Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dave Airlie | 730 | 80.31% | 2 | 18.18% |
Haixia Shi | 63 | 6.93% | 1 | 9.09% |
Mikulas Patocka | 55 | 6.05% | 3 | 27.27% |
Chris Wilson | 48 | 5.28% | 1 | 9.09% |
Jonathan Neuschäfer | 6 | 0.66% | 1 | 9.09% |
Sachin Kamat | 4 | 0.44% | 1 | 9.09% |
Thomas Gleixner | 2 | 0.22% | 1 | 9.09% |
David Howells | 1 | 0.11% | 1 | 9.09% |
Total | 909 | 11 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012 Red Hat * based in parts on udlfb.c: * Copyright (C) 2009 Roberto De Ioris <roberto@unbit.it> * Copyright (C) 2009 Jaya Kumar <jayakumar.lkml@gmail.com> * Copyright (C) 2009 Bernie Thompson <bernie@plugable.com> */ #include <linux/module.h> #include <linux/slab.h> #include <linux/fb.h> #include <asm/unaligned.h> #include <drm/drmP.h> #include "udl_drv.h" #define MAX_CMD_PIXELS 255 #define RLX_HEADER_BYTES 7 #define MIN_RLX_PIX_BYTES 4 #define MIN_RLX_CMD_BYTES (RLX_HEADER_BYTES + MIN_RLX_PIX_BYTES) #define RLE_HEADER_BYTES 6 #define MIN_RLE_PIX_BYTES 3 #define MIN_RLE_CMD_BYTES (RLE_HEADER_BYTES + MIN_RLE_PIX_BYTES) #define RAW_HEADER_BYTES 6 #define MIN_RAW_PIX_BYTES 2 #define MIN_RAW_CMD_BYTES (RAW_HEADER_BYTES + MIN_RAW_PIX_BYTES) /* * Trims identical data from front and back of line * Sets new front buffer address and width * And returns byte count of identical pixels * Assumes CPU natural alignment (unsigned long) * for back and front buffer ptrs and width */ #if 0 static int udl_trim_hline(const u8 *bback, const u8 **bfront, int *width_bytes) { int j, k; const unsigned long *back = (const unsigned long *) bback; const unsigned long *front = (const unsigned long *) *bfront; const int width = *width_bytes / sizeof(unsigned long); int identical = width; int start = width; int end = width; for (j = 0; j < width; j++) { if (back[j] != front[j]) { start = j; break; } } for (k = width - 1; k > j; k--) { if (back[k] != front[k]) { end = k+1; break; } } identical = start + (width - end); *bfront = (u8 *) &front[start]; *width_bytes = (end - start) * sizeof(unsigned long); return identical * sizeof(unsigned long); } #endif static inline u16 pixel32_to_be16(const uint32_t pixel) { return (((pixel >> 3) & 0x001f) | ((pixel >> 5) & 0x07e0) | ((pixel >> 8) & 0xf800)); } static inline u16 get_pixel_val16(const uint8_t *pixel, int log_bpp) { u16 pixel_val16; if (log_bpp == 1) pixel_val16 = *(const uint16_t *)pixel; else pixel_val16 = pixel32_to_be16(*(const uint32_t *)pixel); return pixel_val16; } /* * Render a command stream for an encoded horizontal line segment of pixels. * * A command buffer holds several commands. * It always begins with a fresh command header * (the protocol doesn't require this, but we enforce it to allow * multiple buffers to be potentially encoded and sent in parallel). * A single command encodes one contiguous horizontal line of pixels * * The function relies on the client to do all allocation, so that * rendering can be done directly to output buffers (e.g. USB URBs). * The function fills the supplied command buffer, providing information * on where it left off, so the client may call in again with additional * buffers if the line will take several buffers to complete. * * A single command can transmit a maximum of 256 pixels, * regardless of the compression ratio (protocol design limit). * To the hardware, 0 for a size byte means 256 * * Rather than 256 pixel commands which are either rl or raw encoded, * the rlx command simply assumes alternating raw and rl spans within one cmd. * This has a slightly larger header overhead, but produces more even results. * It also processes all data (read and write) in a single pass. * Performance benchmarks of common cases show it having just slightly better * compression than 256 pixel raw or rle commands, with similar CPU consumpion. * But for very rl friendly