, channel, 0); /* VC_BUSY */ if (!wait_for_bit_change(dsi, DSI_VC_CTRL(channel), 15, 0)) { DSSERR("vc(%d) busy when trying to config for VP\n", channel); return -EIO; } /* SOURCE, 0 = L4, 1 = video port */ REG_FLD_MOD(dsi, DSI_VC_CTRL(channel), source, 1, 1); /* DCS_CMD_ENABLE */ if (dsi->data->quirks & DSI_QUIRK_DCS_CMD_CONFIG_VC) { bool enable = source == DSI_VC_SOURCE_VP; REG_FLD_MOD(dsi, DSI_VC_CTRL(channel), enable, 30, 30); } dsi_vc_enable(dsi, channel, 1); dsi->vc[channel].source = source; return 0; } static void dsi_vc_enable_hs(struct omap_dss_device *dssdev, int channel, bool enable) { struct dsi_data *dsi = to_dsi_data(dssdev); DSSDBG("dsi_vc_enable_hs(%d, %d)\n", channel, enable); WARN_ON(!dsi_bus_is_locked(dsi)); dsi_vc_enable(dsi, channel, 0); dsi_if_enable(dsi, 0); REG_FLD_MOD(dsi, DSI_VC_CTRL(channel), enable, 9, 9); dsi_vc_enable(dsi, channel, 1); dsi_if_enable(dsi, 1); dsi_force_tx_stop_mode_io(dsi); /* start the DDR clock by sending a NULL packet */ if (dsi->vm_timings.ddr_clk_always_on && enable) dsi_vc_send_null(dsi, channel); } static void dsi_vc_flush_long_data(struct dsi_data *dsi, int channel) { while (REG_GET(dsi, DSI_VC_CTRL(channel), 20, 20)) { u32 val; val = dsi_read_reg(dsi, DSI_VC_SHORT_PACKET_HEADER(channel)); DSSDBG("\t\tb1 %#02x b2 %#02x b3 %#02x b4 %#02x\n", (val >> 0) & 0xff, (val >> 8) & 0xff, (val >> 16) & 0xff, (val >> 24) & 0xff); } } static void dsi_show_rx_ack_with_err(u16 err) { DSSERR("\tACK with ERROR (%#x):\n", err); if (err & (1 << 0)) DSSERR("\t\tSoT Error\n"); if (err & (1 << 1)) DSSERR("\t\tSoT Sync Error\n"); if (err & (1 << 2)) DSSERR("\t\tEoT Sync Error\n"); if (err & (1 << 3)) DSSERR("\t\tEscape Mode Entry Command Error\n"); if (err & (1 << 4)) DSSERR("\t\tLP Transmit Sync Error\n"); if (err & (1 << 5)) DSSERR("\t\tHS Receive Timeout Error\n"); if (err & (1 << 6)) DSSERR("\t\tFalse Control Error\n"); if (err & (1 << 7)) DSSERR("\t\t(reserved7)\n"); if (err & (1 << 8)) DSSERR("\t\tECC Error, single-bit (corrected)\n"); if (err & (1 << 9)) DSSERR("\t\tECC Error, multi-bit (not corrected)\n"); if (err & (1 << 10)) DSSERR("\t\tChecksum Error\n"); if (err & (1 << 11)) DSSERR("\t\tData type not recognized\n"); if (err & (1 << 12)) DSSERR("\t\tInvalid VC ID\n"); if (err & (1 << 13)) DSSERR("\t\tInvalid Transmission Length\n"); if (err & (1 << 14)) DSSERR("\t\t(reserved14)\n"); if (err & (1 << 15)) DSSERR("\t\tDSI Protocol Violation\n"); } static u16 dsi_vc_flush_receive_data(struct dsi_data *dsi, int channel) { /* RX_FIFO_NOT_EMPTY */ while (REG_GET(dsi, DSI_VC_CTRL(channel), 20, 20)) { u32 val; u8 dt; val = dsi_read_reg(dsi, DSI_VC_SHORT_PACKET_HEADER(channel)); DSSERR("\trawval %#08x\n", val); dt = FLD_GET(val, 5, 0); if (dt == MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT) { u16 err = FLD_GET(val, 23, 8); dsi_show_rx_ack_with_err(err); } else if (dt == MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE) { DSSERR("\tDCS short response, 1 byte: %#x\n", FLD_GET(val, 23, 8)); } else if (dt == MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE) { DSSERR("\tDCS short response, 2 byte: %#x\n", FLD_GET(val, 23, 8)); } else if (dt == MIPI_DSI_RX_DCS_LONG_READ_RESPONSE) { DSSERR("\tDCS long response, len %d\n", FLD_GET(val, 23, 8)); dsi_vc_flush_long_data(dsi, channel); } else { DSSERR("\tunknown datatype 0x%02x\n", dt); } } return 0; } static int dsi_vc_send_bta(struct dsi_data *dsi, int channel) { if (dsi->debug_write || dsi->debug_read) DSSDBG("dsi_vc_send_bta %d\n", channel); WARN_ON(!dsi_bus_is_locked(dsi)); /* RX_FIFO_NOT_EMPTY */ if (REG_GET(dsi, DSI_VC_CTRL(channel), 20, 20)) { DSSERR("rx fifo not empty when sending BTA, dumping data:\n"); dsi_vc_flush_receive_data(dsi, channel); } REG_FLD_MOD(dsi, DSI_VC_CTRL(channel), 1, 6, 6); /* BTA_EN */ /* flush posted write */ dsi_read_reg(dsi, DSI_VC_CTRL(channel)); return 0; } static int dsi_vc_send_bta_sync(struct omap_dss_device *dssdev, int channel) { struct dsi_data *dsi = to_dsi_data(dssdev); DECLARE_COMPLETION_ONSTACK(completion); int r = 0; u32 err; r = dsi_register_isr_vc(dsi, channel, dsi_completion_handler, &completion, DSI_VC_IRQ_BTA); if (r) goto err0; r = dsi_register_isr(dsi, dsi_completion_handler, &completion, DSI_IRQ_ERROR_MASK); if (r) goto err1; r = dsi_vc_send_bta(dsi, channel); if (r) goto err2; if (wait_for_completion_timeout(&completion, msecs_to_jiffies(500)) == 0) { DSSERR("Failed to receive BTA\n"); r = -EIO; goto err2; } err = dsi_get_errors(dsi); if (err) { DSSERR("Error while sending BTA: %x\n", err); r = -EIO; goto err2; } err2: dsi_unregister_isr(dsi, dsi_completion_handler, &completion, DSI_IRQ_ERROR_MASK); err1: dsi_unregister_isr_vc(dsi, channel, dsi_completion_handler, &completion, DSI_VC_IRQ_BTA); err0: return r; } static inline void dsi_vc_write_long_header(struct dsi_data *dsi, int channel, u8 data_type, u16 len, u8 ecc) { u32 val; u8 data_id; WARN_ON(!dsi_bus_is_locked(dsi)); data_id = data_type | dsi->vc[channel].vc_id << 6; val = FLD_VAL(data_id, 7, 0) | FLD_VAL(len, 23, 8) | FLD_VAL(ecc, 31, 24); dsi_write_reg(dsi, DSI_VC_LONG_PACKET_HEADER(channel), val); } static inline void dsi_vc_write_long_payload(struct dsi_data *dsi, int channel, u8 b1, u8 b2, u8 b3, u8 b4) { u32 val; val = b4 << 24 | b3 << 16 | b2 << 8 | b1 << 0; /* DSSDBG("\twriting %02x, %02x, %02x, %02x (%#010x)\n", b1, b2, b3, b4, val); */ dsi_write_reg(dsi, DSI_VC_LONG_PACKET_PAYLOAD(channel), val); } static int dsi_vc_send_long(struct dsi_data *dsi, int channel, u8 data_type, u8 *data, u16 len, u8 ecc) { /*u32 val; */ int i; u8 *p; int r = 0; u8 b1, b2, b3, b4; if (dsi->debug_write) DSSDBG("dsi_vc_send_long, %d bytes\n", len); /* len + header */ if (dsi->vc[channel].tx_fifo_size * 32 * 4 < len + 4) { DSSERR("unable to send long packet: packet too long.\n"); return -EINVAL; } dsi_vc_config_source(dsi, channel, DSI_VC_SOURCE_L4); dsi_vc_write_long_header(dsi, channel, data_type, len, ecc); p = data; for (i = 0; i < len >> 2; i++) { if (dsi->debug_write) DSSDBG("\tsending full packet %d\n", i); b1 = *p++; b2 = *p++; b3 = *p++; b4 = *p++; dsi_vc_write_long_payload(dsi, channel, b1, b2, b3, b4); } i = len % 4; if (i) { b1 = 0; b2 = 0; b3 = 0; if (dsi->debug_write) DSSDBG("\tsending remainder bytes %d\n", i); switch (i) { case 3: b1 = *p++; b2 = *p++; b3 = *p++; break; case 2: b1 = *p++; b2 = *p++; break; case 1: b1 = *p++; break; } dsi_vc_write_long_payload(dsi, channel, b1, b2, b3, 0); } return r; } static int dsi_vc_send_short(struct dsi_data *dsi, int channel, u8 data_type, u16 data, u8 ecc) { u32 r; u8 data_id; WARN_ON(!dsi_bus_is_locked(dsi)); if (dsi->debug_write) DSSDBG("dsi_vc_send_short(ch%d, dt %#x, b1 %#x, b2 %#x)\n", channel, data_type, data & 0xff, (data >> 8) & 0xff); dsi_vc_config_source(dsi, channel, DSI_VC_SOURCE_L4); if (FLD_GET(dsi_read_reg(dsi, DSI_VC_CTRL(channel)), 16, 16)) { DSSERR("ERROR FIFO FULL, aborting transfer\n"); return -EINVAL; } data_id = data_type | dsi->vc[channel].vc_id << 6; r = (data_id << 0) | (data << 8) | (ecc << 24); dsi_write_reg(dsi, DSI_VC_SHORT_PACKET_HEADER(channel), r); return 0; } static int dsi_vc_send_null(struct dsi_data *dsi, int channel) { return dsi_vc_send_long(dsi, channel, MIPI_DSI_NULL_PACKET, NULL, 0, 0); } static int dsi_vc_write_nosync_common(struct dsi_data *dsi, int channel, u8 *data, int len, enum dss_dsi_content_type type) { int r; if (len == 0) { BUG_ON(type == DSS_DSI_CONTENT_DCS); r = dsi_vc_send_short(dsi, channel, MIPI_DSI_GENERIC_SHORT_WRITE_0_PARAM, 0, 0); } else if (len == 1) { r = dsi_vc_send_short(dsi, channel, type == DSS_DSI_CONTENT_GENERIC ? MIPI_DSI_GENERIC_SHORT_WRITE_1_PARAM : MIPI_DSI_DCS_SHORT_WRITE, data[0], 0); } else if (len == 2) { r = dsi_vc_send_short(dsi, channel, type == DSS_DSI_CONTENT_GENERIC ? MIPI_DSI_GENERIC_SHORT_WRITE_2_PARAM : MIPI_DSI_DCS_SHORT_WRITE_PARAM, data[0] | (data[1] << 8), 0); } else { r = dsi_vc_send_long(dsi, channel, type == DSS_DSI_CONTENT_GENERIC ? MIPI_DSI_GENERIC_LONG_WRITE : MIPI_DSI_DCS_LONG_WRITE, data, len, 0); } return r; } static int dsi_vc_dcs_write_nosync(struct omap_dss_device *dssdev, int channel, u8 *data, int len) { struct dsi_data *dsi = to_dsi_data(dssdev); return dsi_vc_write_nosync_common(dsi, channel, data, len, DSS_DSI_CONTENT_DCS); } static int dsi_vc_generic_write_nosync(struct omap_dss_device *dssdev, int channel, u8 *data, int len) { struct dsi_data *dsi = to_dsi_data(dssdev); return dsi_vc_write_nosync_common(dsi, channel, data, len, DSS_DSI_CONTENT_GENERIC); } static int dsi_vc_write_common(struct omap_dss_device *dssdev, int channel, u8 *data, int len, enum dss_dsi_content_type type) { struct dsi_data *dsi = to_dsi_data(dssdev); int r; r = dsi_vc_write_nosync_common(dsi, channel, data, len, type); if (r) goto err; r = dsi_vc_send_bta_sync(dssdev, channel); if (r) goto err; /* RX_FIFO_NOT_EMPTY */ if (REG_GET(dsi, DSI_VC_CTRL(channel), 20, 20)) { DSSERR("rx fifo not empty after write, dumping data:\n"); dsi_vc_flush_receive_data(dsi, channel); r = -EIO; goto err; } return 0; err: DSSERR("dsi_vc_write_common(ch %d, cmd 0x%02x, len %d) failed\n", channel, data[0], len); return