Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mythri P K | 2103 | 48.60% | 4 | 9.76% |
Ricardo Neri | 1156 | 26.72% | 9 | 21.95% |
Archit Taneja | 466 | 10.77% | 7 | 17.07% |
Tomi Valkeinen | 381 | 8.81% | 11 | 26.83% |
Laurent Pinchart | 153 | 3.54% | 1 | 2.44% |
Misael Lopez Cruz | 24 | 0.55% | 2 | 4.88% |
Axel Castaneda Gonzalez | 21 | 0.49% | 1 | 2.44% |
Peter Ujfalusi | 18 | 0.42% | 3 | 7.32% |
Thomas Gleixner | 2 | 0.05% | 1 | 2.44% |
Hans Verkuil | 2 | 0.05% | 1 | 2.44% |
Matteo Croce | 1 | 0.02% | 1 | 2.44% |
Total | 4327 | 41 |
// SPDX-License-Identifier: GPL-2.0-only /* * HDMI TI81xx, TI38xx, TI OMAP4 etc IP driver Library * * Copyright (C) 2010-2011 Texas Instruments Incorporated - http://www.ti.com/ * Authors: Yong Zhi * Mythri pk <mythripk@ti.com> */ #define DSS_SUBSYS_NAME "HDMICORE" #include <linux/kernel.h> #include <linux/module.h> #include <linux/err.h> #include <linux/io.h> #include <linux/interrupt.h> #include <linux/mutex.h> #include <linux/delay.h> #include <linux/platform_device.h> #include <linux/string.h> #include <linux/seq_file.h> #include <linux/sys_soc.h> #include <sound/asound.h> #include <sound/asoundef.h> #include "hdmi4_core.h" #define HDMI_CORE_AV 0x500 static inline void __iomem *hdmi_av_base(struct hdmi_core_data *core) { return core->base + HDMI_CORE_AV; } static int hdmi_core_ddc_init(struct hdmi_core_data *core) { void __iomem *base = core->base; /* Turn on CLK for DDC */ REG_FLD_MOD(base, HDMI_CORE_AV_DPD, 0x7, 2, 0); /* IN_PROG */ if (REG_GET(base, HDMI_CORE_DDC_STATUS, 4, 4) == 1) { /* Abort transaction */ REG_FLD_MOD(base, HDMI_CORE_DDC_CMD, 0xf, 3, 0); /* IN_PROG */ if (hdmi_wait_for_bit_change(base, HDMI_CORE_DDC_STATUS, 4, 4, 0) != 0) { DSSERR("Timeout aborting DDC transaction\n"); return -ETIMEDOUT; } } /* Clk SCL Devices */ REG_FLD_MOD(base, HDMI_CORE_DDC_CMD, 0xA, 3, 0); /* HDMI_CORE_DDC_STATUS_IN_PROG */ if (hdmi_wait_for_bit_change(base, HDMI_CORE_DDC_STATUS, 4, 4, 0) != 0) { DSSERR("Timeout starting SCL clock\n"); return -ETIMEDOUT; } /* Clear FIFO */ REG_FLD_MOD(base, HDMI_CORE_DDC_CMD, 0x9, 3, 0); /* HDMI_CORE_DDC_STATUS_IN_PROG */ if (hdmi_wait_for_bit_change(base, HDMI_CORE_DDC_STATUS, 4, 4, 0) != 0) { DSSERR("Timeout clearing DDC fifo\n"); return -ETIMEDOUT; } return 0; } static int hdmi_core_ddc_edid(struct hdmi_core_data *core, u8 *pedid, int ext) { void __iomem *base = core->base; u32 i; char checksum; u32 offset = 0; /* HDMI_CORE_DDC_STATUS_IN_PROG */ if (hdmi_wait_for_bit_change(base, HDMI_CORE_DDC_STATUS, 4, 4, 0) != 0) { DSSERR("Timeout waiting DDC to be ready\n"); return -ETIMEDOUT; } if (ext % 2 != 0) offset = 0x80; /* Load Segment Address Register */ REG_FLD_MOD(base, HDMI_CORE_DDC_SEGM, ext / 2, 7, 0); /* Load Slave Address Register */ REG_FLD_MOD(base, HDMI_CORE_DDC_ADDR, 0xA0 >> 1, 7, 1); /* Load Offset Address Register */ REG_FLD_MOD(base, HDMI_CORE_DDC_OFFSET, offset, 7, 0); /* Load Byte Count */ REG_FLD_MOD(base, HDMI_CORE_DDC_COUNT1, 0x80, 7, 0); REG_FLD_MOD(base, HDMI_CORE_DDC_COUNT2, 0x0, 1, 0); /* Set DDC_CMD */ if (ext) REG_FLD_MOD(base, HDMI_CORE_DDC_CMD, 0x4, 3, 0); else REG_FLD_MOD(base, HDMI_CORE_DDC_CMD, 0x2, 3, 0); /* HDMI_CORE_DDC_STATUS_BUS_LOW */ if (REG_GET(base, HDMI_CORE_DDC_STATUS, 6, 6) == 1) { DSSERR("I2C Bus Low?