Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Eric Anholt | 6794 | 99.43% | 14 | 73.68% |
Boris Brezillon | 19 | 0.28% | 1 | 5.26% |
Masahiro Yamada | 10 | 0.15% | 1 | 5.26% |
Daniel Vetter | 5 | 0.07% | 1 | 5.26% |
Stephen Boyd | 3 | 0.04% | 1 | 5.26% |
Thomas Gleixner | 2 | 0.03% | 1 | 5.26% |
Total | 6833 | 19 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2016 Broadcom */ /** * DOC: VC4 DSI0/DSI1 module * * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI * controller. * * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector, * while the compute module brings both DSI0 and DSI1 out. * * This driver has been tested for DSI1 video-mode display only * currently, with most of the information necessary for DSI0 * hopefully present. */ #include <drm/drm_atomic_helper.h> #include <drm/drm_edid.h> #include <drm/drm_mipi_dsi.h> #include <drm/drm_of.h> #include <drm/drm_panel.h> #include <drm/drm_probe_helper.h> #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/completion.h> #include <linux/component.h> #include <linux/dmaengine.h> #include <linux/i2c.h> #include <linux/io.h> #include <linux/of_address.h> #include <linux/of_platform.h> #include <linux/pm_runtime.h> #include "vc4_drv.h" #include "vc4_regs.h" #define DSI_CMD_FIFO_DEPTH 16 #define DSI_PIX_FIFO_DEPTH 256 #define DSI_PIX_FIFO_WIDTH 4 #define DSI0_CTRL 0x00 /* Command packet control. */ #define DSI0_TXPKT1C 0x04 /* AKA PKTC */ #define DSI1_TXPKT1C 0x04 # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24) # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24 # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10) # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10 # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8) # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */ # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0 /* Primary display where cmdfifo provides part of the payload and * pixelvalve the rest. */ # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1 /* Secondary display where cmdfifo provides part of the payload and * pixfifo the rest. */ # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2 # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6) # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6 # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4) # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4 /* Command only. Uses TXPKT1H and DISPLAY_NO */ # define DSI_TXPKT1C_CMD_CTRL_TX 0 /* Command with BTA for either ack or read data. */ # define DSI_TXPKT1C_CMD_CTRL_RX 1 /* Trigger according to TRIG_CMD */ # define DSI_TXPKT1C_CMD_CTRL_TRIG 2 /* BTA alone for getting error status after a command, or a TE trigger * without a previous command. */ # define DSI_TXPKT1C_CMD_CTRL_BTA 3 # define DSI_TXPKT1C_CMD_MODE_LP BIT(3) # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2) # define DSI_TXPKT1C_CMD_TE_EN BIT(1) # define DSI_TXPKT1C_CMD_EN BIT(0) /* Command packet header. */ #define DSI0_TXPKT1H 0x08 /* AKA PKTH */ #define DSI1_TXPKT1H 0x08 # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24) # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24 # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) # define DSI_TXPKT1H_BC_PARAM_SHIFT 8 # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0) # define DSI_TXPKT1H_BC_DT_SHIFT 0 #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */ #define DSI1_RXPKT1H 0x14 # define DSI_RXPKT1H_CRC_ERR BIT(31) # define DSI_RXPKT1H_DET_ERR BIT(30) # define DSI_RXPKT1H_ECC_ERR BIT(29) # define DSI_RXPKT1H_COR_ERR BIT(28) # define DSI_RXPKT1H_INCOMP_PKT BIT(25) # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24) /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */ # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) # define DSI_RXPKT1H_BC_PARAM_SHIFT 8 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */ # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16) # define DSI_RXPKT1H_SHORT_1_SHIFT 16 # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8) # define DSI_RXPKT1H_SHORT_0_SHIFT 8 # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0) # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0 #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */ #define DSI1_RXPKT2H 0x18 # define DSI_RXPKT1H_DET_ERR BIT(30) # define DSI_RXPKT1H_ECC_ERR BIT(29) # define DSI_RXPKT1H_COR_ERR BIT(28) # define DSI_RXPKT1H_INCOMP_PKT BIT(25) # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) # define DSI_RXPKT1H_BC_PARAM_SHIFT 8 # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0) # define DSI_RXPKT1H_DT_SHIFT 0 #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */ #define DSI1_TXPKT_CMD_FIFO 0x1c #define DSI0_DISP0_CTRL 0x18 # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13) # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13 # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11) # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11 # define DSI_DISP0_LP_STOP_DISABLE 0 # define DSI_DISP0_LP_STOP_PERLINE 1 # define DSI_DISP0_LP_STOP_PERFRAME 2 /* Transmit RGB pixels and null packets only during HACTIVE, instead * of going to LP-STOP. */ # define DSI_DISP_HACTIVE_NULL BIT(10) /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */ # define DSI_DISP_VBLP_CTRL BIT(9) /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */ # define DSI_DISP_HFP_CTRL BIT(8) /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */ # define DSI_DISP_HBP_CTRL BIT(7) # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5) # define DSI_DISP0_CHANNEL_SHIFT 5 /* Enables end events for HSYNC/VSYNC, not just start events. */ # define DSI_DISP0_ST_END BIT(4) # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2) # define DSI_DISP0_PFORMAT_SHIFT 2 # define DSI_PFORMAT_RGB565 0 # define DSI_PFORMAT_RGB666_PACKED 1 # define DSI_PFORMAT_RGB666 2 # define DSI_PFORMAT_RGB888 3 /* Default is VIDEO mode. */ # define DSI_DISP0_COMMAND_MODE BIT(1) # define DSI_DISP0_ENABLE BIT(0) #define DSI0_DISP1_CTRL 0x1c #define DSI1_DISP1_CTRL 0x2c /* Format of the data written to TXPKT_PIX_FIFO. */ # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1) # define DSI_DISP1_PFORMAT_SHIFT 1 # define DSI_DISP1_PFORMAT_16BIT 0 # define DSI_DISP1_PFORMAT_24BIT 1 # define DSI_DISP1_PFORMAT_32BIT_LE 2 # define DSI_DISP1_PFORMAT_32BIT_BE 3 /* DISP1 is always command mode. */ # define DSI_DISP1_ENABLE BIT(0) #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */ #define DSI0_INT_STAT 0x24 #define DSI0_INT_EN 0x28 # define DSI1_INT_PHY_D3_ULPS BIT(30) # define DSI1_INT_PHY_D3_STOP BIT(29) # define DSI1_INT_PHY_D2_ULPS BIT(28) # define DSI1_INT_PHY_D2_STOP BIT(27) # define DSI1_INT_PHY_D1_ULPS BIT(26) # define DSI1_INT_PHY_D1_STOP BIT(25) # define DSI1_INT_PHY_D0_ULPS BIT(24) # define DSI1_INT_PHY_D0_STOP BIT(23) # define DSI1_INT_FIFO_ERR BIT(22) # define DSI1_INT_PHY_DIR_RTF BIT(21) # define DSI1_INT_PHY_RXLPDT BIT(20) # define DSI1_INT_PHY_RXTRIG BIT(19) # define DSI1_INT_PHY_D0_LPDT BIT(18) # define DSI1_INT_PHY_DIR_FTR BIT(17) /* Signaled when the clock lane enters the given state. */ # define DSI1_INT_PHY_CLOCK_ULPS BIT(16) # define DSI1_INT_PHY_CLOCK_HS BIT(15) # define DSI1_INT_PHY_CLOCK_STOP BIT(14) /* Signaled on timeouts */ # define DSI1_INT_PR_TO BIT(13) # define DSI1_INT_TA_TO BIT(12) # define DSI1_INT_LPRX_TO BIT(11) # define DSI1_INT_HSTX_TO BIT(10) /* Contention on a line when trying to drive