r; } static int dsi_vc_dcs_write(struct omap_dss_device *dssdev, int channel, u8 *data, int len) { return dsi_vc_write_common(dssdev, channel, data, len, DSS_DSI_CONTENT_DCS); } static int dsi_vc_generic_write(struct omap_dss_device *dssdev, int channel, u8 *data, int len) { return dsi_vc_write_common(dssdev, channel, data, len, DSS_DSI_CONTENT_GENERIC); } static int dsi_vc_dcs_send_read_request(struct dsi_data *dsi, int channel, u8 dcs_cmd) { int r; if (dsi->debug_read) DSSDBG("dsi_vc_dcs_send_read_request(ch%d, dcs_cmd %x)\n", channel, dcs_cmd); r = dsi_vc_send_short(dsi, channel, MIPI_DSI_DCS_READ, dcs_cmd, 0); if (r) { DSSERR("dsi_vc_dcs_send_read_request(ch %d, cmd 0x%02x)" " failed\n", channel, dcs_cmd); return r; } return 0; } static int dsi_vc_generic_send_read_request(struct dsi_data *dsi, int channel, u8 *reqdata, int reqlen) { u16 data; u8 data_type; int r; if (dsi->debug_read) DSSDBG("dsi_vc_generic_send_read_request(ch %d, reqlen %d)\n", channel, reqlen); if (reqlen == 0) { data_type = MIPI_DSI_GENERIC_READ_REQUEST_0_PARAM; data = 0; } else if (reqlen == 1) { data_type = MIPI_DSI_GENERIC_READ_REQUEST_1_PARAM; data = reqdata[0]; } else if (reqlen == 2) { data_type = MIPI_DSI_GENERIC_READ_REQUEST_2_PARAM; data = reqdata[0] | (reqdata[1] << 8); } else { BUG(); return -EINVAL; } r = dsi_vc_send_short(dsi, channel, data_type, data, 0); if (r) { DSSERR("dsi_vc_generic_send_read_request(ch %d, reqlen %d)" " failed\n", channel, reqlen); return r; } return 0; } static int dsi_vc_read_rx_fifo(struct dsi_data *dsi, int channel, u8 *buf, int buflen, enum dss_dsi_content_type type) { u32 val; u8 dt; int r; /* RX_FIFO_NOT_EMPTY */ if (REG_GET(dsi, DSI_VC_CTRL(channel), 20, 20) == 0) { DSSERR("RX fifo empty when trying to read.\n"); r = -EIO; goto err; } val = dsi_read_reg(dsi, DSI_VC_SHORT_PACKET_HEADER(channel)); if (dsi->debug_read) DSSDBG("\theader: %08x\n", val); dt = FLD_GET(val, 5, 0); if (dt == MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT) { u16 err = FLD_GET(val, 23, 8); dsi_show_rx_ack_with_err(err); r = -EIO; goto err; } else if (dt == (type == DSS_DSI_CONTENT_GENERIC ? MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE : MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE)) { u8 data = FLD_GET(val, 15, 8); if (dsi->debug_read) DSSDBG("\t%s short response, 1 byte: %02x\n", type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" : "DCS", data); if (buflen < 1) { r = -EIO; goto err; } buf[0] = data; return 1; } else if (dt == (type == DSS_DSI_CONTENT_GENERIC ? MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE : MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE)) { u16 data = FLD_GET(val, 23, 8); if (dsi->debug_read) DSSDBG("\t%s short response, 2 byte: %04x\n", type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" : "DCS", data); if (buflen < 2) { r = -EIO; goto err; } buf[0] = data & 0xff; buf[1] = (data >> 8) & 0xff; return 2; } else if (dt == (type == DSS_DSI_CONTENT_GENERIC ? MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE : MIPI_DSI_RX_DCS_LONG_READ_RESPONSE)) { int w; int len = FLD_GET(val, 23, 8); if (dsi->debug_read) DSSDBG("\t%s long response, len %d\n", type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" : "DCS", len); if (len > buflen) { r = -EIO; goto err; } /* two byte checksum ends the packet, not included in len */ for (w = 0; w < len + 2;) { int b; val = dsi_read_reg(dsi, DSI_VC_SHORT_PACKET_HEADER(channel)); if (dsi->debug_read) DSSDBG("\t\t%02x %02x %02x %02x\n", (val >> 0) & 0xff, (val >> 8) & 0xff, (val >> 16) & 0xff, (val >> 24) & 0xff); for (b = 0; b < 4; ++b) { if (w < len) buf[w] = (val >> (b * 8)) & 0xff; /* we discard the 2 byte checksum */ ++w; } } return len; } else { DSSERR("\tunknown datatype 0x%02x\n", dt); r = -EIO; goto err; } err: DSSERR("dsi_vc_read_rx_fifo(ch %d type %s) failed\n", channel, type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" : "DCS"); return r; } static int dsi_vc_dcs_read(struct omap_dss_device *dssdev, int channel, u8 dcs_cmd, u8 *buf, int buflen) { struct dsi_data *dsi = to_dsi_data(dssdev); int r; r = dsi_vc_dcs_send_read_request(dsi, channel, dcs_cmd); if (r) goto err; r = dsi_vc_send_bta_sync(dssdev, channel); if (r) goto err; r = dsi_vc_read_rx_fifo(dsi, channel, buf, buflen, DSS_DSI_CONTENT_DCS); if (r < 0) goto err; if (r != buflen) { r = -EIO; goto err; } return 0; err: DSSERR("dsi_vc_dcs_read(ch %d, cmd 0x%02x) failed\n", channel, dcs_cmd); return r; } static int dsi_vc_generic_read(struct omap_dss_device *dssdev, int channel, u8 *reqdata, int reqlen, u8 *buf, int buflen) { struct dsi_data *dsi = to_dsi_data(dssdev); int r; r = dsi_vc_generic_send_read_request(dsi, channel, reqdata, reqlen); if (r) return r; r = dsi_vc_send_bta_sync(dssdev, channel); if (r) return r; r = dsi_vc_read_rx_fifo(dsi, channel, buf, buflen, DSS_DSI_CONTENT_GENERIC); if (r < 0) return r; if (r != buflen) { r = -EIO; return r; } return 0; } static int dsi_vc_set_max_rx_packet_size(struct omap_dss_device *dssdev, int channel, u16 len) { struct dsi_data *dsi = to_dsi_data(dssdev); return dsi_vc_send_short(dsi, channel, MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE, len, 0); } static int dsi_enter_ulps(struct dsi_data *dsi) { DECLARE_COMPLETION_ONSTACK(completion); int r, i; unsigned int mask; DSSDBG("Entering ULPS"); WARN_ON(!dsi_bus_is_locked(dsi)); WARN_ON(dsi->ulps_enabled); if (dsi->ulps_enabled) return 0; /* DDR_CLK_ALWAYS_ON */ if (REG_GET(dsi, DSI_CLK_CTRL, 13, 13)) { dsi_if_enable(dsi, 0); REG_FLD_MOD(dsi, DSI_CLK_CTRL, 0, 13, 13); dsi_if_enable(dsi, 1); } dsi_sync_vc(dsi, 0); dsi_sync_vc(dsi, 1); dsi_sync_vc(dsi, 2); dsi_sync_vc(dsi, 3); dsi_force_tx_stop_mode_io(dsi); dsi_vc_enable(dsi, 0, false); dsi_vc_enable(dsi, 1, false); dsi_vc_enable(dsi, 2, false); dsi_vc_enable(dsi, 3, false); if (REG_GET(dsi, DSI_COMPLEXIO_CFG2, 16, 16)) { /* HS_BUSY */ DSSERR("HS busy when enabling ULPS\n"); return -EIO; } if (REG_GET(dsi, DSI_COMPLEXIO_CFG2, 17, 17)) { /* LP_BUSY */ DSSERR("LP busy when enabling ULPS\n"); return -EIO; } r = dsi_register_isr_cio(dsi, dsi_completion_handler, &completion, DSI_CIO_IRQ_ULPSACTIVENOT_ALL0); if (r) return r; mask = 0; for (i = 0; i < dsi->num_lanes_supported; ++i) { if (dsi->lanes[i].function == DSI_LANE_UNUSED) continue; mask |= 1 << i; } /* Assert TxRequestEsc for data lanes and TxUlpsClk for clk lane */ /* LANEx_ULPS_SIG2 */ REG_FLD_MOD(dsi, DSI_COMPLEXIO_CFG2, mask, 9, 5); /* flush posted write and wait for SCP interface to finish the write */ dsi_read_reg(dsi, DSI_COMPLEXIO_CFG2); if (wait_for_completion_timeout(&completion, msecs_to_jiffies(1000)) == 0) { DSSERR("ULPS enable timeout\n"); r = -EIO; goto err; } dsi_unregister_isr_cio(dsi, dsi_completion_handler, &completion, DSI_CIO_IRQ_ULPSACTIVENOT_ALL0); /* Reset LANEx_ULPS_SIG2 */ REG_FLD_MOD(dsi, DSI_COMPLEXIO_CFG2, 0, 9, 5); /* flush posted write and wait for SCP interface to finish the write */ dsi_read_reg(dsi, DSI_COMPLEXIO_CFG2); dsi_cio_power(dsi, DSI_COMPLEXIO_POWER_ULPS); dsi_if_enable(dsi, false); dsi->ulps_enabled = true; return 0; err: dsi_unregister_isr_cio(dsi, dsi_completion_handler, &completion, DSI_CIO_IRQ_ULPSACTIVENOT_ALL0); return r; } static void dsi_set_lp_rx_timeout(struct dsi_data *dsi, unsigned int ticks, bool x4, bool x16) { unsigned long fck; unsigned long total_ticks; u32 r; BUG_ON(ticks > 0x1fff); /* ticks in DSI_FCK */ fck = dsi_fclk_rate(dsi); r = dsi_read_reg(dsi, DSI_TIMING2); r = FLD_MOD(r, 1, 15, 15); /* LP_RX_TO */ r = FLD_MOD(r, x16 ? 1 : 0, 14, 14); /* LP_RX_TO_X16 */ r = FLD_MOD(r, x4 ? 1 : 0, 13, 13); /* LP_RX_TO_X4 */ r = FLD_MOD(r, ticks, 12, 0); /* LP_RX_COUNTER */ dsi_write_reg(dsi, DSI_TIMING2, r); total_ticks = ticks * (x16 ? 16 : 1) * (x4 ? 4 : 1); DSSDBG("LP_RX_TO %lu ticks (%#x%s%s) = %lu ns\n", total_ticks, ticks, x4 ? " x4" : "", x16 ? " x16" : "", (total_ticks * 1000) / (fck / 1000 / 1000)); } static void dsi_set_ta_timeout(struct dsi_data *dsi, unsigned int ticks, bool x8, bool x16) { unsigned long fck; unsigned long total_ticks; u32 r; BUG_ON(ticks > 0x1fff); /* ticks in DSI_FCK */ fck = dsi_fclk_rate(dsi); r = dsi_read_reg(dsi, DSI_TIMING1); r = FLD_MOD(r, 1, 31, 31); /* TA_TO */ r = FLD_MOD(r, x16 ? 1 : 0, 30, 30); /* TA_TO_X16 */ r = FLD_MOD(r, x8 ? 1 : 0, 29, 29); /* TA_TO_X8 */ r = FLD_MOD(r, ticks, 28, 16); /* TA_TO_COUNTER */ dsi_write_reg(dsi, DSI_TIMING1, r); total_ticks = ticks * (x16 ? 16 : 1) * (x8 ? 8 : 1); DSSDBG("TA_TO %lu ticks (%#x%s%s) = %lu ns\n", total_ticks, ticks, x8 ? " x8" : "", x16 ? " x16" : "", (total_ticks * 1000) / (fck / 1000 / 1000)); } static void dsi_set_stop_state_counter(struct dsi_data *dsi, unsigned int ticks, bool x4, bool x16) { unsigned long fck; unsigned long total_ticks; u32 r; BUG_ON(ticks > 0x1fff); /* ticks in DSI_FCK */ fck = dsi_fclk_rate(dsi); r = dsi_read_reg(dsi, DSI_TIMING1); r = FLD_MOD(r, 1, 15, 15); /* FORCE_TX_STOP_MODE_IO */ r = FLD_MOD(r, x16 ? 1 : 0, 14, 14); /* STOP_STATE_X16_IO */ r = FLD_MOD(r, x4 ? 