Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Laurent Pinchart | 4027 | 76.40% | 57 | 67.06% |
Kumar, Mahesh | 537 | 10.19% | 2 | 2.35% |
Koji Matsuoka | 234 | 4.44% | 4 | 4.71% |
Jacopo Mondi | 213 | 4.04% | 3 | 3.53% |
Kieran Bingham | 142 | 2.69% | 7 | 8.24% |
Kuninori Morimoto | 55 | 1.04% | 3 | 3.53% |
Shawn Guo | 38 | 0.72% | 1 | 1.18% |
Sam Ravnborg | 9 | 0.17% | 1 | 1.18% |
Maarten Lankhorst | 5 | 0.09% | 1 | 1.18% |
Daniel Vetter | 3 | 0.06% | 1 | 1.18% |
Gustavo Padovan | 3 | 0.06% | 1 | 1.18% |
Ville Syrjälä | 2 | 0.04% | 1 | 1.18% |
Julia Lawall | 1 | 0.02% | 1 | 1.18% |
Benjamin Gaignard | 1 | 0.02% | 1 | 1.18% |
Christophe Jaillet | 1 | 0.02% | 1 | 1.18% |
Total | 5271 | 85 |
// SPDX-License-Identifier: GPL-2.0+ /* * rcar_du_crtc.c -- R-Car Display Unit CRTCs * * Copyright (C) 2013-2015 Renesas Electronics Corporation * * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com) */ #include <linux/clk.h> #include <linux/mutex.h> #include <linux/platform_device.h> #include <linux/sys_soc.h> #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_crtc.h> #include <drm/drm_device.h> #include <drm/drm_fb_cma_helper.h> #include <drm/drm_gem_cma_helper.h> #include <drm/drm_plane_helper.h> #include <drm/drm_vblank.h> #include "rcar_du_crtc.h" #include "rcar_du_drv.h" #include "rcar_du_encoder.h" #include "rcar_du_kms.h" #include "rcar_du_plane.h" #include "rcar_du_regs.h" #include "rcar_du_vsp.h" #include "rcar_lvds.h" static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg) { struct rcar_du_device *rcdu = rcrtc->dev; return rcar_du_read(rcdu, rcrtc->mmio_offset + reg); } static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data) { struct rcar_du_device *rcdu = rcrtc->dev; rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data); } static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr) { struct rcar_du_device *rcdu = rcrtc->dev; rcar_du_write(rcdu, rcrtc->mmio_offset + reg, rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr); } static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set) { struct rcar_du_device *rcdu = rcrtc->dev; rcar_du_write(rcdu, rcrtc->mmio_offset + reg, rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set); } void rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc *rcrtc, u32 clr, u32 set) { struct rcar_du_device *rcdu = rcrtc->dev; rcrtc->dsysr = (rcrtc->dsysr & ~clr) | set; rcar_du_write(rcdu, rcrtc->mmio_offset + DSYSR, rcrtc->dsysr); } /* ----------------------------------------------------------------------------- * Hardware Setup */ struct dpll_info { unsigned int output; unsigned int fdpll; unsigned int n; unsigned int m; }; static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc, struct dpll_info *dpll, unsigned long input, unsigned long target) { unsigned long best_diff = (unsigned long)-1; unsigned long diff; unsigned int fdpll; unsigned int m; unsigned int n; /* * fin fvco fout fclkout * in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out * +-> | | | * | | * +---------------- [1/N] <------------+ * * fclkout = fvco / P / FDPLL -- (1) * * fin/M = fvco/P/N * * fvco = fin * P * N / M -- (2) * * (1) + (2) indicates * * fclkout = fin * N / M / FDPLL * * NOTES * N : (n + 1) * M : (m + 1) * FDPLL : (fdpll + 1) * P : 2 * 2kHz < fvco < 4096MHz * * To minimize the jitter, * N : as large as possible * M : as small as possible */ for (m = 0; m < 4; m++) { for (n = 119; n > 38; n--) { /* * This code only runs on 64-bit architectures, the * unsigned long type can thus be used for 64-bit * computation. It will still compile without any * warning on 32-bit architectures. * * To optimize calculations, use fout instead of fvco * to verify the VCO frequency constraint. */ unsigned long fout = input * (n + 1) / (m + 1); if (fout < 1000 || fout > 2048 * 1000 * 1000U) continue; for (fdpll = 1; fdpll < 32; fdpll++) { unsigned long output; output = fout / (fdpll + 1); if (output >= 400 * 1000 * 1000) continue; diff = abs((long)output - (long)target); if (best_diff > diff) { best_diff = diff; dpll->n = n; dpll->m = m; dpll->fdpll = fdpll; dpll->output = output; } if (diff == 0) goto done; } } } done: dev_dbg(rcrtc->dev->dev, "output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n", dpll->output, dpll->fdpll, dpll->n, dpll->m, best_diff); } struct du_clk_params { struct clk *clk; unsigned long rate; unsigned long diff; u32 escr; }; static void rcar_du_escr_divider(struct clk *clk, unsigned long target, u32 escr, struct du_clk_params *params) { unsigned long rate; unsigned long diff; u32 div; /* * If the target rate has already been achieved perfectly we can't do * better. */ if (params->diff == 0) return; /* * Compute the input clock rate and internal divisor values to obtain * the clock rate closest to the target frequency. */ rate = clk_round_rate(clk, target); div = clamp(DIV_ROUND_CLOSEST(rate, target), 1UL, 64UL) - 1; diff = abs(rate / (div + 1) - target); /* * Store the parameters if the resulting frequency is better than any * previously calculated value. */ if (diff < params->diff) { params->clk = clk; params->rate = rate; params->diff = diff; params->escr = escr | div; } } static const struct soc_device_attribute rcar_du_r8a7795_es1[] = { { .soc_id = "r8a7795", .revision = "ES1.*" }, { /* sentinel */ } }; static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc) { const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode; struct rcar_du_device *rcdu = rcrtc->dev; unsigned long mode_clock = mode->clock * 1000; u32 dsmr; u32 escr; if (rcdu->info->dpll_mask & (1 << rcrtc->index)) { unsigned long target = mode_clock; struct dpll_info dpll = { 0 }; unsigned long extclk; u32 dpllcr; u32 div = 0; /* * DU channels that have a display PLL can't use the internal * system clock, and have no internal clock divider. */ /* * The H3 ES1.x exhibits dot clock duty cycle stability issues. * We can work around them by configuring the DPLL to twice the * desired frequency, coupled with a /2 post-divider. Restrict * the workaround to H3 ES1.x as ES2.0 and all other SoCs have * no post-divider when a display PLL is present (as shown by * the workaround breaking HDMI output on M3-W during testing). */ if (soc_device_match(rcar_du_r8a7795_es1)) { target *= 2; div = 1; } extclk = clk_get_rate(rcrtc->extclock); rcar_du_dpll_divider(rcrtc, &dpll, extclk, target); dpllcr = DPLLCR_CODE | DPLLCR_CLKE | DPLLCR_FDPLL(dpll.fdpll) | DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m) | DPLLCR_STBY; if (rcrtc->index == 1) dpllcr |= DPLLCR_PLCS1 | DPLLCR_INCS_DOTCLKIN1; else dpllcr |= DPLLCR_PLCS0 | DPLLCR_INCS_DOTCLKIN0; rcar_du_group_write(rcrtc->group, DPLLCR, dpllcr); escr = ESCR_DCLKSEL_DCLKIN | div; } else if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) { /* * Use the LVDS PLL output as the dot clock when outputting to * the LVDS encoder on an SoC that supports this clock routing * option. We use the clock directly in that case, without any * additional divider. */ escr = ESCR_DCLKSEL_DCLKIN; } else { struct du_clk_params params = { .diff = (unsigned long)-1 }; rcar_du_escr_divider(rcrtc->clock, mode_clock, ESCR_DCLKSEL_CLKS, ¶ms); if (rcrtc->extclock) rcar_du_escr_divider(rcrtc->extclock, mode_clock, ESCR_DCLKSEL_DCLKIN, ¶ms); dev_dbg(rcrtc->dev->dev, "mode clock %lu %s rate %lu\n", mode_clock, params.clk == rcrtc->clock ? "cpg" : "ext", params.rate); clk_set_rate(params.clk, params.rate); escr = params.escr; } dev_dbg(rcrtc->dev->dev, "%s: ESCR 0x%08x\n", __func__, escr); rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? ESCR13 : ESCR02, escr); rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? OTAR13 : OTAR02, 0); /* Signal polarities */ dsmr = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0) | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0) | ((mode->flags & DRM_MODE_FLAG_INTERLACE) ? DSMR_ODEV : 0) | DSMR_DIPM_DISP | DSMR_CSPM; rcar_du_crtc_write(rcrtc, DSMR, dsmr); /* Display timings */ rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19); rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start + mode->hdisplay - 19); rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end - mode->hsync_start - 1); rcar_du_crtc_write(rcrtc, HCR, mode->htotal - 1); rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal - mode->crtc_vsync_end - 2); rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal - mode->crtc_vsync_end + mode->crtc_vdisplay - 2); rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal - mode->crtc_vsync_end + mode->crtc_vsync_start - 1); rcar_du_crtc_write(rcrtc, VCR, mode->crtc_vtotal - 1); rcar_du_crtc_write(rcrtc, DESR, mode->htotal - mode->hsync_start - 1); rcar_du_crtc_write(rcrtc, DEWR, mode->hdisplay); } static unsigned int plane_zpos(struct rcar_du_plane *plane) { return plane->plane.state->normalized_zpos; } static const struct rcar_du_format_info * plane_format(struct rcar_du_plane *plane) { return to_rcar_plane_state(plane->plane.state)->format; } static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc) { struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES]; struct rcar_du_device *rcdu = rcrtc->dev; unsigned int num_planes = 0; unsigned int dptsr_planes; unsigned int hwplanes = 0; unsigned int prio = 0; unsigned int i; u32 dspr = 0; for (i = 0; i < rcrtc->group->num_planes; ++i) { struct rcar_du_plane *plane = &rcrtc->group->planes[i]; unsigned int j; if (plane->plane.state->crtc != &rcrtc->crtc || !plane->plane.state->visible) continue; /* Insert the plane in the sorted planes array. */ for (j = num_planes++; j > 0; --j) { if (plane_zpos(planes[j-1]) <= plane_zpos(plane)) break; planes[j] = planes[j-1]; } planes[j] = plane; prio += plane_format(plane)->planes * 4; } for (i = 0; i < num_planes; ++i) { struct rcar_du_plane *plane = planes[i]; struct drm_plane_state *state = plane->plane.state; unsigned int index = to_rcar_plane_state(state)->hwindex; prio -= 4; dspr |= (index + 1) << prio; hwplanes |= 1 << index; if (plane_format(plane)->planes == 2) { index = (index + 1) % 8; prio -= 4; dspr |= (index + 1) << prio; hwplanes |= 1 << index; } } /* If VSP+DU integration is enabled the plane assignment is fixed. */ if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) { if (rcdu->info->gen < 3) { dspr = (rcrtc->index % 2) + 1; hwplanes = 1 << (rcrtc->index % 2); } else { dspr = (rcrtc->index % 2) ? 3 : 1; hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0); } } /* * Update the planes to display timing and dot clock generator * associations. * * Updating the DPTSR register requires restarting the CRTC group, * resulting in visible flicker. To mitigate the issue only update the * association if needed by enabled planes. Planes being disabled will * keep their current association. */ mutex_lock(&rcrtc->group->lock); dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes : rcrtc->group->dptsr_planes & ~hwplanes; if (dptsr_planes != rcrtc->group->dptsr_planes) { rcar_du_group_write(rcrtc->group, DPTSR, (dptsr_planes << 16) | dptsr_planes); rcrtc->group->dptsr_planes = dptsr_planes; if (rcrtc->group->used_crtcs) rcar_du_group_restart(rcrtc->group); } /* Restart the group if plane sources have changed. */ if (rcrtc->group->need_restart) rcar_du_group_restart(rcrtc->group); mutex_unlock(&rcrtc->group->lock); rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, dspr); } /* ----------------------------------------------------------------------------- * Page Flip */ void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc) { struct drm_pending_vblank_event *event; struct drm_device *dev = rcrtc->crtc.dev; unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags); event = rcrtc->event; rcrtc->event = NULL; spin_unlock_irqrestore(&dev->event_lock, flags); if (event == NULL) return; spin_lock_irqsave(&dev->event_lock, flags); drm_crtc_send_vblank_event(&rcrtc->crtc, event); wake_up(&rcrtc->flip_wait); spin_unlock_irqrestore(&dev->event_lock, flags); drm_crtc_vblank_put(&rcrtc->crtc); } static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc) { struct drm_device *dev = rcrtc->crtc.dev; unsigned long flags; bool pending; spin_lock_irqsave(&dev->event_lock, flags); pending = rcrtc->event != NULL; spin_unlock_irqrestore(&dev->event_lock, flags); return pending; } static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc) { struct rcar_du_device *rcdu = rcrtc->dev; if (wait_event_timeout(rcrtc->flip_wait, !rcar_du_crtc_page_flip_pending(rcrtc), msecs_to_jiffies(50))) return; dev_warn(rcdu->dev, "page flip timeout\n"); rcar_du_crtc_finish_page_flip(rcrtc); } /* ----------------------------------------------------------------------------- * Start/Stop and Suspend/Resume */ static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc) { /* Set display off and background to black */ rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0)); rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0)); /* Configure display timings and output routing */ rcar_du_crtc_set_display_timing(rcrtc); rcar_du_group_set_routing(rcrtc->group); /* Start with all planes disabled. */ rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0); /* Enable the VSP compositor. */ if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE)) rcar_du_vsp_enable(rcrtc); /* Turn vertical blanking interrupt reporting on. */ drm_crtc_vblank_on(&rcrtc->crtc); } static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc) { int ret; /* * Guard against double-get, as the function is called from both the * .atomic_enable() and .atomic_begin() handlers. */ if (rcrtc->initialized) return 0; ret = clk_prepare_enable(rcrtc->clock); if (ret < 0) return ret; ret = clk_prepare_enable(rcrtc->extclock); if (ret < 0) goto error_clock; ret = rcar_du_group_get(rcrtc->group); if (ret < 0) goto error_group; rcar_du_crtc_setup(rcrtc); rcrtc->initialized = true; return 0; error_group: clk_disable_unprepare(rcrtc->extclock); error_clock: clk_disable_unprepare(rcrtc->clock); return ret; } static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc) { rcar_du_group_put(rcrtc->group); clk_disable_unprepare(rcrtc->extclock); clk_disable_unprepare(rcrtc->clock); rcrtc->initialized = false; } static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc) { bool interlaced; /* * Select master sync mode. This enables display operation in master * sync mode (with the HSYNC and VSYNC signals configured as outputs and * actively driven). */ interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE; rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK | DSYSR_SCM_MASK, (interlaced ? DSYSR_SCM_INT_VIDEO : 0) | DSYSR_TVM_MASTER); rcar_du_group_start_stop(rcrtc->group, true); } static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc) { struct rcar_du_device *rcdu = rcrtc->dev; struct drm_crtc *crtc = &rcrtc->crtc; u32 status; /* Make sure vblank interrupts are enabled. */ drm_crtc_vblank_get(crtc); /* * Disable planes and calculate how many vertical blanking interrupts we * have to wait for. If a vertical blanking interrupt has been triggered * but not processed yet, we don't know whether it occurred before or * after the planes got disabled. We thus have to wait for two vblank * interrupts in that case. */ spin_lock_irq(&rcrtc->vblank_lock); rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0); status = rcar_du_crtc_read(rcrtc, DSSR); rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1; spin_unlock_irq(&rcrtc->vblank_lock); if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0, msecs_to_jiffies(100))) dev_warn(rcdu->dev, "vertical blanking timeout\n"); drm_crtc_vblank_put(crtc); } static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc) { struct drm_crtc *crtc = &rcrtc->crtc; /* * Disable