\n"); return -EIO; } /* HDMI_CORE_DDC_STATUS_NO_ACK */ if (REG_GET(base, HDMI_CORE_DDC_STATUS, 5, 5) == 1) { DSSERR("I2C No Ack\n"); return -EIO; } for (i = 0; i < 0x80; ++i) { int t; /* IN_PROG */ if (REG_GET(base, HDMI_CORE_DDC_STATUS, 4, 4) == 0) { DSSERR("operation stopped when reading edid\n"); return -EIO; } t = 0; /* FIFO_EMPTY */ while (REG_GET(base, HDMI_CORE_DDC_STATUS, 2, 2) == 1) { if (t++ > 10000) { DSSERR("timeout reading edid\n"); return -ETIMEDOUT; } udelay(1); } pedid[i] = REG_GET(base, HDMI_CORE_DDC_DATA, 7, 0); } checksum = 0; for (i = 0; i < 0x80; ++i) checksum += pedid[i]; if (checksum != 0) { DSSERR("E-EDID checksum failed!!\n"); return -EIO; } return 0; } int hdmi4_read_edid(struct hdmi_core_data *core, u8 *edid, int len) { int r, l; if (len < 128) return -EINVAL; r = hdmi_core_ddc_init(core); if (r) return r; r = hdmi_core_ddc_edid(core, edid, 0); if (r) return r; l = 128; if (len >= 128 * 2 && edid[0x7e] > 0) { r = hdmi_core_ddc_edid(core, edid + 0x80, 1); if (r) return r; l += 128; } return l; } static void hdmi_core_init(struct hdmi_core_video_config *video_cfg) { DSSDBG("Enter hdmi_core_init\n"); /* video core */ video_cfg->ip_bus_width = HDMI_INPUT_8BIT; video_cfg->op_dither_truc = HDMI_OUTPUTTRUNCATION_8BIT; video_cfg->deep_color_pkt = HDMI_DEEPCOLORPACKECTDISABLE; video_cfg->pkt_mode = HDMI_PACKETMODERESERVEDVALUE; video_cfg->hdmi_dvi = HDMI_DVI; video_cfg->tclk_sel_clkmult = HDMI_FPLL10IDCK; } void hdmi4_core_powerdown_disable(struct hdmi_core_data *core) { DSSDBG("Enter hdmi4_core_powerdown_disable\n"); REG_FLD_MOD(core->base, HDMI_CORE_SYS_SYS_CTRL1, 0x1, 0, 0); } static void hdmi_core_swreset_release(struct hdmi_core_data *core) { DSSDBG("Enter hdmi_core_swreset_release\n"); REG_FLD_MOD(core->base, HDMI_CORE_SYS_SRST, 0x0, 0, 0); } static void hdmi_core_swreset_assert(struct hdmi_core_data *core) { DSSDBG("Enter hdmi_core_swreset_assert\n"); REG_FLD_MOD(core->base, HDMI_CORE_SYS_SRST, 0x1, 0, 0); } /* HDMI_CORE_VIDEO_CONFIG */ static void hdmi_core_video_config(struct hdmi_core_data *core, struct hdmi_core_video_config *cfg) { u32 r = 0; void __iomem *core_sys_base = core->base; void __iomem *core_av_base = hdmi_av_base(core); /* sys_ctrl1 default configuration not tunable */ r = hdmi_read_reg(core_sys_base, HDMI_CORE_SYS_SYS_CTRL1); r = FLD_MOD(r, HDMI_CORE_SYS_SYS_CTRL1_VEN_FOLLOWVSYNC, 5, 5); r = FLD_MOD(r, HDMI_CORE_SYS_SYS_CTRL1_HEN_FOLLOWHSYNC, 4, 4); r = FLD_MOD(r, HDMI_CORE_SYS_SYS_CTRL1_BSEL_24BITBUS, 2, 2); r = FLD_MOD(r, HDMI_CORE_SYS_SYS_CTRL1_EDGE_RISINGEDGE, 1, 1); hdmi_write_reg(core_sys_base, HDMI_CORE_SYS_SYS_CTRL1, r); REG_FLD_MOD(core_sys_base, HDMI_CORE_SYS_VID_ACEN, cfg->ip_bus_width, 7, 6); /* Vid_Mode */ r = hdmi_read_reg(core_sys_base, HDMI_CORE_SYS_VID_MODE); /* dither truncation configuration */ if (cfg->op_dither_truc > HDMI_OUTPUTTRUNCATION_12BIT) { r = FLD_MOD(r, cfg->op_dither_truc - 3, 7, 6); r = FLD_MOD(r, 1, 5, 5); } else { r = FLD_MOD(r, cfg->op_dither_truc, 7, 6); r = FLD_MOD(r, 0, 5, 5); } hdmi_write_reg(core_sys_base, HDMI_CORE_SYS_VID_MODE, r); /* HDMI_Ctrl */ r = hdmi_read_reg(core_av_base, HDMI_CORE_AV_HDMI_CTRL); r = FLD_MOD(r, cfg->deep_color_pkt, 6, 6); r = FLD_MOD(r, cfg->pkt_mode, 5, 3); r = FLD_MOD(r, cfg->hdmi_dvi, 0, 0); hdmi_write_reg(core_av_base, HDMI_CORE_AV_HDMI_CTRL, r); /* TMDS_CTRL */ REG_FLD_MOD(core_sys_base, HDMI_CORE_SYS_TMDS_CTRL, cfg->tclk_sel_clkmult, 6, 5); } static void hdmi_core_write_avi_infoframe(struct hdmi_core_data *core, struct hdmi_avi_infoframe *frame) { void __iomem *av_base = hdmi_av_base(core); u8 data[HDMI_INFOFRAME_SIZE(AVI)]; int i; hdmi_avi_infoframe_pack(frame, data, sizeof(data)); print_hex_dump_debug("AVI: ", DUMP_PREFIX_NONE, 16, 1, data, HDMI_INFOFRAME_SIZE(AVI), false); for (i = 0; i < sizeof(data); ++i) { hdmi_write_reg(av_base, HDMI_CORE_AV_AVI_BASE + i * 4, data[i]); } } static void hdmi_core_av_packet_config(struct hdmi_core_data *core, struct hdmi_core_packet_enable_repeat repeat_cfg) { /* enable/repeat the infoframe */ hdmi_write_reg(hdmi_av_base(core), HDMI_CORE_AV_PB_CTRL1, (repeat_cfg.audio_pkt << 5) | (repeat_cfg.audio_pkt_repeat << 4) | (repeat_cfg.avi_infoframe << 1) | (repeat_cfg.avi_infoframe_repeat)); /* enable/repeat the packet */ hdmi_write_reg(hdmi_av_base(core), HDMI_CORE_AV_PB_CTRL2, (repeat_cfg.gen_cntrl_pkt << 3) | (repeat_cfg.gen_cntrl_pkt_repeat << 2) | (repeat_cfg.generic_pkt << 1) | (repeat_cfg.generic_pkt_repeat)); } void hdmi4_configure(struct hdmi_core_data *core, struct hdmi_wp_data *wp, struct hdmi_config *cfg) { /* HDMI */ struct videomode vm; struct hdmi_video_format video_format; /* HDMI core */ struct hdmi_core_video_config v_core_cfg; struct hdmi_core_packet_enable_repeat repeat_cfg = { 0 }; hdmi_core_init(&v_core_cfg); hdmi_wp_init_vid_fmt_timings(&video_format, &vm, cfg); hdmi_wp_video_config_timing(wp, &vm); /* video config */ video_format.packing_mode = HDMI_PACK_24b_RGB_YUV444_YUV422; hdmi_wp_video_config_format(wp, &video_format); hdmi_wp_video_config_interface(wp, &vm); /* * configure core video part * set software reset in the core */ hdmi_core_swreset_assert(core); v_core_cfg.pkt_mode = HDMI_PACKETMODE24BITPERPIXEL; v_core_cfg.hdmi_dvi = cfg->hdmi_dvi_mode; hdmi_core_video_config(core, &v_core_cfg); /* release software reset in the core */ hdmi_core_swreset_release(core); if (cfg->hdmi_dvi_mode == HDMI_HDMI) { hdmi_core_write_avi_infoframe(core, &cfg->infoframe); /* enable/repeat the infoframe */ repeat_cfg.avi_infoframe = HDMI_PACKETENABLE; repeat_cfg.avi_infoframe_repeat = HDMI_PACKETREPEATON; /* wakeup */ repeat_cfg.audio_pkt = HDMI_PACKETENABLE; repeat_cfg.audio_pkt_repeat = HDMI_PACKETREPEATON; } hdmi_core_av_packet_config(core, repeat_cfg); } void hdmi4_core_dump(struct hdmi_core_data *core, struct seq_file *s) { int i; #define CORE_REG(i, name) name(i) #define DUMPCORE(r) seq_printf(s, "%-35s %08x\n", #r,\ hdmi_read_reg(core->base, r)) #define DUMPCOREAV(r) seq_printf(s, "%-35s %08x\n", #r,\ hdmi_read_reg(hdmi_av_base(core), r)) #define DUMPCOREAV2(i, r) seq_printf(s, "%s[%d]%*s %08x\n", #r, i, \ (i < 10) ? 32 - (int)strlen(#r) : 31 - (int)strlen(#r), " ", \ hdmi_read_reg(hdmi_av_base(core), CORE_REG(i, r))) DUMPCORE(HDMI_CORE_SYS_VND_IDL); DUMPCORE(HDMI_CORE_SYS_DEV_IDL); DUMPCORE(HDMI_CORE_SYS_DEV_IDH); DUMPCORE(HDMI_CORE_SYS_DEV_REV); DUMPCORE(HDMI_CORE_SYS_SRST); DUMPCORE(HDMI_CORE_SYS_SYS_CTRL1); DUMPCORE(HDMI_CORE_SYS_SYS_STAT); DUMPCORE(HDMI_CORE_SYS_SYS_CTRL3); DUMPCORE(HDMI_CORE_SYS_DE_DLY); DUMPCORE(HDMI_CORE_SYS_DE_CTRL); DUMPCORE(HDMI_CORE_SYS_DE_TOP); DUMPCORE(HDMI_CORE_SYS_DE_CNTL); DUMPCORE(HDMI_CORE_SYS_DE_CNTH); DUMPCORE(HDMI_CORE_SYS_DE_LINL); DUMPCORE(HDMI_CORE_SYS_DE_LINH_1); DUMPCORE(HDMI_CORE_SYS_HRES_L); DUMPCORE(HDMI_CORE_SYS_HRES_H); DUMPCORE(HDMI_CORE_SYS_VRES_L); DUMPCORE(HDMI_CORE_SYS_VRES_H); DUMPCORE(HDMI_CORE_SYS_IADJUST); DUMPCORE(HDMI_CORE_SYS_POLDETECT); DUMPCORE(HDMI_CORE_SYS_HWIDTH1); DUMPCORE(HDMI_CORE_SYS_HWIDTH2); DUMPCORE(HDMI_CORE_SYS_VWIDTH); DUMPCORE(HDMI_CORE_SYS_VID_CTRL); DUMPCORE(HDMI_CORE_SYS_VID_ACEN); DUMPCORE(HDMI_CORE_SYS_VID_MODE); DUMPCORE(HDMI_CORE_SYS_VID_BLANK1); DUMPCORE(HDMI_CORE_SYS_VID_BLANK3); DUMPCORE(HDMI_CORE_SYS_VID_BLANK1); DUMPCORE(HDMI_CORE_SYS_DC_HEADER); DUMPCORE(HDMI_CORE_SYS_VID_DITHER); DUMPCORE(HDMI_CORE_SYS_RGB2XVYCC_CT); DUMPCORE(HDMI_CORE_SYS_R2Y_COEFF_LOW); DUMPCORE(HDMI_CORE_SYS_R2Y_COEFF_UP); DUMPCORE(HDMI_CORE_SYS_G2Y_COEFF_LOW); DUMPCORE(HDMI_CORE_SYS_G2Y_COEFF_UP); DUMPCORE(HDMI_CORE_SYS_B2Y_COEFF_LOW); DUMPCORE(HDMI_CORE_SYS_B2Y_COEFF_UP); DUMPCORE(HDMI_CORE_SYS_R2CB_COEFF_LOW); DUMPCORE(HDMI_CORE_SYS_R2CB_COEFF_UP); DUMPCORE(HDMI_CORE_SYS_G2CB_COEFF_LOW); DUMPCORE(HDMI_CORE_SYS_G2CB_COEFF_UP); DUMPCORE(HDMI_CORE_SYS_B2CB_COEFF_LOW); DUMPCORE(HDMI_CORE_SYS_B2CB_COEFF_UP); DUMPCORE(HDMI_CORE_SYS_R2CR_COEFF_LOW); DUMPCORE(HDMI_CORE_SYS_R2CR_COEFF_UP); DUMPCORE(HDMI_CORE_SYS_G2CR_COEFF_LOW); DUMPCORE(HDMI_CORE_SYS_G2CR_COEFF_UP); DUMPCORE(HDMI_CORE_SYS_B2CR_COEFF_LOW); DUMPCORE(HDMI_CORE_SYS_B2CR_COEFF_UP); DUMPCORE(HDMI_CORE_SYS_RGB_OFFSET_LOW); DUMPCORE(HDMI_CORE_SYS_RGB_OFFSET_UP); DUMPCORE(HDMI_CORE_SYS_Y_OFFSET_LOW); DUMPCORE(HDMI_CORE_SYS_Y_OFFSET_UP); DUMPCORE(HDMI_CORE_SYS_CBCR_OFFSET_LOW); DUMPCORE(HDMI_CORE_SYS_CBCR_OFFSET_UP); DUMPCORE(HDMI_CORE_SYS_INTR_STATE); DUMPCORE(HDMI_CORE_SYS_INTR1); DUMPCORE(HDMI_CORE_SYS_INTR2); DUMPCORE(HDMI_CORE_SYS_INTR3); DUMPCORE(HDMI_CORE_SYS_INTR4); DUMPCORE(HDMI_CORE_SYS_INTR_UNMASK1); DUMPCORE(HDMI_CORE_SYS_INTR_UNMASK2); DUMPCORE(HDMI_CORE_SYS_INTR_UNMASK3); DUMPCORE(HDMI_CORE_SYS_INTR_UNMASK4); DUMPCORE(HDMI_CORE_SYS_INTR_CTRL); DUMPCORE(HDMI_CORE_SYS_TMDS_CTRL); DUMPCORE(HDMI_CORE_DDC_ADDR); DUMPCORE(HDMI_CORE_DDC_SEGM); DUMPCORE(HDMI_CORE_DDC_OFFSET); DUMPCORE(HDMI_CORE_DDC_COUNT1); DUMPCORE(HDMI_CORE_DDC_COUNT2); DUMPCORE(HDMI_CORE_DDC_STATUS); DUMPCORE(HDMI_CORE_DDC_CMD); DUMPCORE(HDMI_CORE_DDC_DATA); DUMPCOREAV(HDMI_CORE_AV_ACR_CTRL); DUMPCOREAV(HDMI_CORE_AV_FREQ_SVAL); DUMPCOREAV(HDMI_CORE_AV_N_SVAL1); DUMPCOREAV(HDMI_CORE_AV_N_SVAL2); DUMPCOREAV(HDMI_CORE_AV_N_SVAL3); DUMPCOREAV(HDMI_CORE_AV_CTS_SVAL1); DUMPCOREAV(HDMI_CORE_AV_CTS_SVAL2); DUMPCOREAV(HDMI_CORE_AV_CTS_SVAL3); DUMPCOREAV(HDMI_CORE_AV_CTS_HVAL1); DUMPCOREAV(HDMI_CORE_AV_CTS_HVAL2); DUMPCOREAV(HDMI_CORE_AV_CTS_HVAL3); DUMPCOREAV(HDMI_CORE_AV_AUD_MODE); DUMPCOREAV(HDMI_CORE_AV_SPDIF_CTRL); DUMPCOREAV(HDMI_CORE_AV_HW_SPDIF_FS); DUMPCOREAV(HDMI_CORE_AV_SWAP_I2S); DUMPCOREAV(HDMI_CORE_AV_SPDIF_ERTH); DUMPCOREAV(HDMI_CORE_AV_I2S_IN_MAP); DUMPCOREAV(HDMI_CORE_AV_I2S_IN_CTRL); DUMPCOREAV(HDMI_CORE_AV_I2S_CHST0); DUMPCOREAV(HDMI_CORE_AV_I2S_CHST1); DUMPCOREAV(HDMI_CORE_AV_I2S_CHST2); DUMPCOREAV(HDMI_CORE_AV_I2S_CHST4); DUMPCOREAV(HDMI_CORE_AV_I2S_CHST5); DUMPCOREAV(HDMI_CORE_AV_ASRC); DUMPCOREAV(HDMI_CORE_AV_I2S_IN_LEN); DUMPCOREAV(HDMI_CORE_AV_HDMI_CTRL); DUMPCOREAV(HDMI_CORE_AV_AUDO_TXSTAT); DUMPCOREAV(HDMI_CORE_AV_AUD_PAR_BUSCLK_1); DUMPCOREAV(HDMI_CORE_AV_AUD_PAR_BUSCLK_2); DUMPCOREAV(HDMI_CORE_AV_AUD_PAR_BUSCLK_3); DUMPCOREAV(HDMI_CORE_AV_TEST_TXCTRL); DUMPCOREAV(HDMI_CORE_AV_DPD); DUMPCOREAV(HDMI_CORE_AV_PB_CTRL1); DUMPCOREAV(HDMI_CORE_AV_PB_CTRL2); DUMPCOREAV(HDMI_CORE_AV_AVI_TYPE); DUMPCOREAV(HDMI_CORE_AV_AVI_VERS); DUMPCOREAV(HDMI_CORE_AV_AVI_LEN); DUMPCOREAV(HDMI_CORE_AV_AVI_CHSUM); for (i = 0; i < HDMI_CORE_AV_AVI_DBYTE_NELEMS; i++) DUMPCOREAV2(i, HDMI_CORE_AV_AVI_DBYTE); DUMPCOREAV(HDMI_CORE_AV_SPD_TYPE); DUMPCOREAV(HDMI_CORE_AV_SPD_VERS); DUMPCOREAV(HDMI_CORE_AV_SPD_LEN); DUMPCOREAV(HDMI_CORE_AV_SPD_CHSUM); for (i = 0; i < HDMI_CORE_AV_SPD_DBYTE_NELEMS; i++) DUMPCOREAV2(i, HDMI_CORE_AV_SPD_DBYTE); DUMPCOREAV(HDMI_CORE_AV_AUDIO_TYPE); DUMPCOREAV(HDMI_CORE_AV_AUDIO_VERS); DUMPCOREAV(HDMI_CORE_AV_AUDIO_LEN); DUMPCOREAV(HDMI_CORE_AV_AUDIO_CHSUM); for (i = 0; i < HDMI_CORE_AV_AUD_DBYTE_NELEMS; i++) DUMPCOREAV2(i, HDMI_CORE_AV_AUD_DBYTE); DUMPCOREAV(HDMI_CORE_AV_MPEG_TYPE); DUMPCOREAV(HDMI_CORE_AV_MPEG_VERS); DUMPCOREAV(HDMI_CORE_AV_MPEG_LEN); DUMPCOREAV(HDMI_CORE_AV_MPEG_CHSUM); for (i = 0; i < HDMI_CORE_AV_MPEG_DBYTE_NELEMS; i++) DUMPCOREAV2(i, HDMI_CORE_AV_MPEG_DBYTE); for (i = 0; i < HDMI_CORE_AV_GEN_DBYTE_NELEMS; i++) DUMPCOREAV2(i, HDMI_CORE_AV_GEN_DBYTE); DUMPCOREAV(HDMI_CORE_AV_CP_BYTE1); for (i = 0; i < HDMI_CORE_AV_GEN2_DBYTE_NELEMS; i++) DUMPCOREAV2(i, HDMI_CORE_AV_GEN2_DBYTE); DUMPCOREAV(HDMI_CORE_AV_CEC_ADDR_ID); } static void hdmi_core_audio_config(struct hdmi_core_data *core, struct hdmi_core_audio_config *cfg) { u32 r; void __iomem *av_base = hdmi_av_base(core); /* * Parameters for generation of Audio Clock Recovery packets */ REG_FLD_MOD(av_base, HDMI_CORE_AV_N_SVAL1, cfg->n, 7, 0); REG_FLD_MOD(av_base, HDMI_CORE_AV_N_SVAL2, cfg->n >> 8, 7, 0); REG_FLD_MOD(av_base, HDMI_CORE_AV_N_SVAL3, cfg->n >> 16, 7, 0); if (cfg->cts_mode == HDMI_AUDIO_CTS_MODE_SW) { REG_FLD_MOD(av_base, HDMI_CORE_AV_CTS_SVAL1, cfg->cts, 7, 0); REG_FLD_MOD(av_base, HDMI_CORE_AV_CTS_SVAL2, cfg->cts >> 8, 7, 0); REG_FLD_MOD(av_base, HDMI_CORE_AV_CTS_SVAL3, cfg->cts >> 16, 7, 0); } else { REG_FLD_MOD(av_base, HDMI_CORE_AV_AUD_PAR_BUSCLK_1, cfg->aud_par_busclk, 7, 0); REG_FLD_MOD(av_base, HDMI_CORE_AV_AUD_PAR_BUSCLK_2, (cfg->aud_par_busclk >> 8), 7, 0); REG_FLD_MOD(av_base, HDMI_CORE_AV_AUD_PAR_BUSCLK_3, (cfg->aud_par_busclk >> 16), 7, 0); } /* Set ACR clock divisor */ REG_FLD_MOD(av_base, HDMI_CORE_AV_FREQ_SVAL, cfg->mclk_mode, 2, 0); r = hdmi_read_reg(av_base, HDMI_CORE_AV_ACR_CTRL); /* * Use TMDS clock for ACR packets. For devices that use * the MCLK, this is the first part of the MCLK initialization. */ r = FLD_MOD(r, 0, 2, 2); r = FLD_MOD(r, cfg->en_acr_pkt, 1, 1); r = FLD_MOD(r, cfg->cts_mode, 0, 0); hdmi_write_reg(av_base, HDMI_CORE_AV_ACR_CTRL, r); /* For devices using MCLK, this completes its initialization. */ if (cfg->use_mclk) REG_FLD_MOD(av_base, HDMI_CORE_AV_ACR_CTRL, 1, 2, 2); /* Override of SPDIF sample frequency with value in I2S_CHST4 */ REG_FLD_MOD(av_base, HDMI_CORE_AV_SPDIF_CTRL, cfg->fs_override, 1, 1); /* * Set IEC-60958-3 channel status word. It is passed to the IP * just as it is received. The user of the driver is responsible * for its contents. */ hdmi_write_reg(av_base, HDMI_CORE_AV_I2S_CHST0, cfg->iec60958_cfg->status[0]); hdmi_write_reg(av_base, HDMI_CORE_AV_I2S_CHST1, cfg->iec60958_cfg->status[1]); hdmi_write_reg(av_base, HDMI_CORE_AV_I2S_CHST2, cfg->iec60958_cfg->status[2]); /* yes, this