1 : 0, 13, 13); /* STOP_STATE_X4_IO */ r = FLD_MOD(r, ticks, 12, 0); /* STOP_STATE_COUNTER_IO */ dsi_write_reg(dsi, DSI_TIMING1, r); total_ticks = ticks * (x16 ? 16 : 1) * (x4 ? 4 : 1); DSSDBG("STOP_STATE_COUNTER %lu ticks (%#x%s%s) = %lu ns\n", total_ticks, ticks, x4 ? " x4" : "", x16 ? " x16" : "", (total_ticks * 1000) / (fck / 1000 / 1000)); } static void dsi_set_hs_tx_timeout(struct dsi_data *dsi, unsigned int ticks, bool x4, bool x16) { unsigned long fck; unsigned long total_ticks; u32 r; BUG_ON(ticks > 0x1fff); /* ticks in TxByteClkHS */ fck = dsi_get_txbyteclkhs(dsi); r = dsi_read_reg(dsi, DSI_TIMING2); r = FLD_MOD(r, 1, 31, 31); /* HS_TX_TO */ r = FLD_MOD(r, x16 ? 1 : 0, 30, 30); /* HS_TX_TO_X16 */ r = FLD_MOD(r, x4 ? 1 : 0, 29, 29); /* HS_TX_TO_X8 (4 really) */ r = FLD_MOD(r, ticks, 28, 16); /* HS_TX_TO_COUNTER */ dsi_write_reg(dsi, DSI_TIMING2, r); total_ticks = ticks * (x16 ? 16 : 1) * (x4 ? 4 : 1); DSSDBG("HS_TX_TO %lu ticks (%#x%s%s) = %lu ns\n", total_ticks, ticks, x4 ? " x4" : "", x16 ? " x16" : "", (total_ticks * 1000) / (fck / 1000 / 1000)); } static void dsi_config_vp_num_line_buffers(struct dsi_data *dsi) { int num_line_buffers; if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) { int bpp = dsi_get_pixel_size(dsi->pix_fmt); const struct videomode *vm = &dsi->vm; /* * Don't use line buffers if width is greater than the video * port's line buffer size */ if (dsi->line_buffer_size <= vm->hactive * bpp / 8) num_line_buffers = 0; else num_line_buffers = 2; } else { /* Use maximum number of line buffers in command mode */ num_line_buffers = 2; } /* LINE_BUFFER */ REG_FLD_MOD(dsi, DSI_CTRL, num_line_buffers, 13, 12); } static void dsi_config_vp_sync_events(struct dsi_data *dsi) { bool sync_end; u32 r; if (dsi->vm_timings.trans_mode == OMAP_DSS_DSI_PULSE_MODE) sync_end = true; else sync_end = false; r = dsi_read_reg(dsi, DSI_CTRL); r = FLD_MOD(r, 1, 9, 9); /* VP_DE_POL */ r = FLD_MOD(r, 1, 10, 10); /* VP_HSYNC_POL */ r = FLD_MOD(r, 1, 11, 11); /* VP_VSYNC_POL */ r = FLD_MOD(r, 1, 15, 15); /* VP_VSYNC_START */ r = FLD_MOD(r, sync_end, 16, 16); /* VP_VSYNC_END */ r = FLD_MOD(r, 1, 17, 17); /* VP_HSYNC_START */ r = FLD_MOD(r, sync_end, 18, 18); /* VP_HSYNC_END */ dsi_write_reg(dsi, DSI_CTRL, r); } static void dsi_config_blanking_modes(struct dsi_data *dsi) { int blanking_mode = dsi->vm_timings.blanking_mode; int hfp_blanking_mode = dsi->vm_timings.hfp_blanking_mode; int hbp_blanking_mode = dsi->vm_timings.hbp_blanking_mode; int hsa_blanking_mode = dsi->vm_timings.hsa_blanking_mode; u32 r; /* * 0 = TX FIFO packets sent or LPS in corresponding blanking periods * 1 = Long blanking packets are sent in corresponding blanking periods */ r = dsi_read_reg(dsi, DSI_CTRL); r = FLD_MOD(r, blanking_mode, 20, 20); /* BLANKING_MODE */ r = FLD_MOD(r, hfp_blanking_mode, 21, 21); /* HFP_BLANKING */ r = FLD_MOD(r, hbp_blanking_mode, 22, 22); /* HBP_BLANKING */ r = FLD_MOD(r, hsa_blanking_mode, 23, 23); /* HSA_BLANKING */ dsi_write_reg(dsi, DSI_CTRL, r); } /* * According to section 'HS Command Mode Interleaving' in OMAP TRM, Scenario 3 * results in maximum transition time for data and clock lanes to enter and * exit HS mode. Hence, this is the scenario where the least amount of command * mode data can be interleaved. We program the minimum amount of TXBYTECLKHS * clock cycles that can be used to interleave command mode data in HS so that * all scenarios are satisfied. */ static int dsi_compute_interleave_hs(int blank, bool ddr_alwon, int enter_hs, int exit_hs, int exiths_clk, int ddr_pre, int ddr_post) { int transition; /* * If DDR_CLK_ALWAYS_ON is set, we need to consider HS mode transition * time of data lanes only, if it isn't set, we need to consider HS * transition time of both data and clock lanes. HS transition time * of Scenario 3 is considered. */ if (ddr_alwon) { transition = enter_hs + exit_hs + max(enter_hs, 2) + 1; } else { int trans1, trans2; trans1 = ddr_pre + enter_hs + exit_hs + max(enter_hs, 2) + 1; trans2 = ddr_pre + enter_hs + exiths_clk + ddr_post + ddr_pre + enter_hs + 1; transition = max(trans1, trans2); } return blank > transition ? blank - transition : 0; } /* * According to section 'LP Command Mode Interleaving' in OMAP TRM, Scenario 1 * results in maximum transition time for data lanes to enter and exit LP mode. * Hence, this is the scenario where the least amount of command mode data can * be interleaved. We program the minimum amount of bytes that can be * interleaved in LP so that all scenarios are satisfied. */ static int dsi_compute_interleave_lp(int blank, int enter_hs, int exit_hs, int lp_clk_div, int tdsi_fclk) { int trans_lp; /* time required for a LP transition, in TXBYTECLKHS */ int tlp_avail; /* time left for interleaving commands, in CLKIN4DDR */ int ttxclkesc; /* period of LP transmit escape clock, in CLKIN4DDR */ int thsbyte_clk = 16; /* Period of TXBYTECLKHS clock, in CLKIN4DDR */ int lp_inter; /* cmd mode data that can be interleaved, in bytes */ /* maximum LP transition time according to Scenario 1 */ trans_lp = exit_hs + max(enter_hs, 2) + 1; /* CLKIN4DDR = 16 * TXBYTECLKHS */ tlp_avail = thsbyte_clk * (blank - trans_lp); ttxclkesc = tdsi_fclk * lp_clk_div; lp_inter = ((tlp_avail - 8 * thsbyte_clk - 5 * tdsi_fclk) / ttxclkesc - 26) / 16; return max(lp_inter, 0); } static void dsi_config_cmd_mode_interleaving(struct dsi_data *dsi) { int blanking_mode; int hfp_blanking_mode, hbp_blanking_mode, hsa_blanking_mode; int hsa, hfp, hbp, width_bytes, bllp, lp_clk_div; int ddr_clk_pre, ddr_clk_post, enter_hs_mode_lat, exit_hs_mode_lat; int tclk_trail, ths_exit, exiths_clk; bool ddr_alwon; const struct videomode *vm = &dsi->vm; int bpp = dsi_get_pixel_size(dsi->pix_fmt); int ndl = dsi->num_lanes_used - 1; int dsi_fclk_hsdiv = dsi->user_dsi_cinfo.mX[HSDIV_DSI] + 1; int hsa_interleave_hs = 0, hsa_interleave_lp = 0; int hfp_interleave_hs = 0, hfp_interleave_lp = 0; int hbp_interleave_hs = 0, hbp_interleave_lp = 0; int bl_interleave_hs = 0, bl_interleave_lp = 0; u32 r; r = dsi_read_reg(dsi, DSI_CTRL); blanking_mode = FLD_GET(r, 20, 20); hfp_blanking_mode = FLD_GET(r, 21, 21); hbp_blanking_mode = FLD_GET(r, 22, 22); hsa_blanking_mode = FLD_GET(r, 23, 23); r = dsi_read_reg(dsi, DSI_VM_TIMING1); hbp = FLD_GET(r, 11, 0); hfp = FLD_GET(r, 23, 12); hsa = FLD_GET(r, 31, 24); r = dsi_read_reg(dsi, DSI_CLK_TIMING); ddr_clk_post = FLD_GET(r, 7, 0); ddr_clk_pre = FLD_GET(r, 15, 8); r = dsi_read_reg(dsi, DSI_VM_TIMING7); exit_hs_mode_lat = FLD_GET(r, 15, 0); enter_hs_mode_lat = FLD_GET(r, 31, 16); r = dsi_read_reg(dsi, DSI_CLK_CTRL); lp_clk_div = FLD_GET(r, 12, 0); ddr_alwon = FLD_GET(r, 13, 13); r = dsi_read_reg(dsi, DSI_DSIPHY_CFG0); ths_exit = FLD_GET(r, 7, 0); r = dsi_read_reg(dsi, DSI_DSIPHY_CFG1); tclk_trail = FLD_GET(r, 15, 8); exiths_clk = ths_exit + tclk_trail; width_bytes = DIV_ROUND_UP(vm->hactive * bpp, 8); bllp = hbp + hfp + hsa + DIV_ROUND_UP(width_bytes + 6, ndl); if (!hsa_blanking_mode) { hsa_interleave_hs = dsi_compute_interleave_hs(hsa, ddr_alwon, enter_hs_mode_lat, exit_hs_mode_lat, exiths_clk, ddr_clk_pre, ddr_clk_post); hsa_interleave_lp = dsi_compute_interleave_lp(hsa, enter_hs_mode_lat, exit_hs_mode_lat, lp_clk_div, dsi_fclk_hsdiv); } if (!hfp_blanking_mode) { hfp_interleave_hs = dsi_compute_interleave_hs(hfp, ddr_alwon, enter_hs_mode_lat, exit_hs_mode_lat, exiths_clk, ddr_clk_pre, ddr_clk_post); hfp_interleave_lp = dsi_compute_interleave_lp(hfp, enter_hs_mode_lat, exit_hs_mode_lat, lp_clk_div, dsi_fclk_hsdiv); } if (!hbp_blanking_mode) { hbp_interleave_hs = dsi_compute_interleave_hs(hbp, ddr_alwon, enter_hs_mode_lat, exit_hs_mode_lat, exiths_clk, ddr_clk_pre, ddr_clk_post); hbp_interleave_lp = dsi_compute_interleave_lp(hbp, enter_hs_mode_lat, exit_hs_mode_lat, lp_clk_div, dsi_fclk_hsdiv); } if (!blanking_mode) { bl_interleave_hs = dsi_compute_interleave_hs(bllp, ddr_alwon, enter_hs_mode_lat, exit_hs_mode_lat, exiths_clk, ddr_clk_pre, ddr_clk_post); bl_interleave_lp = dsi_compute_interleave_lp(bllp, enter_hs_mode_lat, exit_hs_mode_lat, lp_clk_div, dsi_fclk_hsdiv); } DSSDBG("DSI HS interleaving(TXBYTECLKHS) HSA %d, HFP %d, HBP %d, BLLP %d\n", hsa_interleave_hs, hfp_interleave_hs, hbp_interleave_hs, bl_interleave_hs); DSSDBG("DSI LP interleaving(bytes) HSA %d, HFP %d, HBP %d, BLLP %d\n", hsa_interleave_lp, hfp_interleave_lp, hbp_interleave_lp, bl_interleave_lp); r = dsi_read_reg(dsi, DSI_VM_TIMING4); r = FLD_MOD(r, hsa_interleave_hs, 23, 16); r = FLD_MOD(r, hfp_interleave_hs, 15, 8); r = FLD_MOD(r, hbp_interleave_hs, 7, 0); dsi_write_reg(dsi, DSI_VM_TIMING4, r); r = dsi_read_reg(dsi, DSI_VM_TIMING5); r = FLD_MOD(r, hsa_interleave_lp, 23, 16); r = FLD_MOD(r, hfp_interleave_lp, 15, 8); r = FLD_MOD(r, hbp_interleave_lp, 7, 0); dsi_write_reg(dsi, DSI_VM_TIMING5, r); r = dsi_read_reg(dsi, DSI_VM_TIMING6); r = FLD_MOD(r, bl_interleave_hs, 31, 15); r = FLD_MOD(r, bl_interleave_lp, 16, 0); dsi_write_reg(dsi, DSI_VM_TIMING6, r); } static int dsi_proto_config(struct dsi_data *dsi) { u32 r; int buswidth = 0; dsi_config_tx_fifo(dsi, DSI_FIFO_SIZE_32, DSI_FIFO_SIZE_32, DSI_FIFO_SIZE_32, DSI_FIFO_SIZE_32); dsi_config_rx_fifo(dsi, DSI_FIFO_SIZE_32, DSI_FIFO_SIZE_32, DSI_FIFO_SIZE_32, DSI_FIFO_SIZE_32); /* XXX what values for the timeouts? */ dsi_set_stop_state_counter(dsi, 0x1000, false, false); dsi_set_ta_timeout(dsi, 0x1fff, true, true); dsi_set_lp_rx_timeout(dsi, 0x1fff, true, true); dsi_set_hs_tx_timeout(dsi, 0x1fff, true, true); switch (dsi_get_pixel_size(dsi->pix_fmt)) { case 16: buswidth = 0; break; case 18: buswidth = 1; break; case 24: buswidth = 2; break; default: BUG(); return -EINVAL; } r = dsi_read_reg(dsi, DSI_CTRL); r = FLD_MOD(r, 1, 1, 1); /* CS_RX_EN */ r = FLD_MOD(r, 1, 2, 2); /* ECC_RX_EN */ r = FLD_MOD(r, 1, 3, 3); /* TX_FIFO_ARBITRATION */ r = FLD_MOD(r, 1, 4, 4); /* VP_CLK_RATIO, always 1, see errata*/ r = FLD_MOD(r, buswidth, 7, 6); /* VP_DATA_BUS_WIDTH */ r = FLD_MOD(r, 0, 8, 8); /* VP_CLK_POL */ r = FLD_MOD(r, 1, 14, 14); /* TRIGGER_RESET_MODE */ r = FLD_MOD(r, 1, 19, 19); /* EOT_ENABLE */ if (!