all planes and wait for the change to take effect. This is * required as the plane enable registers are updated on vblank, and no * vblank will occur once the CRTC is stopped. Disabling planes when * starting the CRTC thus wouldn't be enough as it would start scanning * out immediately from old frame buffers until the next vblank. * * This increases the CRTC stop delay, especially when multiple CRTCs * are stopped in one operation as we now wait for one vblank per CRTC. * Whether this can be improved needs to be researched. */ rcar_du_crtc_disable_planes(rcrtc); /* * Disable vertical blanking interrupt reporting. We first need to wait * for page flip completion before stopping the CRTC as userspace * expects page flips to eventually complete. */ rcar_du_crtc_wait_page_flip(rcrtc); drm_crtc_vblank_off(crtc); /* Disable the VSP compositor. */ if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE)) rcar_du_vsp_disable(rcrtc); /* * Select switch sync mode. This stops display operation and configures * the HSYNC and VSYNC signals as inputs. * * TODO: Find another way to stop the display for DUs that don't support * TVM sync. */ if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_TVM_SYNC)) rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK, DSYSR_TVM_SWITCH); rcar_du_group_start_stop(rcrtc->group, false); } /* ----------------------------------------------------------------------------- * CRTC Functions */ static int rcar_du_crtc_atomic_check(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(state); struct drm_encoder *encoder; /* Store the routes from the CRTC output to the DU outputs. */ rstate->outputs = 0; drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask) { struct rcar_du_encoder *renc; /* Skip the writeback encoder. */ if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) continue; renc = to_rcar_encoder(encoder); rstate->outputs |= BIT(renc->output); } return 0; } static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc, struct drm_crtc_state *old_state) { struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc->state); struct rcar_du_device *rcdu = rcrtc->dev; rcar_du_crtc_get(rcrtc); /* * On D3/E3 the dot clock is provided by the LVDS encoder attached to * the DU channel. We need to enable its clock output explicitly if * the LVDS output is disabled. */ if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) && rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) { struct rcar_du_encoder *encoder = rcdu->encoders[RCAR_DU_OUTPUT_LVDS0 + rcrtc->index]; const struct drm_display_mode *mode = &crtc->state->adjusted_mode; rcar_lvds_clk_enable(encoder->base.bridge, mode->clock * 1000); } rcar_du_crtc_start(rcrtc); } static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc, struct drm_crtc_state *old_state) { struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(old_state); struct rcar_du_device *rcdu = rcrtc->dev; rcar_du_crtc_stop(rcrtc); rcar_du_crtc_put(rcrtc); if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) && rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) { struct rcar_du_encoder *encoder = rcdu->encoders[RCAR_DU_OUTPUT_LVDS0 + rcrtc->index]; /* * Disable the LVDS clock output, see * rcar_du_crtc_atomic_enable(). */ rcar_lvds_clk_disable(encoder->base.bridge); } spin_lock_irq(&crtc->dev->event_lock); if (crtc->state->event) { drm_crtc_send_vblank_event(crtc, crtc->state->event); crtc->state->event = NULL; } spin_unlock_irq(&crtc->dev->event_lock); } static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc, struct drm_crtc_state *old_crtc_state) { struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); WARN_ON(!crtc->state->enable); /* * If a mode set is in progress we can be called with the CRTC disabled. * We thus need to first get and setup the CRTC in order to configure * planes. We must *not* put the CRTC in .atomic_flush(), as it must be * kept awake until the .atomic_enable() call