the line low */ # define DSI1_INT_ERR_CONT_LP1 BIT(9) # define DSI1_INT_ERR_CONT_LP0 BIT(8) /* Control error: incorrect line state sequence on data lane 0. */ # define DSI1_INT_ERR_CONTROL BIT(7) /* LPDT synchronization error (bits received not a multiple of 8. */ # define DSI1_INT_ERR_SYNC_ESC BIT(6) /* Signaled after receiving an error packet from the display in * response to a read. */ # define DSI1_INT_RXPKT2 BIT(5) /* Signaled after receiving a packet. The header and optional short * response will be in RXPKT1H, and a long response will be in the * RXPKT_FIFO. */ # define DSI1_INT_RXPKT1 BIT(4) # define DSI1_INT_TXPKT2_DONE BIT(3) # define DSI1_INT_TXPKT2_END BIT(2) /* Signaled after all repeats of TXPKT1 are transferred. */ # define DSI1_INT_TXPKT1_DONE BIT(1) /* Signaled after each TXPKT1 repeat is scheduled. */ # define DSI1_INT_TXPKT1_END BIT(0) #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \ DSI1_INT_ERR_CONTROL | \ DSI1_INT_ERR_CONT_LP0 | \ DSI1_INT_ERR_CONT_LP1 | \ DSI1_INT_HSTX_TO | \ DSI1_INT_LPRX_TO | \ DSI1_INT_TA_TO | \ DSI1_INT_PR_TO) #define DSI0_STAT 0x2c #define DSI0_HSTX_TO_CNT 0x30 #define DSI0_LPRX_TO_CNT 0x34 #define DSI0_TA_TO_CNT 0x38 #define DSI0_PR_TO_CNT 0x3c #define DSI0_PHYC 0x40 # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20) # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20 # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18) # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12) # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12 # define DSI1_PHYC_CLANE_ULPS BIT(17) # define DSI1_PHYC_CLANE_ENABLE BIT(16) # define DSI_PHYC_DLANE3_ULPS BIT(13) # define DSI_PHYC_DLANE3_ENABLE BIT(12) # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10) # define DSI0_PHYC_CLANE_ULPS BIT(9) # define DSI_PHYC_DLANE2_ULPS BIT(9) # define DSI0_PHYC_CLANE_ENABLE BIT(8) # define DSI_PHYC_DLANE2_ENABLE BIT(8) # define DSI_PHYC_DLANE1_ULPS BIT(5) # define DSI_PHYC_DLANE1_ENABLE BIT(4) # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2) # define DSI_PHYC_DLANE0_ULPS BIT(1) # define DSI_PHYC_DLANE0_ENABLE BIT(0) #define DSI0_HS_CLT0 0x44 #define DSI0_HS_CLT1 0x48 #define DSI0_HS_CLT2 0x4c #define DSI0_HS_DLT3 0x50 #define DSI0_HS_DLT4 0x54 #define DSI0_HS_DLT5 0x58 #define DSI0_HS_DLT6 0x5c #define DSI0_HS_DLT7 0x60 #define DSI0_PHY_AFEC0 0x64 # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26) # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25) # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24) # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29) # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26) # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23) # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20) # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17) # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20) # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16) # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12) # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12 # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16) # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15) # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14) # define DSI1_PHY_AFEC0_RESET BIT(13) # define DSI1_PHY_AFEC0_PD BIT(12) # define DSI0_PHY_AFEC0_RESET BIT(11) # define DSI1_PHY_AFEC0_PD_BG BIT(11) # define DSI0_PHY_AFEC0_PD BIT(10) # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10) # define DSI0_PHY_AFEC0_PD_BG BIT(9) # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9) # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8) # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8) # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4) # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4 # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0) # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0 #define DSI0_PHY_AFEC1 0x68 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8) # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4) # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0) # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0 #define DSI0_TST_SEL 0x6c #define DSI0_TST_MON 0x70 #define DSI0_ID 0x74 # define DSI_ID_VALUE 0x00647369 #define DSI1_CTRL 0x00 # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14) # define DSI_CTRL_HS_CLKC_SHIFT 14 # define DSI_CTRL_HS_CLKC_BYTE 0 # define DSI_CTRL_HS_CLKC_DDR2 1 # define DSI_CTRL_HS_CLKC_DDR 2 # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13) # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12) # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11) # define DSI_CTRL_SOFT_RESET_CFG BIT(10) # define DSI_CTRL_CAL_BYTE BIT(9) # define DSI_CTRL_INV_BYTE BIT(8) # define DSI_CTRL_CLR_LDF BIT(7) # define DSI0_CTRL_CLR_PBCF BIT(6) # define DSI1_CTRL_CLR_RXF BIT(6) # define DSI0_CTRL_CLR_CPBCF BIT(5) # define DSI1_CTRL_CLR_PDF BIT(5) # define DSI0_CTRL_CLR_PDF BIT(4) # define DSI1_CTRL_CLR_CDF BIT(4) # define DSI0_CTRL_CLR_CDF BIT(3) # define DSI0_CTRL_CTRL2 BIT(2) # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2) # define DSI0_CTRL_CTRL1 BIT(1) # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1) # define DSI0_CTRL_CTRL0 BIT(0) # define DSI1_CTRL_EN BIT(0) # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ DSI0_CTRL_CLR_PBCF | \ DSI0_CTRL_CLR_CPBCF | \ DSI0_CTRL_CLR_PDF | \ DSI0_CTRL_CLR_CDF) # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ DSI1_CTRL_CLR_RXF | \ DSI1_CTRL_CLR_PDF | \ DSI1_CTRL_CLR_CDF) #define DSI1_TXPKT2C 0x0c #define DSI1_TXPKT2H 0x10 #define DSI1_TXPKT_PIX_FIFO 0x20 #define DSI1_RXPKT_FIFO 0x24 #define DSI1_DISP0_CTRL 0x28 #define DSI1_INT_STAT 0x30 #define DSI1_INT_EN 0x34 /* State reporting bits. These mostly behave like INT_STAT, where * writing a 1 clears the bit. */ #define DSI1_STAT 0x38 # define DSI1_STAT_PHY_D3_ULPS BIT(31) # define DSI1_STAT_PHY_D3_STOP BIT(30) # define DSI1_STAT_PHY_D2_ULPS BIT(29) # define DSI1_STAT_PHY_D2_STOP BIT(28) # define DSI1_STAT_PHY_D1_ULPS BIT(27) # define DSI1_STAT_PHY_D1_STOP BIT(26) # define DSI1_STAT_PHY_D0_ULPS BIT(25) # define DSI1_STAT_PHY_D0_STOP BIT(24) # define DSI1_STAT_FIFO_ERR BIT(23) # define DSI1_STAT_PHY_RXLPDT BIT(22) # define DSI1_STAT_PHY_RXTRIG BIT(21) # define DSI1_STAT_PHY_D0_LPDT BIT(20) /* Set when in forward direction */ # define DSI1_STAT_PHY_DIR BIT(19) # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18) # define DSI1_STAT_PHY_CLOCK_HS BIT(17) # define DSI1_STAT_PHY_CLOCK_STOP BIT(16) # define DSI1_STAT_PR_TO BIT(15) # define DSI1_STAT_TA_TO BIT(14) # define DSI1_STAT_LPRX_TO BIT(13) # define DSI1_STAT_HSTX_TO BIT(12) # define DSI1_STAT_ERR_CONT_LP1 BIT(11) # define DSI1_STAT_ERR_CONT_LP0 BIT(10) # define DSI1_STAT_ERR_CONTROL BIT(9) # define DSI1_STAT_ERR_SYNC_ESC BIT(8) # define DSI1_STAT_RXPKT2 BIT(7) # define DSI1_STAT_RXPKT1 BIT(6) # define DSI1_STAT_TXPKT2_BUSY BIT(5) # define DSI1_STAT_TXPKT2_DONE BIT(4) # define DSI1_STAT_TXPKT2_END BIT(3) # define DSI1_STAT_TXPKT1_BUSY BIT(2) # define DSI1_STAT_TXPKT1_DONE BIT(1) # define DSI1_STAT_TXPKT1_END BIT(0) #define DSI1_HSTX_TO_CNT 0x3c #define DSI1_LPRX_TO_CNT 0x40 #define DSI1_TA_TO_CNT 0x44 #define DSI1_PR_TO_CNT 0x48 #define DSI1_PHYC 0x4c #define DSI1_HS_CLT0 0x50 # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18) # define DSI_HS_CLT0_CZERO_SHIFT 18 # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9) # define