(dsi->data->quirks & DSI_QUIRK_DCS_CMD_CONFIG_VC)) { r = FLD_MOD(r, 1, 24, 24); /* DCS_CMD_ENABLE */ /* DCS_CMD_CODE, 1=start, 0=continue */ r = FLD_MOD(r, 0, 25, 25); } dsi_write_reg(dsi, DSI_CTRL, r); dsi_config_vp_num_line_buffers(dsi); if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) { dsi_config_vp_sync_events(dsi); dsi_config_blanking_modes(dsi); dsi_config_cmd_mode_interleaving(dsi); } dsi_vc_initial_config(dsi, 0); dsi_vc_initial_config(dsi, 1); dsi_vc_initial_config(dsi, 2); dsi_vc_initial_config(dsi, 3); return 0; } static void dsi_proto_timings(struct dsi_data *dsi) { unsigned int tlpx, tclk_zero, tclk_prepare, tclk_trail; unsigned int tclk_pre, tclk_post; unsigned int ths_prepare, ths_prepare_ths_zero, ths_zero; unsigned int ths_trail, ths_exit; unsigned int ddr_clk_pre, ddr_clk_post; unsigned int enter_hs_mode_lat, exit_hs_mode_lat; unsigned int ths_eot; int ndl = dsi->num_lanes_used - 1; u32 r; r = dsi_read_reg(dsi, DSI_DSIPHY_CFG0); ths_prepare = FLD_GET(r, 31, 24); ths_prepare_ths_zero = FLD_GET(r, 23, 16); ths_zero = ths_prepare_ths_zero - ths_prepare; ths_trail = FLD_GET(r, 15, 8); ths_exit = FLD_GET(r, 7, 0); r = dsi_read_reg(dsi, DSI_DSIPHY_CFG1); tlpx = FLD_GET(r, 20, 16) * 2; tclk_trail = FLD_GET(r, 15, 8); tclk_zero = FLD_GET(r, 7, 0); r = dsi_read_reg(dsi, DSI_DSIPHY_CFG2); tclk_prepare = FLD_GET(r, 7, 0); /* min 8*UI */ tclk_pre = 20; /* min 60ns + 52*UI */ tclk_post = ns2ddr(dsi, 60) + 26; ths_eot = DIV_ROUND_UP(4, ndl); ddr_clk_pre = DIV_ROUND_UP(tclk_pre + tlpx + tclk_zero + tclk_prepare, 4); ddr_clk_post = DIV_ROUND_UP(tclk_post + ths_trail, 4) + ths_eot; BUG_ON(ddr_clk_pre == 0 || ddr_clk_pre > 255); BUG_ON(ddr_clk_post == 0 || ddr_clk_post > 255); r = dsi_read_reg(dsi, DSI_CLK_TIMING); r = FLD_MOD(r, ddr_clk_pre, 15, 8); r = FLD_MOD(r, ddr_clk_post, 7, 0); dsi_write_reg(dsi, DSI_CLK_TIMING, r); DSSDBG("ddr_clk_pre %u, ddr_clk_post %u\n", ddr_clk_pre, ddr_clk_post); enter_hs_mode_lat = 1 + DIV_ROUND_UP(tlpx, 4) + DIV_ROUND_UP(ths_prepare, 4) + DIV_ROUND_UP(ths_zero + 3, 4); exit_hs_mode_lat = DIV_ROUND_UP(ths_trail + ths_exit, 4) + 1 + ths_eot; r = FLD_VAL(enter_hs_mode_lat, 31, 16) | FLD_VAL(exit_hs_mode_lat, 15, 0); dsi_write_reg(dsi, DSI_VM_TIMING7, r); DSSDBG("enter_hs_mode_lat %u, exit_hs_mode_lat %u\n", enter_hs_mode_lat, exit_hs_mode_lat); if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) { /* TODO: Implement a video mode check_timings function */ int hsa = dsi->vm_timings.hsa; int hfp = dsi->vm_timings.hfp; int hbp = dsi->vm_timings.hbp; int vsa = dsi->vm_timings.vsa; int vfp = dsi->vm_timings.vfp; int vbp = dsi->vm_timings.vbp; int window_sync = dsi->vm_timings.window_sync; bool hsync_end; const struct videomode *vm = &dsi->vm; int bpp = dsi_get_pixel_size(dsi->pix_fmt); int tl, t_he, width_bytes; hsync_end = dsi->vm_timings.trans_mode == OMAP_DSS_DSI_PULSE_MODE; t_he = hsync_end ? ((hsa == 0 && ndl == 3) ? 1 : DIV_ROUND_UP(4, ndl)) : 0; width_bytes = DIV_ROUND_UP(vm->hactive * bpp, 8); /* TL = t_HS + HSA + t_HE + HFP + ceil((WC + 6) / NDL) + HBP */ tl = DIV_ROUND_UP(4, ndl) + (hsync_end ? hsa : 0) + t_he + hfp + DIV_ROUND_UP(width_bytes + 6, ndl) + hbp; DSSDBG("HBP: %d, HFP: %d, HSA: %d, TL: %d TXBYTECLKHS\n", hbp, hfp, hsync_end ? hsa : 0, tl); DSSDBG("VBP: %d, VFP: %d, VSA: %d, VACT: %d lines\n", vbp, vfp, vsa, vm->vactive); r = dsi_read_reg(dsi, DSI_VM_TIMING1); r = FLD_MOD(r, hbp, 11, 0); /* HBP */ r = FLD_MOD(r, hfp, 23, 12); /* HFP */ r = FLD_MOD(r, hsync_end ? hsa : 0, 31, 24); /* HSA */ dsi_write_reg(dsi, DSI_VM_TIMING1, r); r = dsi_read_reg(dsi, DSI_VM_TIMING2); r = FLD_MOD(r, vbp, 7, 0); /* VBP */ r = FLD_MOD(r, vfp, 15, 8); /* VFP */ r = FLD_MOD(r, vsa, 23, 16); /* VSA */ r = FLD_MOD(r, window_sync, 27, 24); /* WINDOW_SYNC */ dsi_write_reg(dsi, DSI_VM_TIMING2, r); r = dsi_read_reg(dsi, DSI_VM_TIMING3); r = FLD_MOD(r, vm->vactive, 14, 0); /* VACT */ r = FLD_MOD(r, tl, 31, 16); /* TL */ dsi_write_reg(dsi, DSI_VM_TIMING3, r); } } static int dsi_configure_pins(struct omap_dss_device *dssdev, const struct omap_dsi_pin_config *pin_cfg) { struct dsi_data *dsi = to_dsi_data(dssdev); int num_pins; const int *pins; struct dsi_lane_config lanes[DSI_MAX_NR_LANES]; int num_lanes; int i; static const enum dsi_lane_function functions[] = { DSI_LANE_CLK, DSI_LANE_DATA1, DSI_LANE_DATA2, DSI_LANE_DATA3, DSI_LANE_DATA4, }; num_pins = pin_cfg->num_pins; pins = pin_cfg->pins; if (num_pins < 4 || num_pins > dsi->num_lanes_supported * 2 || num_pins % 2 != 0) return -EINVAL; for (i = 0; i < DSI_MAX_NR_LANES; ++i) lanes[i].function = DSI_LANE_UNUSED; num_lanes = 0; for (i = 0; i < num_pins; i += 2) { u8 lane, pol; int dx, dy; dx = pins[i]; dy = pins[i + 1]; if (dx < 0 || dx >= dsi->num_lanes_supported * 2) return -EINVAL; if (dy < 0 || dy >= dsi->num_lanes_supported * 2) return -EINVAL; if (dx & 1) { if (dy != dx - 1) return -EINVAL; pol = 1; } else { if (dy != dx + 1) return -EINVAL; pol = 0; } lane = dx / 2; lanes[lane].function = functions[i / 2]; lanes[lane].polarity = pol; num_lanes++; } memcpy(dsi->lanes, lanes, sizeof(dsi->lanes)); dsi->num_lanes_used = num_lanes; return 0; } static int dsi_enable_video_output(struct omap_dss_device *dssdev, int channel) { struct dsi_data *dsi = to_dsi_data(dssdev); int bpp = dsi_get_pixel_size(dsi->pix_fmt); u8 data_type; u16 word_count; int r; r = dsi_display_init_dispc(dsi); if (r) return r; if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) { switch (dsi->pix_fmt) { case OMAP_DSS_DSI_FMT_RGB888: data_type = MIPI_DSI_PACKED_PIXEL_STREAM_24; break; case OMAP_DSS_DSI_FMT_RGB666: data_type = MIPI_DSI_PIXEL_STREAM_3BYTE_18; break; case OMAP_DSS_DSI_FMT_RGB666_PACKED: data_type = MIPI_DSI_PACKED_PIXEL_STREAM_18; break; case OMAP_DSS_DSI_FMT_RGB565: data_type = MIPI_DSI_PACKED_PIXEL_STREAM_16; break; default: r = -EINVAL; goto err_pix_fmt; } dsi_if_enable(dsi, false); dsi_vc_enable(dsi, channel, false); /* MODE, 1 = video mode */ REG_FLD_MOD(dsi, DSI_VC_CTRL(channel), 1, 4, 4); word_count = DIV_ROUND_UP(dsi->vm.hactive * bpp, 8); dsi_vc_write_long_header(dsi, channel, data_type, word_count, 0); dsi_vc_enable(dsi, channel, true); dsi_if_enable(dsi, true); } r = dss_mgr_enable(&dsi->output); if (r) goto err_mgr_enable; return 0; err_mgr_enable: if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) { dsi_if_enable(dsi, false); dsi_vc_enable(dsi, channel, false); } err_pix_fmt: dsi_display_uninit_dispc(dsi); return r; } static void dsi_disable_video_output(struct omap_dss_device *dssdev, int channel) { struct dsi_data *dsi = to_dsi_data(dssdev); if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) { dsi_if_enable(dsi, false); dsi_vc_enable(dsi, channel, false); /* MODE, 0 = command mode */ REG_FLD_MOD(dsi, DSI_VC_CTRL(channel), 0, 4, 4); dsi_vc_enable(dsi, channel, true); dsi_if_enable(dsi, true); } dss_mgr_disable(&dsi->output); dsi_display_uninit_dispc(dsi); } static void dsi_update_screen_dispc(struct dsi_data *dsi) { unsigned int bytespp; unsigned int bytespl; unsigned int bytespf; unsigned int total_len; unsigned int packet_payload; unsigned int packet_len; u32 l; int r; const unsigned channel = dsi->update_channel; const unsigned int line_buf_size = dsi->line_buffer_size; u16 w = dsi->vm.hactive; u16 h = dsi->vm.vactive; DSSDBG("dsi_update_screen_dispc(%dx%d)\n", w, h); dsi_vc_config_source(dsi, channel, DSI_VC_SOURCE_VP); bytespp = dsi_get_pixel_size(dsi->pix_fmt) / 8; bytespl = w * bytespp; bytespf = bytespl * h; /* NOTE: packet_payload has to be equal to N * bytespl, where N is * number of lines in a packet. See errata about VP_CLK_RATIO */ if (bytespf < line_buf_size) packet_payload = bytespf; else packet_payload = (line_buf_size) / bytespl * bytespl; packet_len = packet_payload + 1; /* 1 byte for DCS cmd */ total_len = (bytespf / packet_payload) * packet_len; if (bytespf % packet_payload) total_len += (bytespf % packet_payload) + 1; l = FLD_VAL(total_len, 23, 0); /* TE_SIZE */ dsi_write_reg(dsi, DSI_VC_TE(channel), l); dsi_vc_write_long_header(dsi, channel, MIPI_DSI_DCS_LONG_WRITE, packet_len, 0); if (dsi->te_enabled) l = FLD_MOD(l, 1, 30, 30); /* TE_EN */ else l = FLD_MOD(l, 1, 31, 31); /* TE_START */ dsi_write_reg(dsi, DSI_VC_TE(channel), l); /* We put SIDLEMODE to no-idle for the duration of the transfer, * because DSS interrupts are not capable of waking up the CPU and the * framedone interrupt could be delayed for quite a long time. I think * the same goes for any DSS interrupts, but for some reason I have not * seen the problem anywhere else than here. */ dispc_disable_sidle(dsi->dss->dispc); dsi_perf_mark_start(dsi); r = schedule_delayed_work(&dsi->framedone_timeout_work, msecs_to_jiffies(250)); BUG_ON(r == 0); dss_mgr_start_update(&dsi->output); if (dsi->te_enabled) { /* disable LP_RX_TO, so that we can receive TE. Time to wait * for TE is longer than the timer allows */ REG_FLD_MOD(dsi, DSI_TIMING2, 0, 15, 15); /* LP_RX_TO */ dsi_vc_send_bta(dsi, channel); #ifdef DSI_CATCH_MISSING_TE mod_timer(&dsi->te_timer, jiffies + msecs_to_jiffies(250)); #endif } } #ifdef DSI_CATCH_MISSING_TE static void dsi_te_timeout(struct timer_list *unused) { DSSERR("TE not received for 250ms!