that will follow. The get * operation in .atomic_enable() will in that case be a no-op, and the * CRTC will be put later in .atomic_disable(). * * If a mode set is not in progress the CRTC is enabled, and the * following get call will be a no-op. There is thus no need to balance * it in .atomic_flush() either. */ rcar_du_crtc_get(rcrtc); if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE)) rcar_du_vsp_atomic_begin(rcrtc); } static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc, struct drm_crtc_state *old_crtc_state) { struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); struct drm_device *dev = rcrtc->crtc.dev; unsigned long flags; rcar_du_crtc_update_planes(rcrtc); if (crtc->state->event) { WARN_ON(drm_crtc_vblank_get(crtc) != 0); spin_lock_irqsave(&dev->event_lock, flags); rcrtc->event = crtc->state->event; crtc->state->event = NULL; spin_unlock_irqrestore(&dev->event_lock, flags); } if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE)) rcar_du_vsp_atomic_flush(rcrtc); } static enum drm_mode_status rcar_du_crtc_mode_valid(struct drm_crtc *crtc, const struct drm_display_mode *mode) { struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); struct rcar_du_device *rcdu = rcrtc->dev; bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE; unsigned int vbp; if (interlaced && !rcar_du_has(rcdu, RCAR_DU_FEATURE_INTERLACED)) return MODE_NO_INTERLACE; /* * The hardware requires a minimum combined horizontal sync and back * porch of 20 pixels and a minimum vertical back porch of 3 lines. */ if (mode->htotal - mode->hsync_start < 20) return MODE_HBLANK_NARROW; vbp = (mode->vtotal - mode->vsync_end) / (interlaced ? 2 : 1); if (vbp < 3) return MODE_VBLANK_NARROW; return MODE_OK; } static const struct drm_crtc_helper_funcs crtc_helper_funcs = { .atomic_check = rcar_du_crtc_atomic_check, .atomic_begin = rcar_du_crtc_atomic_begin, .atomic_flush = rcar_du_crtc_atomic_flush, .atomic_enable = rcar_du_crtc_atomic_enable, .atomic_disable = rcar_du_crtc_atomic_disable, .mode_valid = rcar_du_crtc_mode_valid, }; static void rcar_du_crtc_crc_init(struct rcar_du_crtc *rcrtc) { struct rcar_du_device *rcdu = rcrtc->dev; const char **sources; unsigned int count; int i = -1; /* CRC available only on Gen3 HW. */ if (rcdu->info->gen < 3) return; /* Reserve 1 for "auto" source. */ count = rcrtc->vsp->num_planes + 1; sources = kmalloc_array(count, sizeof(*sources), GFP_KERNEL); if (!sources) return; sources[0] = kstrdup("auto", GFP_KERNEL); if (!sources[0]) goto error; for (i = 0; i < rcrtc->vsp->num_planes; ++i) { struct drm_plane *plane = &rcrtc->vsp->planes[i].plane; char name[16]; sprintf(name, "plane%u", plane->base.id); sources[i + 1] = kstrdup(name, GFP_KERNEL); if (!sources[i + 1]) goto error; } rcrtc->sources = sources; rcrtc->sources_count = count; return; error: while (i >= 0) { kfree(sources[i]); i--; } kfree(sources); } static void rcar_du_crtc_crc_cleanup(struct rcar_du_crtc *rcrtc) { unsigned int i; if (!rcrtc->sources) return; for (i = 0; i < rcrtc->sources_count; i++) kfree(rcrtc->sources[i]); kfree(rcrtc->sources); rcrtc->sources = NULL; rcrtc->sources_count = 0; } static struct drm_crtc_state * rcar_du_crtc_atomic_duplicate_state(struct drm_crtc *crtc) { struct rcar_du_crtc_state *state; struct rcar_du_crtc_state *copy; if (WARN_ON(!crtc->state)) return NULL; state = to_rcar_crtc_state(crtc->state); copy = kmemdup(state, sizeof(*state), GFP_KERNEL); if (copy == NULL) return NULL; __drm_atomic_helper_crtc_duplicate_state(crtc, ©->state); return ©->state; } static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc *crtc, struct drm_crtc_state *state) { __drm_atomic_helper_crtc_destroy_state(state); kfree(to_rcar_crtc_state(state)); } static void rcar_du_crtc_cleanup(struct drm_crtc *crtc) { struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); rcar_du_crtc_crc_cleanup(rcrtc); return drm_crtc_cleanup(crtc); } static void