data, will compress not quite as well. */ static void udl_compress_hline16( const u8 **pixel_start_ptr, const u8 *const pixel_end, uint32_t *device_address_ptr, uint8_t **command_buffer_ptr, const uint8_t *const cmd_buffer_end, int log_bpp) { const int bpp = 1 << log_bpp; const u8 *pixel = *pixel_start_ptr; uint32_t dev_addr = *device_address_ptr; uint8_t *cmd = *command_buffer_ptr; while ((pixel_end > pixel) && (cmd_buffer_end - MIN_RLX_CMD_BYTES > cmd)) { uint8_t *raw_pixels_count_byte = NULL; uint8_t *cmd_pixels_count_byte = NULL; const u8 *raw_pixel_start = NULL; const u8 *cmd_pixel_start, *cmd_pixel_end = NULL; uint16_t pixel_val16; *cmd++ = 0xaf; *cmd++ = 0x6b; *cmd++ = (uint8_t) ((dev_addr >> 16) & 0xFF); *cmd++ = (uint8_t) ((dev_addr >> 8) & 0xFF); *cmd++ = (uint8_t) ((dev_addr) & 0xFF); cmd_pixels_count_byte = cmd++; /* we'll know this later */ cmd_pixel_start = pixel; raw_pixels_count_byte = cmd++; /* we'll know this later */ raw_pixel_start = pixel; cmd_pixel_end = pixel + (min3(MAX_CMD_PIXELS + 1UL, (unsigned long)(pixel_end - pixel) >> log_bpp, (unsigned long)(cmd_buffer_end - 1 - cmd) / 2) << log_bpp); pixel_val16 = get_pixel_val16(pixel, log_bpp); while (pixel < cmd_pixel_end) { const u8 *const start = pixel; const uint16_t repeating_pixel_val16 = pixel_val16; put_unaligned_be16(pixel_val16, cmd); cmd += 2; pixel += bpp; while (pixel < cmd_pixel_end) { pixel_val16 = get_pixel_val16(pixel, log_bpp); if (pixel_val16 != repeating_pixel_val16) break; pixel += bpp; } if (unlikely(pixel > start + bpp)) { /* go back and fill in raw pixel count */ *raw_pixels_count_byte = (((start - raw_pixel_start) >> log_bpp) + 1) & 0xFF; /* immediately after raw data is repeat byte */ *cmd++ = (((pixel - start) >> log_bpp) - 1) & 0xFF; /* Then start another raw pixel span */ raw_pixel_start = pixel; raw_pixels_count_byte = cmd++; } } if (pixel > raw_pixel_start) { /* finalize last RAW span */ *raw_pixels_count_byte = ((pixel - raw_pixel_start) >> log_bpp) & 0xFF; } else { /* undo unused byte */ cmd--; } *cmd_pixels_count_byte = ((pixel - cmd_pixel_start) >> log_bpp) & 0xFF; dev_addr += ((pixel - cmd_pixel_start) >> log_bpp) * 2; } if (cmd_buffer_end <= MIN_RLX_CMD_BYTES + cmd) { /* Fill leftover bytes with no-ops */ if (cmd_buffer_end > cmd) memset(cmd, 0xAF, cmd_buffer_end - cmd); cmd = (uint8_t *) cmd_buffer_end; } *command_buffer_ptr = cmd; *pixel_start_ptr = pixel; *device_address_ptr = dev_addr; return; } /* * There are 3 copies of every pixel: The front buffer that the fbdev * client renders to, the actual framebuffer across the USB bus in hardware * (that we can only write to, slowly, and can never read), and (optionally) * our shadow copy that tracks what's been sent to that hardware buffer. */ int udl_render_hline(struct drm_device *dev, int log_bpp, struct urb **urb_ptr, const char *front, char **urb_buf_ptr, u32 byte_offset, u32 device_byte_offset, u32 byte_width, int *ident_ptr, int *sent_ptr) { const u8 *line_start, *line_end, *next_pixel; u32 base16 = 0 + (device_byte_offset >> log_bpp) * 2; struct urb *urb = *urb_ptr; u8 *cmd = *urb_buf_ptr; u8 *cmd_end = (u8 *) urb->transfer_buffer + urb->transfer_buffer_length; BUG_ON(!(log_bpp == 1 || log_bpp == 2)); line_start = (u8 *) (front + byte_offset); next_pixel = line_start; line_end = next_pixel + byte_width; while (next_pixel < line_end) { udl_compress_hline16(&next_pixel, line_end, &base16, (u8 **) &cmd, (u8 *) cmd_end, log_bpp); if (cmd >= cmd_end) { int len = cmd - (u8 *) urb->transfer_buffer; if (udl_submit_urb(dev, urb, len)) return 1; /* lost pixels is set */ *sent_ptr += len; urb = udl_get_urb(dev); if (!urb) return 1; /* lost_pixels is set */ *urb_ptr = urb; cmd = urb->transfer_buffer; cmd_end = &cmd[urb->transfer_buffer_length]; } } *urb_buf_ptr = cmd; return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1