\n"); } #endif static void dsi_handle_framedone(struct dsi_data *dsi, int error) { /* SIDLEMODE back to smart-idle */ dispc_enable_sidle(dsi->dss->dispc); if (dsi->te_enabled) { /* enable LP_RX_TO again after the TE */ REG_FLD_MOD(dsi, DSI_TIMING2, 1, 15, 15); /* LP_RX_TO */ } dsi->framedone_callback(error, dsi->framedone_data); if (!error) dsi_perf_show(dsi, "DISPC"); } static void dsi_framedone_timeout_work_callback(struct work_struct *work) { struct dsi_data *dsi = container_of(work, struct dsi_data, framedone_timeout_work.work); /* XXX While extremely unlikely, we could get FRAMEDONE interrupt after * 250ms which would conflict with this timeout work. What should be * done is first cancel the transfer on the HW, and then cancel the * possibly scheduled framedone work. However, cancelling the transfer * on the HW is buggy, and would probably require resetting the whole * DSI */ DSSERR("Framedone not received for 250ms!\n"); dsi_handle_framedone(dsi, -ETIMEDOUT); } static void dsi_framedone_irq_callback(void *data) { struct dsi_data *dsi = data; /* Note: We get FRAMEDONE when DISPC has finished sending pixels and * turns itself off. However, DSI still has the pixels in its buffers, * and is sending the data. */ cancel_delayed_work(&dsi->framedone_timeout_work); dsi_handle_framedone(dsi, 0); } static int dsi_update(struct omap_dss_device *dssdev, int channel, void (*callback)(int, void *), void *data) { struct dsi_data *dsi = to_dsi_data(dssdev); u16 dw, dh; dsi_perf_mark_setup(dsi); dsi->update_channel = channel; dsi->framedone_callback = callback; dsi->framedone_data = data; dw = dsi->vm.hactive; dh = dsi->vm.vactive; #ifdef DSI_PERF_MEASURE dsi->update_bytes = dw * dh * dsi_get_pixel_size(dsi->pix_fmt) / 8; #endif dsi_update_screen_dispc(dsi); return 0; } /* Display funcs */ static int dsi_configure_dispc_clocks(struct dsi_data *dsi) { struct dispc_clock_info dispc_cinfo; int r; unsigned long fck; fck = dsi_get_pll_hsdiv_dispc_rate(dsi); dispc_cinfo.lck_div = dsi->user_dispc_cinfo.lck_div; dispc_cinfo.pck_div = dsi->user_dispc_cinfo.pck_div; r = dispc_calc_clock_rates(dsi->dss->dispc, fck, &dispc_cinfo); if (r) { DSSERR("Failed to calc dispc clocks\n"); return r; } dsi->mgr_config.clock_info = dispc_cinfo; return 0; } static int dsi_display_init_dispc(struct dsi_data *dsi) { enum omap_channel channel = dsi->output.dispc_channel; int r; dss_select_lcd_clk_source(dsi->dss, channel, dsi->module_id == 0 ? DSS_CLK_SRC_PLL1_1 : DSS_CLK_SRC_PLL2_1); if (dsi->mode == OMAP_DSS_DSI_CMD_MODE) { r = dss_mgr_register_framedone_handler(&dsi->output, dsi_framedone_irq_callback, dsi); if (r) { DSSERR("can't register FRAMEDONE handler\n"); goto err; } dsi->mgr_config.stallmode = true; dsi->mgr_config.fifohandcheck = true; } else { dsi->mgr_config.stallmode = false; dsi->mgr_config.fifohandcheck = false; } r = dsi_configure_dispc_clocks(dsi); if (r) goto err1; dsi->mgr_config.io_pad_mode = DSS_IO_PAD_MODE_BYPASS; dsi->mgr_config.video_port_width = dsi_get_pixel_size(dsi->pix_fmt); dsi->mgr_config.lcden_sig_polarity = 0; dss_mgr_set_lcd_config(&dsi->output, &dsi->mgr_config); return 0; err1: if (dsi->mode == OMAP_DSS_DSI_CMD_MODE) dss_mgr_unregister_framedone_handler(&dsi->output, dsi_framedone_irq_callback, dsi); err: dss_select_lcd_clk_source(dsi->dss, channel, DSS_CLK_SRC_FCK); return r; } static void dsi_display_uninit_dispc(struct dsi_data *dsi) { enum omap_channel channel = dsi->output.dispc_channel; if (dsi->mode == OMAP_DSS_DSI_CMD_MODE) dss_mgr_unregister_framedone_handler(&dsi->output, dsi_framedone_irq_callback, dsi); dss_select_lcd_clk_source(dsi->dss, channel, DSS_CLK_SRC_FCK); } static int dsi_configure_dsi_clocks(struct dsi_data *dsi) { struct dss_pll_clock_info cinfo; int r; cinfo = dsi->user_dsi_cinfo; r = dss_pll_set_config(&dsi->pll, &cinfo); if (r) { DSSERR("Failed to set dsi clocks\n"); return r; } return 0; } static int dsi_display_init_dsi(struct dsi_data *dsi) { int r; r = dss_pll_enable(&dsi->pll); if (r) return r; r = dsi_configure_dsi_clocks(dsi); if (r) goto err0; dss_select_dsi_clk_source(dsi->dss, dsi->module_id, dsi->module_id == 0 ? DSS_CLK_SRC_PLL1_2 : DSS_CLK_SRC_PLL2_2); DSSDBG("PLL OK\n"); if (!dsi->vdds_dsi_enabled) { r = regulator_enable(dsi->vdds_dsi_reg); if (r) goto err1; dsi->vdds_dsi_enabled = true; } r = dsi_cio_init(dsi); if (r) goto err2; _dsi_print_reset_status(dsi); dsi_proto_timings(dsi); dsi_set_lp_clk_divisor(dsi); if (1) _dsi_print_reset_status(dsi); r = dsi_proto_config(dsi); if (r) goto err3; /* enable interface */ dsi_vc_enable(dsi, 0, 1); dsi_vc_enable(dsi, 1, 1); dsi_vc_enable(dsi, 2, 1); dsi_vc_enable(dsi, 3, 1); dsi_if_enable(dsi, 1); dsi_force_tx_stop_mode_io(dsi); return 0; err3: dsi_cio_uninit(dsi); err2: regulator_disable(dsi->vdds_dsi_reg); dsi->vdds_dsi_enabled = false; err1: dss_select_dsi_clk_source(dsi->dss, dsi->module_id, DSS_CLK_SRC_FCK); err0: dss_pll_disable(&dsi->pll); return r; } static void dsi_display_uninit_dsi(struct dsi_data *dsi, bool disconnect_lanes, bool enter_ulps) { if (enter_ulps && !dsi->ulps_enabled) dsi_enter_ulps(dsi); /* disable interface */ dsi_if_enable(dsi, 0); dsi_vc_enable(dsi, 0, 0); dsi_vc_enable(dsi, 1, 0); dsi_vc_enable(dsi, 2, 0); dsi_vc_enable(dsi, 3, 0); dss_select_dsi_clk_source(dsi->dss, dsi->module_id, DSS_CLK_SRC_FCK); dsi_cio_uninit(dsi); dss_pll_disable(&dsi->pll); if (disconnect_lanes) { regulator_disable(dsi->vdds_dsi_reg); dsi->vdds_dsi_enabled = false; } } static void dsi_display_enable(struct omap_dss_device *dssdev) { struct dsi_data *dsi = to_dsi_data(dssdev); int r; DSSDBG("dsi_display_enable\n"); WARN_ON(!dsi_bus_is_locked(dsi)); mutex_lock(&dsi->lock); r = dsi_runtime_get(dsi); if (r) goto err_get_dsi; _dsi_initialize_irq(dsi); r = dsi_display_init_dsi(dsi); if (r) goto err_init_dsi; mutex_unlock(&dsi->lock); return; err_init_dsi: dsi_runtime_put(dsi); err_get_dsi: mutex_unlock(&dsi->lock); DSSDBG("dsi_display_enable FAILED\n"); } static void dsi_display_disable(struct omap_dss_device *dssdev, bool disconnect_lanes, bool enter_ulps) { struct dsi_data *dsi = to_dsi_data(dssdev); DSSDBG("dsi_display_disable\n"); WARN_ON(!dsi_bus_is_locked(dsi)); mutex_lock(&dsi->lock); dsi_sync_vc(dsi, 0); dsi_sync_vc(dsi, 1); dsi_sync_vc(dsi, 2); dsi_sync_vc(dsi, 3); dsi_display_uninit_dsi(dsi, disconnect_lanes, enter_ulps); dsi_runtime_put(dsi); mutex_unlock(&dsi->lock); } static int dsi_enable_te(struct omap_dss_device *dssdev, bool enable) { struct dsi_data *dsi = to_dsi_data(dssdev); dsi->te_enabled = enable; return 0; } #ifdef PRINT_VERBOSE_VM_TIMINGS static void print_dsi_vm(const char *str, const struct omap_dss_dsi_videomode_timings *t) { unsigned long byteclk = t->hsclk / 4; int bl, wc, pps, tot; wc = DIV_ROUND_UP(t->hact * t->bitspp, 8); pps = DIV_ROUND_UP(wc + 6, t->ndl); /* pixel packet size */ bl = t->hss + t->hsa + t->hse + t->hbp + t->hfp; tot = bl + pps; #define TO_DSI_T(x) ((u32)div64_u64((u64)x * 1000000000llu, byteclk)) pr_debug("%s bck %lu, %u/%u/%u/%u/%u/%u = %u+%u = %u, " "%u/%u/%u/%u/%u/%u = %u + %u = %u\n", str, byteclk, t->hss, t->hsa, t->hse, t->hbp, pps, t->hfp, bl, pps, tot, TO_DSI_T(t->hss), TO_DSI_T(t->hsa), TO_DSI_T(t->hse), TO_DSI_T(t->hbp), TO_DSI_T(pps), TO_DSI_T(t->hfp), TO_DSI_T(bl), TO_DSI_T(pps), TO_DSI_T(tot)); #undef TO_DSI_T } static void print_dispc_vm(const char *str, const struct videomode *vm) { unsigned long pck = vm->pixelclock; int hact, bl, tot; hact = vm->hactive; bl = vm->hsync_len + vm->hback_porch + vm->hfront_porch; tot = hact + bl; #define TO_DISPC_T(x) ((u32)div64_u64((u64)x * 1000000000llu, pck)) pr_debug("%s pck %lu, %u/%u/%u/%u = %u+%u = %u, " "%u/%u/%u/%u = %u + %u = %u\n", str, pck, vm->hsync_len, vm->hback_porch, hact, vm->hfront_porch, bl, hact, tot, TO_DISPC_T(vm->hsync_len), TO_DISPC_T(vm->hback_porch), TO_DISPC_T(hact), TO_DISPC_T(vm->hfront_porch), TO_DISPC_T(bl), TO_DISPC_T(hact), TO_DISPC_T(tot)); #undef TO_DISPC_T } /* note: this is not quite accurate */ static void print_dsi_dispc_vm(const char *str, const struct omap_dss_dsi_videomode_timings *t) { struct videomode vm = { 0 }; unsigned long byteclk = t->hsclk / 4; unsigned long