rcar_du_crtc_reset(struct drm_crtc *crtc) { struct rcar_du_crtc_state *state; if (crtc->state) { rcar_du_crtc_atomic_destroy_state(crtc, crtc->state); crtc->state = NULL; } state = kzalloc(sizeof(*state), GFP_KERNEL); if (state == NULL) return; state->crc.source = VSP1_DU_CRC_NONE; state->crc.index = 0; crtc->state = &state->state; crtc->state->crtc = crtc; } static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc) { struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL); rcar_du_crtc_set(rcrtc, DIER, DIER_VBE); rcrtc->vblank_enable = true; return 0; } static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc) { struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE); rcrtc->vblank_enable = false; } static int rcar_du_crtc_parse_crc_source(struct rcar_du_crtc *rcrtc, const char *source_name, enum vsp1_du_crc_source *source) { unsigned int index; int ret; /* * Parse the source name. Supported values are "plane%u" to compute the * CRC on an input plane (%u is the plane ID), and "auto" to compute the * CRC on the composer (VSP) output. */ if (!source_name) { *source = VSP1_DU_CRC_NONE; return 0; } else if (!strcmp(source_name, "auto")) { *source = VSP1_DU_CRC_OUTPUT; return 0; } else if (strstarts(source_name, "plane")) { unsigned int i; *source = VSP1_DU_CRC_PLANE; ret = kstrtouint(source_name + strlen("plane"), 10, &index); if (ret < 0) return ret; for (i = 0; i < rcrtc->vsp->num_planes; ++i) { if (index == rcrtc->vsp->planes[i].plane.base.id) return i; } } return -EINVAL; } static int rcar_du_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name, size_t *values_cnt) { struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); enum vsp1_du_crc_source source; if (rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source) < 0) { DRM_DEBUG_DRIVER("unknown source %s\n", source_name); return -EINVAL; } *values_cnt = 1; return 0; } static const char *const * rcar_du_crtc_get_crc_sources(struct drm_crtc *crtc, size_t *count) { struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); *count = rcrtc->sources_count; return rcrtc->sources; } static int rcar_du_crtc_set_crc_source(struct drm_crtc *crtc, const char *source_name) { struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); struct drm_modeset_acquire_ctx ctx; struct drm_crtc_state *crtc_state; struct drm_atomic_state *state; enum vsp1_du_crc_source source; unsigned int index; int ret; ret = rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source); if (ret < 0) return ret; index = ret; /* Perform an atomic commit to set the CRC source. */ drm_modeset_acquire_init(&ctx, 0); state = drm_atomic_state_alloc(crtc->dev); if (!state) { ret = -ENOMEM; goto unlock; } state->acquire_ctx = &ctx; retry: crtc_state = drm_atomic_get_crtc_state(state, crtc); if (!IS_ERR(crtc_state)) { struct rcar_du_crtc_state *rcrtc_state; rcrtc_state = to_rcar_crtc_state(crtc_state); rcrtc_state->crc.source = source; rcrtc_state->crc.index = index; ret = drm_atomic_commit(state); } else { ret = PTR_ERR(crtc_state); } if (ret == -EDEADLK) { drm_atomic_state_clear(state); drm_modeset_backoff(&ctx); goto retry; } drm_atomic_state_put(state); unlock: drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); return ret; } static const struct drm_crtc_funcs crtc_funcs_gen2 = { .reset = rcar_du_crtc_reset, .destroy = drm_crtc_cleanup, .set_config = drm_atomic_helper_set_config, .page_flip = drm_atomic_helper_page_flip, .atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state, .atomic_destroy_state = rcar_du_crtc_atomic_destroy_state, .enable_vblank = rcar_du_crtc_enable_vblank, .disable_vblank = rcar_du_crtc_disable_vblank, }; static const struct drm_crtc_funcs crtc_funcs_gen3 = { .reset = rcar_du_crtc_reset, .destroy = rcar_du_crtc_cleanup, .set_config = drm_atomic_helper_set_config, .page_flip = drm_atomic_helper_page_flip, .atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state, .atomic_destroy_state = rcar_du_crtc_atomic_destroy_state, .enable_vblank = rcar_du_crtc_enable_vblank, .disable_vblank = rcar_du_crtc_disable_vblank, .set_crc_source = rcar_du_crtc_set_crc_source, .verify_crc_source = rcar_du_crtc_verify_crc_source, .get_crc_sources = rcar_du_crtc_get_crc_sources, }; /* ----------------------------------------------------------------------------- * Interrupt Handling */ static irqreturn_t rcar_du_crtc_irq(int irq, void *arg) { struct rcar_du_crtc *rcrtc = arg; struct rcar_du_device *rcdu = rcrtc->dev; irqreturn_t ret = IRQ_NONE; u32 status; spin_lock(&rcrtc->vblank_lock); status = rcar_du_crtc_read(rcrtc, DSSR); rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK); if (status & DSSR_VBK) { /* * Wake up the vblank wait if the counter reaches 0. This must * be protected by the vblank_lock to avoid races in * rcar_du_crtc_disable_planes(). */ if (rcrtc->vblank_count) { if (--rcrtc->vblank_count == 0) wake_up(&rcrtc->vblank_wait); } } spin_unlock(&rcrtc->vblank_lock); if (status & DSSR_VBK) { if (rcdu->info->gen < 3) { drm_crtc_handle_vblank(&rcrtc->crtc); rcar_du_crtc_finish_page_flip(rcrtc); } ret = IRQ_HANDLED; } return ret; } /* ----------------------------------------------------------------------------- * Initialization */ int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int swindex, unsigned int hwindex) { static const unsigned int mmio_offsets[] = { DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET }; struct rcar_du_device *rcdu = rgrp->dev; struct platform_device *pdev = to_platform_device(rcdu->dev); struct rcar_du_crtc *rcrtc = &rcdu->crtcs[swindex]; struct drm_crtc *crtc = &rcrtc->crtc; struct drm_plane *primary; unsigned int irqflags; struct clk *clk; char clk_name[9]; char *name; int irq; int ret; /* Get the CRTC clock and the optional external clock. */ if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) { sprintf(clk_name, "du.%u", hwindex); name = clk_name; } else { name = NULL; } rcrtc->clock = devm_clk_get(rcdu->dev, name); if (IS_ERR(rcrtc->clock)) { dev_err(rcdu->dev, "no clock for DU channel %u\n", hwindex); return PTR_ERR(rcrtc->clock); } sprintf(clk_name, "dclkin.%u", hwindex); clk = devm_clk_get(rcdu->dev, clk_name); if (!IS_ERR(clk)) { rcrtc->extclock = clk; } else if (PTR_ERR(clk) == -EPROBE_DEFER) { return -EPROBE_DEFER; } else if (rcdu->info->dpll_mask & BIT(hwindex)) { /* * DU channels that have a display PLL can't use the internal * system clock and thus require an external clock. */ ret = PTR_ERR(clk); dev_err(rcdu->dev, "can't get dclkin.%u: %d\n", hwindex, ret); return ret; } init_waitqueue_head(&rcrtc->flip_wait); init_waitqueue_head(&rcrtc->vblank_wait); spin_lock_init(&rcrtc->vblank_lock); rcrtc->dev = rcdu; rcrtc->group = rgrp; rcrtc->mmio_offset = mmio_offsets[hwindex]; rcrtc->index = hwindex; rcrtc->dsysr = (rcrtc->index % 2 ? 0 : DSYSR_DRES) | DSYSR_TVM_TVSYNC; if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane; else primary = &rgrp->planes[swindex % 2].plane; ret = drm_crtc_init_with_planes(rcdu->ddev, crtc, primary, NULL, rcdu->info->gen <= 2 ? &crtc_funcs_gen2 : &crtc_funcs_gen3, NULL); if (ret < 0) return ret; drm_crtc_helper_add(crtc, &crtc_helper_funcs); /* Start with vertical blanking interrupt reporting disabled. */ drm_crtc_vblank_off(crtc); /* Register the interrupt handler. */ if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) { /* The IRQ's are associated with the CRTC (sw)index. */ irq = platform_get_irq(pdev, swindex); irqflags = 0; } else { irq = platform_get_irq(pdev, 0); irqflags = IRQF_SHARED; } if (irq < 0) { dev_err(rcdu->dev, "no IRQ for CRTC %u\n", swindex); return irq; } ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags, dev_name(rcdu->dev), rcrtc); if (ret < 0) { dev_err(rcdu->dev, "failed to register IRQ for CRTC %u\n", swindex); return ret; } rcar_du_crtc_crc_init(rcrtc); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1