is correct: status[3] goes to CHST4 register */ hdmi_write_reg(av_base, HDMI_CORE_AV_I2S_CHST4, cfg->iec60958_cfg->status[3]); /* yes, this is correct: status[4] goes to CHST5 register */ hdmi_write_reg(av_base, HDMI_CORE_AV_I2S_CHST5, cfg->iec60958_cfg->status[4]); /* set I2S parameters */ r = hdmi_read_reg(av_base, HDMI_CORE_AV_I2S_IN_CTRL); r = FLD_MOD(r, cfg->i2s_cfg.sck_edge_mode, 6, 6); r = FLD_MOD(r, cfg->i2s_cfg.vbit, 4, 4); r = FLD_MOD(r, cfg->i2s_cfg.justification, 2, 2); r = FLD_MOD(r, cfg->i2s_cfg.direction, 1, 1); r = FLD_MOD(r, cfg->i2s_cfg.shift, 0, 0); hdmi_write_reg(av_base, HDMI_CORE_AV_I2S_IN_CTRL, r); REG_FLD_MOD(av_base, HDMI_CORE_AV_I2S_IN_LEN, cfg->i2s_cfg.in_length_bits, 3, 0); /* Audio channels and mode parameters */ REG_FLD_MOD(av_base, HDMI_CORE_AV_HDMI_CTRL, cfg->layout, 2, 1); r = hdmi_read_reg(av_base, HDMI_CORE_AV_AUD_MODE); r = FLD_MOD(r, cfg->i2s_cfg.active_sds, 7, 4); r = FLD_MOD(r, cfg->en_dsd_audio, 3, 3); r = FLD_MOD(r, cfg->en_parallel_aud_input, 2, 2); r = FLD_MOD(r, cfg->en_spdif, 1, 1); hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_MODE, r); /* Audio channel mappings */ /* TODO: Make channel mapping dynamic. For now, map channels * in the ALSA order: FL/FR/RL/RR/C/LFE/SL/SR. Remapping is needed as * HDMI speaker order is different. See CEA-861 Section 6.6.2. */ hdmi_write_reg(av_base, HDMI_CORE_AV_I2S_IN_MAP, 0x78); REG_FLD_MOD(av_base, HDMI_CORE_AV_SWAP_I2S, 1, 5, 5); } static void hdmi_core_audio_infoframe_cfg(struct hdmi_core_data *core, struct snd_cea_861_aud_if *info_aud) { u8 sum = 0, checksum = 0; void __iomem *av_base = hdmi_av_base(core); /* * Set audio info frame type, version and length as * described in HDMI 1.4a Section 8.2.2 specification. * Checksum calculation is defined in Section 5.3.5. */ hdmi_write_reg(av_base, HDMI_CORE_AV_AUDIO_TYPE, 0x84); hdmi_write_reg(av_base, HDMI_CORE_AV_AUDIO_VERS, 0x01); hdmi_write_reg(av_base, HDMI_CORE_AV_AUDIO_LEN, 0x0a); sum += 0x84 + 0x001 + 0x00a; hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(0), info_aud->db1_ct_cc); sum += info_aud->db1_ct_cc; hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(1), info_aud->db2_sf_ss); sum += info_aud->db2_sf_ss; hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(2), info_aud->db3); sum += info_aud->db3; /* * The OMAP HDMI IP requires to use the 8-channel channel code when * transmitting more than two channels. */ if (info_aud->db4_ca != 0x00) info_aud->db4_ca = 0x13; hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(3), info_aud->db4_ca); sum += info_aud->db4_ca; hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(4), info_aud->db5_dminh_lsv); sum += info_aud->db5_dminh_lsv; hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(5), 0x00); hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(6), 0x00); hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(7), 0x00); hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(8), 0x00); hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(9), 0x00); checksum = 0x100 - sum; hdmi_write_reg(av_base, HDMI_CORE_AV_AUDIO_CHSUM, checksum); /* * TODO: Add MPEG and SPD enable and repeat cfg when EDID parsing * is available. */ } int hdmi4_audio_config(struct hdmi_core_data *core, struct hdmi_wp_data *wp, struct omap_dss_audio *audio, u32 pclk) { struct hdmi_audio_format audio_format; struct hdmi_audio_dma audio_dma; struct hdmi_core_audio_config acore; int err, n, cts, channel_count; unsigned int fs_nr; bool word_length_16b = false; if (!audio || !audio->iec || !audio->cea || !core) return -EINVAL; acore.iec60958_cfg = audio->iec; /* * In the IEC-60958 status word, check if the audio sample word length * is 16-bit as several optimizations can be performed in such case. */ if (!