pck; u64 dsi_tput; int dsi_hact, dsi_htot; dsi_tput = (u64)byteclk * t->ndl * 8; pck = (u32)div64_u64(dsi_tput, t->bitspp); dsi_hact = DIV_ROUND_UP(DIV_ROUND_UP(t->hact * t->bitspp, 8) + 6, t->ndl); dsi_htot = t->hss + t->hsa + t->hse + t->hbp + dsi_hact + t->hfp; vm.pixelclock = pck; vm.hsync_len = div64_u64((u64)(t->hsa + t->hse) * pck, byteclk); vm.hback_porch = div64_u64((u64)t->hbp * pck, byteclk); vm.hfront_porch = div64_u64((u64)t->hfp * pck, byteclk); vm.hactive = t->hact; print_dispc_vm(str, &vm); } #endif /* PRINT_VERBOSE_VM_TIMINGS */ static bool dsi_cm_calc_dispc_cb(int lckd, int pckd, unsigned long lck, unsigned long pck, void *data) { struct dsi_clk_calc_ctx *ctx = data; struct videomode *vm = &ctx->vm; ctx->dispc_cinfo.lck_div = lckd; ctx->dispc_cinfo.pck_div = pckd; ctx->dispc_cinfo.lck = lck; ctx->dispc_cinfo.pck = pck; *vm = *ctx->config->vm; vm->pixelclock = pck; vm->hactive = ctx->config->vm->hactive; vm->vactive = ctx->config->vm->vactive; vm->hsync_len = vm->hfront_porch = vm->hback_porch = vm->vsync_len = 1; vm->vfront_porch = vm->vback_porch = 0; return true; } static bool dsi_cm_calc_hsdiv_cb(int m_dispc, unsigned long dispc, void *data) { struct dsi_clk_calc_ctx *ctx = data; ctx->dsi_cinfo.mX[HSDIV_DISPC] = m_dispc; ctx->dsi_cinfo.clkout[HSDIV_DISPC] = dispc; return dispc_div_calc(ctx->dsi->dss->dispc, dispc, ctx->req_pck_min, ctx->req_pck_max, dsi_cm_calc_dispc_cb, ctx); } static bool dsi_cm_calc_pll_cb(int n, int m, unsigned long fint, unsigned long clkdco, void *data) { struct dsi_clk_calc_ctx *ctx = data; struct dsi_data *dsi = ctx->dsi; ctx->dsi_cinfo.n = n; ctx->dsi_cinfo.m = m; ctx->dsi_cinfo.fint = fint; ctx->dsi_cinfo.clkdco = clkdco; return dss_pll_hsdiv_calc_a(ctx->pll, clkdco, ctx->req_pck_min, dsi->data->max_fck_freq, dsi_cm_calc_hsdiv_cb, ctx); } static bool dsi_cm_calc(struct dsi_data *dsi, const struct omap_dss_dsi_config *cfg, struct dsi_clk_calc_ctx *ctx) { unsigned long clkin; int bitspp, ndl; unsigned long pll_min, pll_max; unsigned long pck, txbyteclk; clkin = clk_get_rate(dsi->pll.clkin); bitspp = dsi_get_pixel_size(cfg->pixel_format); ndl = dsi->num_lanes_used - 1; /* * Here we should calculate minimum txbyteclk to be able to send the * frame in time, and also to handle TE. That's not very simple, though, * especially as we go to LP between each pixel packet due to HW * "feature". So let's just estimate very roughly and multiply by 1.5. */ pck = cfg->vm->pixelclock; pck = pck * 3 / 2; txbyteclk = pck * bitspp / 8 / ndl; memset(ctx, 0, sizeof(*ctx)); ctx->dsi = dsi; ctx->pll = &dsi->pll; ctx->config = cfg; ctx->req_pck_min = pck; ctx->req_pck_nom = pck; ctx->req_pck_max = pck * 3 / 2; pll_min = max(cfg->hs_clk_min * 4, txbyteclk * 4 * 4); pll_max = cfg->hs_clk_max * 4; return dss_pll_calc_a(ctx->pll, clkin, pll_min, pll_max, dsi_cm_calc_pll_cb, ctx); } static bool dsi_vm_calc_blanking(struct dsi_clk_calc_ctx *ctx) { struct dsi_data *dsi = ctx->dsi; const struct omap_dss_dsi_config *cfg = ctx->config; int bitspp = dsi_get_pixel_size(cfg->pixel_format); int ndl = dsi->num_lanes_used - 1; unsigned long hsclk = ctx->dsi_cinfo.clkdco / 4; unsigned long byteclk = hsclk / 4; unsigned long dispc_pck, req_pck_min, req_pck_nom, req_pck_max; int xres; int panel_htot, panel_hbl; /* pixels */ int dispc_htot, dispc_hbl; /* pixels */ int dsi_htot, dsi_hact, dsi_hbl, hss, hse; /* byteclks */ int hfp, hsa, hbp; const struct videomode *req_vm; struct videomode *dispc_vm; struct omap_dss_dsi_videomode_timings *dsi_vm; u64 dsi_tput, dispc_tput; dsi_tput = (u64)byteclk * ndl * 8; req_vm = cfg->vm; req_pck_min = ctx->req_pck_min; req_pck_max = ctx->req_pck_max; req_pck_nom = ctx->req_pck_nom; dispc_pck = ctx->dispc_cinfo.pck; dispc_tput = (u64)dispc_pck * bitspp; xres = req_vm->hactive; panel_hbl = req_vm->hfront_porch + req_vm->hback_porch + req_vm->hsync_len; panel_htot = xres + panel_hbl; dsi_hact = DIV_ROUND_UP(DIV_ROUND_UP(xres * bitspp, 8) + 6, ndl); /* * When there are no line buffers, DISPC and DSI must have the * same tput. Otherwise DISPC tput needs to be higher than DSI's. */ if (dsi->line_buffer_size < xres * bitspp / 8) { if (dispc_tput != dsi_tput) return false; } else { if (dispc_tput < dsi_tput) return false; } /* DSI tput must be over the min requirement */ if (dsi_tput < (u64)bitspp * req_pck_min) return false; /* When non-burst mode, DSI tput must be below max requirement. */ if (cfg->trans_mode != OMAP_DSS_DSI_BURST_MODE) { if (dsi_tput > (u64)bitspp * req_pck_max) return false; } hss = DIV_ROUND_UP(4, ndl); if (cfg->trans_mode == OMAP_DSS_DSI_PULSE_MODE) { if (ndl == 3 && req_vm->hsync_len == 0) hse = 1; else hse = DIV_ROUND_UP(4, ndl); } else { hse = 0; } /* DSI htot to match the panel's nominal pck */ dsi_htot = div64_u64((u64)panel_htot * byteclk, req_pck_nom); /* fail if there would be no time for blanking */ if (dsi_htot < hss + hse + dsi_hact) return false; /* total DSI blanking needed to achieve panel's TL */ dsi_hbl = dsi_htot - dsi_hact; /* DISPC htot to match the DSI TL */ dispc_htot = div64_u64((u64)dsi_htot * dispc_pck, byteclk); /* verify that the DSI and DISPC TLs are the same */ if ((u64)dsi_htot * dispc_pck != (u64)dispc_htot * byteclk) return false; dispc_hbl = dispc_htot - xres; /* setup DSI videomode */ dsi_vm = &ctx->dsi_vm; memset(dsi_vm, 0, sizeof(*dsi_vm)); dsi_vm->hsclk = hsclk; dsi_vm->ndl = ndl; dsi_vm->bitspp = bitspp; if (cfg->trans_mode != OMAP_DSS_DSI_PULSE_MODE) { hsa = 0; } else if (ndl == 3 && req_vm->hsync_len == 0) { hsa = 0; } else { hsa = div64_u64((u64)req_vm->hsync_len * byteclk, req_pck_nom); hsa = max(hsa - hse, 1); } hbp = div64_u64((u64)req_vm->hback_porch * byteclk, req_pck_nom); hbp = max(hbp, 1); hfp = dsi_hbl - (hss + hsa + hse + hbp); if (hfp < 1) { int t; /* we need to take cycles from hbp */ t = 1 - hfp; hbp = max(hbp - t, 1); hfp = dsi_hbl - (hss + hsa + hse + hbp); if (hfp < 1 && hsa > 0) { /* we need to take cycles from hsa */ t = 1 - hfp; hsa = max(hsa - t, 1); hfp = dsi_hbl - (hss + hsa + hse + hbp); } } if (hfp < 1) return false; dsi_vm->hss = hss; dsi_vm->hsa = hsa; dsi_vm->hse = hse; dsi_vm->hbp = hbp; dsi_vm->hact = xres; dsi_vm->hfp = hfp; dsi_vm->vsa = req_vm->vsync_len; dsi_vm->vbp = req_vm->vback_porch; dsi_vm->vact = req_vm->vactive; dsi_vm->vfp = req_vm->vfront_porch; dsi_vm->trans_mode = cfg->trans_mode; dsi_vm->blanking_mode = 0; dsi_vm->hsa_blanking_mode = 1; dsi_vm->hfp_blanking_mode = 1; dsi_vm->hbp_blanking_mode = 1; dsi_vm->ddr_clk_always_on = cfg->ddr_clk_always_on; dsi_vm->window_sync = 4; /* setup DISPC videomode */ dispc_vm = &ctx->vm; *dispc_vm = *req_vm; dispc_vm->pixelclock = dispc_pck; if (cfg->trans_mode == OMAP_DSS_DSI_PULSE_MODE) { hsa = div64_u64((u64)req_vm->hsync_len * dispc_pck, req_pck_nom); hsa = max(hsa, 1); } else { hsa = 1; } hbp = div64_u64((u64)req_vm->hback_porch * dispc_pck, req_pck_nom); hbp = max(hbp, 1); hfp = dispc_hbl - hsa - hbp; if (hfp < 1) { int t; /* we need to take cycles from hbp */ t = 1 - hfp; hbp = max(hbp - t, 1); hfp = dispc_hbl - hsa - hbp; if (hfp < 1) { /* we need to take cycles from hsa */ t = 1 - hfp; hsa = max(hsa - t, 1); hfp = dispc_hbl - hsa - hbp; } } if (hfp < 1) return false; dispc_vm->hfront_porch = hfp; dispc_vm->hsync_len = hsa; dispc_vm->hback_porch = hbp; return true; } static bool dsi_vm_calc_dispc_cb(int lckd, int pckd, unsigned long lck, unsigned long pck, void *data) { struct dsi_clk_calc_ctx *ctx = data; ctx->dispc_cinfo.lck_div = lckd; ctx->dispc_cinfo.pck_div = pckd; ctx->dispc_cinfo.lck = lck; ctx->dispc_cinfo.pck = pck; if (dsi_vm_calc_blanking(ctx) == false) return false; #ifdef PRINT_VERBOSE_VM_TIMINGS print_dispc_vm("dispc", &ctx->vm); print_dsi_vm("dsi ", &ctx->dsi_vm); print_dispc_vm("req ", ctx->config->vm); print_dsi_dispc_vm("act ", &ctx->dsi_vm); #endif return true; } static bool dsi_vm_calc_hsdiv_cb(int m_dispc, unsigned long dispc, void *data) { struct dsi_clk_calc_ctx *ctx = data; unsigned long pck_max; ctx->dsi_cinfo.mX[HSDIV_DISPC] = m_dispc; ctx->dsi_cinfo.clkout[HSDIV_DISPC] = dispc; /* * In burst mode we can let the dispc pck be arbitrarily high, but it * limits our scaling abilities. So for now, don't aim too high. */ if (ctx->config->trans_mode == OMAP_DSS_DSI_BURST_MODE) pck_max = ctx->req_pck_max + 10000000; else pck_max = ctx->req_pck_max; return dispc_div_calc(ctx->dsi->dss->dispc, dispc, ctx->req_pck_min, pck_max, dsi_vm_calc_dispc_cb, ctx); } static bool dsi_vm_calc_pll_cb(int n, int m, unsigned long fint, unsigned long clkdco, void *data) { struct dsi_clk_calc_ctx *ctx = data; struct dsi_data *dsi = ctx->dsi; ctx->dsi_cinfo.n = n; ctx->dsi_cinfo.m = m; ctx->dsi_cinfo.fint = fint; ctx->dsi_cinfo.clkdco = clkdco; return dss_pll_hsdiv_calc_a(ctx->pll, clkdco, ctx->req_pck_min, dsi->data->max_fck_freq, dsi_vm_calc_hsdiv_cb, ctx); } static bool dsi_vm_calc(struct dsi_data *dsi, const struct omap_dss_dsi_config *cfg, struct dsi_clk_calc_ctx *ctx) { const struct videomode *vm = cfg->vm; unsigned long clkin; unsigned long pll_min; unsigned long pll_max; int ndl = dsi->num_lanes_used - 1; int bitspp = dsi_get_pixel_size(cfg->pixel_format); unsigned long byteclk_min; clkin = clk_get_rate(dsi->pll.clkin); memset(ctx, 0, sizeof(*ctx)); ctx->dsi = dsi; ctx->pll = &dsi->pll; ctx->config = cfg; /* these limits should come from the panel driver */ ctx->req_pck_min = vm->pixelclock - 1000; ctx->req_pck_nom = vm->pixelclock; ctx->req_pck_max = vm->pixelclock + 1000; byteclk_min = div64_u64((u64)ctx->req_pck_min * bitspp, ndl * 8); pll_min = max(cfg->hs_clk_min * 4, byteclk_min * 4 * 4); if (cfg->trans_mode == OMAP_DSS_DSI_BURST_MODE) { pll_max = cfg->hs_clk_max * 4; } else { unsigned long byteclk_max; byteclk_max = div64_u64((u64)ctx->req_pck_max * bitspp, ndl * 8); pll_max = byteclk_max * 4 * 4; } return dss_pll_calc_a(ctx->pll, clkin, pll_min, pll_max, dsi_vm_calc_pll_cb, ctx); } static int dsi_set_config(struct omap_dss_device *dssdev, const struct omap_dss_dsi_config *config) { struct dsi_data *dsi = to_dsi_data(dssdev); struct dsi_clk_calc_ctx ctx; bool ok; int r; mutex_lock(&dsi->lock); dsi->pix_fmt = config->pixel_format; dsi->mode = config->mode; if (config->mode == OMAP_DSS_DSI_VIDEO_MODE) ok = dsi_vm_calc(dsi, config, &ctx); else ok = dsi_cm_calc(dsi, config, &ctx); if (!ok) { DSSERR("failed to find suitable DSI clock settings\n"); r = -EINVAL; goto err; } dsi_pll_calc_dsi_fck(dsi, &ctx.dsi_cinfo); r = dsi_lp_clock_calc(ctx.dsi_cinfo.clkout[HSDIV_DSI], config->lp_clk_min, config->lp_clk_max, &dsi->user_lp_cinfo); if (r) { DSSERR("failed to find suitable DSI LP clock settings\n"); goto err; } dsi->user_dsi_cinfo = ctx.dsi_cinfo; dsi->user_dispc_cinfo = ctx.dispc_cinfo; dsi->vm = ctx.vm; /* * override interlace, logic level and edge related parameters in * videomode with default values */ dsi->vm.flags &= ~DISPLAY_FLAGS_INTERLACED; dsi->vm.flags &= ~DISPLAY_FLAGS_HSYNC_LOW; dsi->vm.flags |= DISPLAY_FLAGS_HSYNC_HIGH; dsi->vm.flags &= ~DISPLAY_FLAGS_VSYNC_LOW; dsi->vm.flags |= DISPLAY_FLAGS_VSYNC_HIGH; /* * HACK: These flags should be handled through the omap_dss_device bus * flags, but this will only be possible when the DSI encoder will be * converted to the omapdrm-managed encoder model. */ dsi->vm.flags &= ~DISPLAY_FLAGS_PIXDATA_NEGEDGE; dsi->vm.flags |= DISPLAY_FLAGS_PIXDATA_POSEDGE; dsi->vm.flags &= ~DISPLAY_FLAGS_DE_LOW; dsi->vm.flags |= DISPLAY_FLAGS_DE_HIGH; dsi->vm.flags &= ~DISPLAY_FLAGS_SYNC_POSEDGE; dsi->vm.flags |= DISPLAY_FLAGS_SYNC_NEGEDGE; dss_mgr_set_timings(&dsi->output, &dsi->vm); dsi->vm_timings = ctx.dsi_vm; mutex_unlock(&dsi->lock); return 0; err: mutex_unlock(&dsi->lock); return r; } /* * Return a hardcoded channel for the DSI output. This should work for * current use cases, but this can be later expanded to either resolve * the channel in some more dynamic manner, or get the channel as a user * parameter. */ static enum omap_channel dsi_get_channel(struct dsi_data *dsi) { switch (dsi->data->model) { case DSI_MODEL_OMAP3: return OMAP_DSS_CHANNEL_LCD; case DSI_MODEL_OMAP4: switch (dsi->module_id) { case 0: return OMAP_DSS_CHANNEL_LCD; case 1: return OMAP_DSS_CHANNEL_LCD2; default: DSSWARN("unsupported module id\n"); return OMAP_DSS_CHANNEL_LCD; } case DSI_MODEL_OMAP5: switch (dsi->module_id) { case 0: return OMAP_DSS_CHANNEL_LCD; case 1: return OMAP_DSS_CHANNEL_LCD3; default: DSSWARN("unsupported module id\n"); return OMAP_DSS_CHANNEL_LCD; } default: DSSWARN("unsupported DSS version\n"); return OMAP_DSS_CHANNEL_LCD; } } static int dsi_request_vc(struct omap_dss_device *dssdev, int *channel) { struct dsi_data *dsi = to_dsi_data(dssdev); int i; for (i = 0; i < ARRAY_SIZE(dsi->vc); i++) { if (!dsi->vc[i].dssdev) { dsi->vc[i].dssdev = dssdev; *channel = i; return 0; } } DSSERR("cannot get VC for display %s", dssdev->name); return -ENOSPC; } static int dsi_set_vc_id(struct omap_dss_device *dssdev, int channel, int vc_id) { struct dsi_data *dsi = to_dsi_data(dssdev); if (vc_id < 0 || vc_id > 3) { DSSERR("VC ID out of range\n"); return -EINVAL; } if (channel < 0 || channel > 3) { DSSERR("Virtual Channel out of range\n"); return -EINVAL; } if (dsi->vc[channel].dssdev != dssdev) { DSSERR("Virtual Channel not allocated to display %s\n", dssdev->name); return -EINVAL; } dsi->vc[channel].vc_id = vc_id; return 0; } static void dsi_release_vc(struct omap_dss_device *dssdev, int channel) { struct dsi_data *dsi = to_dsi_data(dssdev); if ((channel >= 0 && channel <= 3) && dsi->vc[channel].dssdev == dssdev) { dsi->vc[channel].dssdev = NULL; dsi->vc[channel].vc_id = 0; } } static int dsi_get_clocks(struct dsi_data *dsi) { struct clk *clk; clk = devm_clk_get(dsi->dev, "fck"); if (IS_ERR(clk)) { DSSERR("can't get fck\n"); return PTR_ERR(clk); } dsi->dss_clk = clk; return 0; } static int dsi_connect(struct omap_dss_device *src, struct omap_dss_device *dst) { return omapdss_device_connect(dst->dss, dst, dst->next); } static void dsi_disconnect(struct omap_dss_device *src, struct omap_dss_device *dst) { omapdss_device_disconnect(dst, dst->next); } static const struct omap_dss_device_ops dsi_ops = { .connect = dsi_connect, .disconnect = dsi_disconnect, .enable = dsi_display_enable, .dsi = { .bus_lock = dsi_bus_lock, .bus_unlock = dsi_bus_unlock, .disable = dsi_display_disable, .enable_hs = dsi_vc_enable_hs, .configure_pins = dsi_configure_pins, .set_config = dsi_set_config, .enable_video_output = dsi_enable_video_output, .disable_video_output = dsi_disable_video_output, .update = dsi_update, .enable_te = dsi_enable_te, .request_vc = dsi_request_vc, .set_vc_id = dsi_set_vc_id, .release_vc = dsi_release_vc, .dcs_write = dsi_vc_dcs_write, .dcs_write_nosync = dsi_vc_dcs_write_nosync, .dcs_read = dsi_vc_dcs_read, .gen_write = dsi_vc_generic_write, .gen_write_nosync = dsi_vc_generic_write_nosync, .gen_read = dsi_vc_generic_read, .bta_sync = dsi_vc_send_bta_sync, .set_max_rx_packet_size = dsi_vc_set_max_rx_packet_size, }, }; /* ----------------------------------------------------------------------------- * PLL */ static const struct dss_pll_ops dsi_pll_ops = { .enable = dsi_pll_enable, .disable = dsi_pll_disable, .set_config = dss_pll_write_config_type_a, }; static const struct dss_pll_hw dss_omap3_dsi_pll_hw = { .type = DSS_PLL_TYPE_A, .n_max = (1 << 7) - 1, .m_max = (1 << 11) - 1, .mX_max = (1 << 4) - 1, .fint_min = 750000, .fint_max = 2100000, .clkdco_low = 1000000000, .clkdco_max = 1800000000, .n_msb = 7, .n_lsb = 1, .m_msb = 18, .m_lsb = 8, .mX_msb[0] = 22, .mX_lsb[0] = 19, .mX_msb[1] = 26, .mX_lsb[1] = 23, .has_stopmode = true, .has_freqsel = true, .has_selfreqdco = false, .has_refsel = false, }; static const struct dss_pll_hw dss_omap4_dsi_pll_hw = { .type = DSS_PLL_TYPE_A, .n_max = (1 << 8) - 1, .m_max = (1 << 12) - 1, .mX_max = (1 << 5) - 1, .fint_min = 500000, .fint_max = 2500000, .clkdco_low = 1000000000, .clkdco_max = 1800000000, .n_msb = 8, .n_lsb = 1, .m_msb = 20, .m_lsb = 9, .mX_msb[0] = 25, .mX_lsb[0] = 21, .mX_msb[1] = 30, .mX_lsb[1] = 26, .has_stopmode = true, .has_freqsel = false, .has_selfreqdco = false, .has_refsel = false, }; static const struct dss_pll_hw dss_omap5_dsi_pll_hw = { .type = DSS_PLL_TYPE_A, .n_max = (1 << 8) - 1, .m_max = (1 << 12) - 1, .mX_max = (1 << 5) - 1, .fint_min = 150000, .fint_max = 52000000, .clkdco_low = 1000000000, .clkdco_max = 1800000000, .n_msb = 8, .n_lsb = 1, .m_msb = 20, .m_lsb = 9, .mX_msb[0] = 25, .mX_lsb[0] = 21, .mX_msb[1] = 30, .mX_lsb[1] = 26, .has_stopmode = true, .has_freqsel = false, .has_selfreqdco = true, .has_refsel = true, }; static int dsi_init_pll_data(struct dss_device *dss, struct dsi_data *dsi) { struct dss_pll *pll = &dsi->pll; struct clk *clk; int r; clk = devm_clk_get(dsi->dev, "sys_clk"); if (IS_ERR(clk)) { DSSERR("can't get sys_clk\n"); return PTR_ERR(clk); } pll->name = dsi->module_id == 0 ? "dsi0" : "dsi1"; pll->id = dsi->module_id == 0 ? DSS_PLL_DSI1 : DSS_PLL_DSI2; pll->clkin = clk; pll->base = dsi->pll_base; pll->hw = dsi->data->pll_hw; pll->ops = &dsi_pll_ops; r = dss_pll_register(dss, pll); if (r) return r; return 0; } /* ----------------------------------------------------------------------------- * Component Bind & Unbind */ static int dsi_bind(struct device *dev, struct device *master, void *data) { struct dss_device *dss = dss_get_device(master); struct dsi_data *dsi = dev_get_drvdata(dev); char name[10]; u32 rev; int r; dsi->dss = dss; dsi_init_pll_data(dss, dsi); r = dsi_runtime_get(dsi); if (r) return r; rev = dsi_read_reg(dsi, DSI_REVISION); dev_dbg(dev, "OMAP DSI rev %d.%d\n", FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0)); dsi->line_buffer_size = dsi_get_line_buf_size(dsi); dsi_runtime_put(dsi); snprintf(name, sizeof(name), "dsi%u_regs", dsi->module_id + 1); dsi->debugfs.regs = dss_debugfs_create_file(dss, name, dsi_dump_dsi_regs, dsi); #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS snprintf(name, sizeof(name), "dsi%u_irqs", dsi->module_id + 1); dsi->debugfs.irqs = dss_debugfs_create_file(dss, name, dsi_dump_dsi_irqs, dsi); #endif snprintf(name, sizeof(name), "dsi%u_clks", dsi->module_id + 1); dsi->debugfs.clks = dss_debugfs_create_file(dss, name, dsi_dump_dsi_clocks, dsi); return 0; } static void dsi_unbind(struct device *dev, struct device *master, void *data) { struct dsi_data *dsi = dev_get_drvdata(dev); dss_debugfs_remove_file(dsi->debugfs.clks); dss_debugfs_remove_file(dsi->debugfs.irqs); dss_debugfs_remove_file(dsi->debugfs.regs); WARN_ON(dsi->scp_clk_refcount > 0); dss_pll_unregister(&dsi->pll); } static const struct component_ops dsi_component_ops = { .bind = dsi_bind, .unbind = dsi_unbind, }; /* ----------------------------------------------------------------------------- * Probe & Remove, Suspend & Resume */ static int dsi_init_output(struct dsi_data *dsi) { struct omap_dss_device *out = &dsi->output; int r; out->dev = dsi->dev; out->id = dsi->module_id == 0 ? OMAP_DSS_OUTPUT_DSI1 : OMAP_DSS_OUTPUT_DSI2; out->type = OMAP_DISPLAY_TYPE_DSI; out->name = dsi->module_id == 0 ? "dsi.0" : "dsi.1"; out->dispc_channel = dsi_get_channel(dsi); out->ops = &dsi_ops; out->owner = THIS_MODULE; out->of_ports = BIT(0); out->bus_flags = DRM_BUS_FLAG_PIXDATA_DRIVE_POSEDGE | DRM_BUS_FLAG_DE_HIGH | DRM_BUS_FLAG_SYNC_DRIVE_NEGEDGE; r = omapdss_device_init_output(out); if (r < 0) return r; omapdss_device_register(out); return 0; } static void dsi_uninit_output(struct dsi_data *dsi) { struct omap_dss_device *out = &dsi->output; omapdss_device_unregister(out); omapdss_device_cleanup_output(out); } static int dsi_probe_of(struct dsi_data *dsi) { struct device_node *node = dsi->dev->of_node; struct property *prop; u32 lane_arr[10]; int len, num_pins; int r, i; struct device_node *ep; struct omap_dsi_pin_config pin_cfg; ep = of_graph_get_endpoint_by_regs(node, 0, 0); if (!ep) return 0; prop = of_find_property(ep, "lanes", &len); if (prop == NULL) { dev_err(dsi->dev, "failed to find lane data\n"); r = -EINVAL; goto err; } num_pins = len / sizeof(u32); if (num_pins < 4 || num_pins % 2 != 0 || num_pins > dsi->num_lanes_supported * 2) { dev_err(dsi->dev, "bad number of lanes\n"); r = -EINVAL; goto err; } r = of_property_read_u32_array(ep, "lanes", lane_arr, num_pins); if (r) { dev_err(dsi->dev, "failed to read lane data\n"); goto err; } pin_cfg.num_pins = num_pins; for (i = 0; i < num_pins; ++i) pin_cfg.pins[i] = (int)lane_arr[i]; r = dsi_configure_pins(&dsi->output, &pin_cfg); if (r) { dev_err(dsi->dev, "failed to configure pins"); goto err; } of_node_put(ep); return 0; err: of_node_put(ep); return r; } static const struct dsi_of_data dsi_of_data_omap34xx = { .model = DSI_MODEL_OMAP3, .pll_hw = &dss_omap3_dsi_pll_hw, .modules = (const struct dsi_module_id_data[]) { { .address = 0x4804fc00, .id = 0, }, { }, }, .max_fck_freq = 173000000, .max_pll_lpdiv = (1 << 13) - 1, .quirks = DSI_QUIRK_REVERSE_TXCLKESC, }; static const struct dsi_of_data dsi_of_data_omap36xx = { .model = DSI_MODEL_OMAP3, .pll_hw = &dss_omap3_dsi_pll_hw, .modules = (const struct dsi_module_id_data[]) { { .address = 0x4804fc00, .id = 0, }, { }, }, .max_fck_freq = 173000000, .max_pll_lpdiv = (1 << 13) - 1, .quirks = DSI_QUIRK_PLL_PWR_BUG, }; static const struct dsi_of_data dsi_of_data_omap4 = { .model = DSI_MODEL_OMAP4, .pll_hw = &dss_omap4_dsi_pll_hw, .modules = (const struct dsi_module_id_data[]) { { .address = 0x58004000, .id = 0, }, { .address = 0x58005000, .id = 1, }, { }, }, .max_fck_freq = 170000000, .max_pll_lpdiv = (1 << 13) - 1, .quirks = DSI_QUIRK_DCS_CMD_CONFIG_VC | DSI_QUIRK_VC_OCP_WIDTH | DSI_QUIRK_GNQ, }; static const struct dsi_of_data dsi_of_data_omap5 = { .model = DSI_MODEL_OMAP5, .pll_hw = &dss_omap5_dsi_pll_hw, .modules = (const struct dsi_module_id_data[]) { { .address = 0x58004000, .id = 0, }, { .address = 0x58009000, .id = 1, }, { }, }, .max_fck_freq = 209250000, .max_pll_lpdiv = (1 << 13) - 1, .quirks = DSI_QUIRK_DCS_CMD_CONFIG_VC | DSI_QUIRK_VC_OCP_WIDTH | DSI_QUIRK_GNQ | DSI_QUIRK_PHY_DCC, }; static const struct of_device_id dsi_of_match[] = { { .compatible = "ti,omap3-dsi", .data = &dsi_of_data_omap36xx, }, { .compatible = "ti,omap4-dsi", .data = &dsi_of_data_omap4, }, { .compatible = "ti,omap5-dsi", .data = &dsi_of_data_omap5, }, {}, }; static const struct soc_device_attribute dsi_soc_devices[] = { { .machine = "OMAP3[45]*", .data = &dsi_of_data_omap34xx }, { .machine = "AM35*", .data = &dsi_of_data_omap34xx }, { /* sentinel */ } }; static int dsi_probe(struct platform_device *pdev) { const struct soc_device_attribute *soc; const struct dsi_module_id_data *d; struct device *dev = &pdev->dev; struct dsi_data *dsi; struct resource *dsi_mem; struct resource *res; unsigned int i; int r; dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL); if (!dsi) return -ENOMEM; dsi->dev = dev; dev_set_drvdata(dev, dsi); spin_lock_init(&dsi->irq_lock); spin_lock_init(&dsi->errors_lock); dsi->errors = 0; #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS spin_lock_init(&dsi->irq_stats_lock); dsi->irq_stats.last_reset = jiffies; #endif mutex_init(&dsi->lock); sema_init(&dsi->bus_lock, 1); INIT_DEFERRABLE_WORK(&dsi->framedone_timeout_work, dsi_framedone_timeout_work_callback); #ifdef DSI_CATCH_MISSING_TE timer_setup(&dsi->te_timer, dsi_te_timeout, 0); #endif dsi_mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "proto"); dsi->proto_base = devm_ioremap_resource(dev, dsi_mem); if (IS_ERR(dsi->proto_base)) return PTR_ERR(dsi->proto_base); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "phy"); dsi->phy_base = devm_ioremap_resource(dev, res); if (IS_ERR(dsi->phy_base)) return PTR_ERR(dsi->phy_base); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "pll"); dsi->pll_base = devm_ioremap_resource(dev, res); if (IS_ERR(dsi->pll_base)) return PTR_ERR(dsi->pll_base); dsi->irq = platform_get_irq(pdev, 0); if (dsi->irq < 0) { DSSERR("platform_get_irq failed\n"); return -ENODEV; } r = devm_request_irq(dev, dsi->irq, omap_dsi_irq_handler, IRQF_SHARED, dev_name(dev), dsi); if (r < 0) { DSSERR("request_irq failed\n"); return r; } dsi->vdds_dsi_reg = devm_regulator_get(dev, "vdd"); if (IS_ERR(dsi->vdds_dsi_reg)) { if (PTR_ERR(dsi->vdds_dsi_reg) != -EPROBE_DEFER) DSSERR("can't get DSI VDD regulator\n"); return PTR_ERR(dsi->vdds_dsi_reg); } soc = soc_device_match(dsi_soc_devices); if (soc) dsi->data = soc->data; else dsi->data = of_match_node(dsi_of_match, dev->of_node)->data; d = dsi->data->modules; while (d->address != 0 && d->address != dsi_mem->start) d++; if (d->address == 0) { DSSERR("unsupported DSI module\n"); return -ENODEV; } dsi->module_id = d->id; if (dsi->data->model == DSI_MODEL_OMAP4 || dsi->data->model == DSI_MODEL_OMAP5) { struct device_node *np; /* * The OMAP4/5 display DT bindings don't reference the padconf * syscon. Our only option to retrieve it is to find it by name. */ np = of_find_node_by_name(NULL, dsi->data->model == DSI_MODEL_OMAP4 ? "omap4_padconf_global" : "omap5_padconf_global"); if (!np) return -ENODEV; dsi->syscon = syscon_node_to_regmap(np); of_node_put(np); } /* DSI VCs initialization */ for (i = 0; i < ARRAY_SIZE(dsi->vc); i++) { dsi->vc[i].source = DSI_VC_SOURCE_L4; dsi->vc[i].dssdev = NULL; dsi->vc[i].vc_id = 0; } r = dsi_get_clocks(dsi); if (r) return r; pm_runtime_enable(dev); /* DSI on OMAP3 doesn't have register DSI_GNQ, set number * of data to 3 by default */ if (dsi->data->quirks & DSI_QUIRK_GNQ) { dsi_runtime_get(dsi); /* NB_DATA_LANES */ dsi->num_lanes_supported = 1 + REG_GET(dsi, DSI_GNQ, 11, 9); dsi_runtime_put(dsi); } else { dsi->num_lanes_supported = 3; } r = of_platform_populate(dev->of_node, NULL, NULL, dev); if (r) { DSSERR("Failed to populate DSI child devices: %d\n", r); goto err_pm_disable; } r = dsi_init_output(dsi); if (r) goto err_of_depopulate; r = dsi_probe_of(dsi); if (r) { DSSERR("Invalid DSI DT data\n"); goto err_uninit_output; } r = component_add(&pdev->dev, &dsi_component_ops); if (r) goto err_uninit_output; return 0; err_uninit_output: dsi_uninit_output(dsi); err_of_depopulate: of_platform_depopulate(dev); err_pm_disable: pm_runtime_disable(dev); return r; } static int dsi_remove(struct platform_device *pdev) { struct dsi_data *dsi = platform_get_drvdata(pdev); component_del(&pdev->dev, &dsi_component_ops); dsi_uninit_output(dsi); of_platform_depopulate(&pdev->dev); pm_runtime_disable(&pdev->dev); if (dsi->vdds_dsi_reg != NULL && dsi->vdds_dsi_enabled) { regulator_disable(dsi->vdds_dsi_reg); dsi->vdds_dsi_enabled = false; } return 0; } static int dsi_runtime_suspend(struct device *dev) { struct dsi_data *dsi = dev_get_drvdata(dev); dsi->is_enabled = false; /* ensure the irq handler sees the is_enabled value */ smp_wmb(); /* wait for current handler to finish before turning the DSI off */ synchronize_irq(dsi->irq); return 0; } static int dsi_runtime_resume(struct device *dev) { struct dsi_data *dsi = dev_get_drvdata(dev); dsi->is_enabled = true; /* ensure the irq handler sees the is_enabled value */ smp_wmb(); return 0; } static const struct dev_pm_ops dsi_pm_ops = { .runtime_suspend = dsi_runtime_suspend, .runtime_resume = dsi_runtime_resume, }; struct platform_driver omap_dsihw_driver = { .probe = dsi_probe, .remove = dsi_remove, .driver = { .name = "omapdss_dsi", .pm = &dsi_pm_ops, .of_match_table = dsi_of_match, .suppress_bind_attrs = true, }, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1