(audio->iec->status[4] & IEC958_AES4_CON_MAX_WORDLEN_24)) if (audio->iec->status[4] & IEC958_AES4_CON_WORDLEN_20_16) word_length_16b = true; /* I2S configuration. See Phillips' specification */ if (word_length_16b) acore.i2s_cfg.justification = HDMI_AUDIO_JUSTIFY_LEFT; else acore.i2s_cfg.justification = HDMI_AUDIO_JUSTIFY_RIGHT; /* * The I2S input word length is twice the length given in the IEC-60958 * status word. If the word size is greater than * 20 bits, increment by one. */ acore.i2s_cfg.in_length_bits = audio->iec->status[4] & IEC958_AES4_CON_WORDLEN; if (audio->iec->status[4] & IEC958_AES4_CON_MAX_WORDLEN_24) acore.i2s_cfg.in_length_bits++; acore.i2s_cfg.sck_edge_mode = HDMI_AUDIO_I2S_SCK_EDGE_RISING; acore.i2s_cfg.vbit = HDMI_AUDIO_I2S_VBIT_FOR_PCM; acore.i2s_cfg.direction = HDMI_AUDIO_I2S_MSB_SHIFTED_FIRST; acore.i2s_cfg.shift = HDMI_AUDIO_I2S_FIRST_BIT_SHIFT; /* convert sample frequency to a number */ switch (audio->iec->status[3] & IEC958_AES3_CON_FS) { case IEC958_AES3_CON_FS_32000: fs_nr = 32000; break; case IEC958_AES3_CON_FS_44100: fs_nr = 44100; break; case IEC958_AES3_CON_FS_48000: fs_nr = 48000; break; case IEC958_AES3_CON_FS_88200: fs_nr = 88200; break; case IEC958_AES3_CON_FS_96000: fs_nr = 96000; break; case IEC958_AES3_CON_FS_176400: fs_nr = 176400; break; case IEC958_AES3_CON_FS_192000: fs_nr = 192000; break; default: return -EINVAL; } err = hdmi_compute_acr(pclk, fs_nr, &n, &cts); /* Audio clock regeneration settings */ acore.n = n; acore.cts = cts; if (core->cts_swmode) { acore.aud_par_busclk = 0; acore.cts_mode = HDMI_AUDIO_CTS_MODE_SW; acore.use_mclk = core->audio_use_mclk; } else { acore.aud_par_busclk = (((128 * 31) - 1) << 8); acore.cts_mode = HDMI_AUDIO_CTS_MODE_HW; acore.use_mclk = true; } if (acore.use_mclk) acore.mclk_mode = HDMI_AUDIO_MCLK_128FS; /* Audio channels settings */ channel_count = (audio->cea->db1_ct_cc & CEA861_AUDIO_INFOFRAME_DB1CC) + 1; switch (channel_count) { case 2: audio_format.active_chnnls_msk = 0x03; break; case 3: audio_format.active_chnnls_msk = 0x07; break; case 4: audio_format.active_chnnls_msk = 0x0f; break; case 5: audio_format.active_chnnls_msk = 0x1f; break; case 6: audio_format.active_chnnls_msk = 0x3f; break; case 7: audio_format.active_chnnls_msk = 0x7f; break; case 8: audio_format.active_chnnls_msk = 0xff; break; default: return -EINVAL; } /* * the HDMI IP needs to enable four stereo channels when transmitting * more than 2 audio channels. Similarly, the channel count in the * Audio InfoFrame has to match the sample_present bits (some channels * are padded with zeroes) */ if (channel_count == 2) { audio_format.stereo_channels = HDMI_AUDIO_STEREO_ONECHANNEL; acore.i2s_cfg.active_sds = HDMI_AUDIO_I2S_SD0_EN; acore.layout = HDMI_AUDIO_LAYOUT_2CH; } else { audio_format.stereo_channels = HDMI_AUDIO_STEREO_FOURCHANNELS; acore.i2s_cfg.active_sds = HDMI_AUDIO_I2S_SD0_EN | HDMI_AUDIO_I2S_SD1_EN | HDMI_AUDIO_I2S_SD2_EN | HDMI_AUDIO_I2S_SD3_EN; acore.layout = HDMI_AUDIO_LAYOUT_8CH; audio->cea->db1_ct_cc = 7; } acore.en_spdif = false; /* use sample frequency from channel status word */ acore.fs_override = true; /* enable ACR packets */ acore.en_acr_pkt = true; /* disable direct streaming digital audio */ acore.en_dsd_audio = false; /* use parallel audio interface */ acore.en_parallel_aud_input = true; /* DMA settings */ if (word_length_16b) audio_dma.transfer_size = 0x10; else audio_dma.transfer_size = 0x20; audio_dma.block_size = 0xC0; audio_dma.mode = HDMI_AUDIO_TRANSF_DMA; audio_dma.fifo_threshold = 0x20; /* in number of samples */ /* audio FIFO format settings */ if (word_length_16b) { audio_format.samples_per_word = HDMI_AUDIO_ONEWORD_TWOSAMPLES; audio_format.sample_size = HDMI_AUDIO_SAMPLE_16BITS; audio_format.justification = HDMI_AUDIO_JUSTIFY_LEFT; } else { audio_format.samples_per_word = HDMI_AUDIO_ONEWORD_ONESAMPLE; audio_format.sample_size = HDMI_AUDIO_SAMPLE_24BITS; audio_format.justification = HDMI_AUDIO_JUSTIFY_RIGHT; } audio_format.type = HDMI_AUDIO_TYPE_LPCM; audio_format.sample_order = HDMI_AUDIO_SAMPLE_LEFT_FIRST; /* disable start/stop signals of IEC 60958 blocks */ audio_format.en_sig_blk_strt_end = HDMI_AUDIO_BLOCK_SIG_STARTEND_ON; /* configure DMA and audio FIFO format*/ hdmi_wp_audio_config_dma(wp, &audio_dma); hdmi_wp_audio_config_format(wp, &audio_format); /* configure the core*/ hdmi_core_audio_config(core, &acore); /* configure CEA 861 audio infoframe*/ hdmi_core_audio_infoframe_cfg(core, audio->cea); return 0; } int hdmi4_audio_start(struct hdmi_core_data *core, struct hdmi_wp_data *wp) { REG_FLD_MOD(hdmi_av_base(core), HDMI_CORE_AV_AUD_MODE, true, 0, 0); hdmi_wp_audio_core_req_enable(wp, true); return 0; } void hdmi4_audio_stop(struct hdmi_core_data *core, struct hdmi_wp_data *wp) { REG_FLD_MOD(hdmi_av_base(core), HDMI_CORE_AV_AUD_MODE, false, 0, 0); hdmi_wp_audio_core_req_enable(wp, false); } struct hdmi4_features { bool cts_swmode; bool audio_use_mclk; }; static const struct hdmi4_features hdmi4430_es1_features = { .cts_swmode = false, .audio_use_mclk = false, }; static const struct hdmi4_features hdmi4430_es2_features = { .cts_swmode = true, .audio_use_mclk = false, }; static const struct hdmi4_features hdmi4_features = { .cts_swmode = true, .audio_use_mclk = true, }; static const struct soc_device_attribute hdmi4_soc_devices[] = { { .machine = "OMAP4430", .revision = "ES1.?", .data = &hdmi4430_es1_features, }, { .machine = "OMAP4430", .revision = "ES2.?", .data = &hdmi4430_es2_features, }, { .family = "OMAP4", .data = &hdmi4_features, }, { /* sentinel */ } }; int hdmi4_core_init(struct platform_device *pdev, struct hdmi_core_data *core) { const struct hdmi4_features *features; struct resource *res; const struct soc_device_attribute *soc; soc = soc_device_match(hdmi4_soc_devices); if (!soc) return -ENODEV; features = soc->data; core->cts_swmode = features->cts_swmode; core->audio_use_mclk = features->audio_use_mclk; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "core"); core->base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(core->base)) return PTR_ERR(core->base); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1