DSI_HS_CLT0_CPRE_SHIFT 9 # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0) # define DSI_HS_CLT0_CPREP_SHIFT 0 #define DSI1_HS_CLT1 0x54 # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9) # define DSI_HS_CLT1_CTRAIL_SHIFT 9 # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0) # define DSI_HS_CLT1_CPOST_SHIFT 0 #define DSI1_HS_CLT2 0x58 # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0) # define DSI_HS_CLT2_WUP_SHIFT 0 #define DSI1_HS_DLT3 0x5c # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18) # define DSI_HS_DLT3_EXIT_SHIFT 18 # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9) # define DSI_HS_DLT3_ZERO_SHIFT 9 # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0) # define DSI_HS_DLT3_PRE_SHIFT 0 #define DSI1_HS_DLT4 0x60 # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18) # define DSI_HS_DLT4_ANLAT_SHIFT 18 # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9) # define DSI_HS_DLT4_TRAIL_SHIFT 9 # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0) # define DSI_HS_DLT4_LPX_SHIFT 0 #define DSI1_HS_DLT5 0x64 # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0) # define DSI_HS_DLT5_INIT_SHIFT 0 #define DSI1_HS_DLT6 0x68 # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24) # define DSI_HS_DLT6_TA_GET_SHIFT 24 # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16) # define DSI_HS_DLT6_TA_SURE_SHIFT 16 # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8) # define DSI_HS_DLT6_TA_GO_SHIFT 8 # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0) # define DSI_HS_DLT6_LP_LPX_SHIFT 0 #define DSI1_HS_DLT7 0x6c # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0) # define DSI_HS_DLT7_LP_WUP_SHIFT 0 #define DSI1_PHY_AFEC0 0x70 #define DSI1_PHY_AFEC1 0x74 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16) # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12) # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8) # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4) # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0) # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0 #define DSI1_TST_SEL 0x78 #define DSI1_TST_MON 0x7c #define DSI1_PHY_TST1 0x80 #define DSI1_PHY_TST2 0x84 #define DSI1_PHY_FIFO_STAT 0x88 /* Actually, all registers in the range that aren't otherwise claimed * will return the ID. */ #define DSI1_ID 0x8c /* General DSI hardware state. */ struct vc4_dsi { struct platform_device *pdev; struct mipi_dsi_host dsi_host; struct drm_encoder *encoder; struct drm_bridge *bridge; void __iomem *regs; struct dma_chan *reg_dma_chan; dma_addr_t reg_dma_paddr; u32 *reg_dma_mem; dma_addr_t reg_paddr; /* Whether we're on bcm2835's DSI0 or DSI1. */ int port; /* DSI channel for the panel we're connected to. */ u32 channel; u32 lanes; u32 format; u32 divider; u32 mode_flags; /* Input clock from CPRMAN to the digital PHY, for the DSI * escape clock. */ struct clk *escape_clock; /* Input clock to the analog PHY, used to generate the DSI bit * clock. */ struct clk *pll_phy_clock; /* HS Clocks generated within the DSI analog PHY. */ struct clk_fixed_factor phy_clocks[3]; struct clk_hw_onecell_data *clk_onecell; /* Pixel clock output to the pixelvalve, generated from the HS * clock. */ struct clk *pixel_clock; struct completion xfer_completion; int xfer_result; struct debugfs_regset32 regset; }; #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host) static inline void dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val) { struct dma_chan *chan = dsi->reg_dma_chan; struct dma_async_tx_descriptor *tx; dma_cookie_t cookie; int ret; /* DSI0 should be able to write normally. */ if (!chan) { writel(val, dsi->regs + offset); return; } *dsi->reg_dma_mem = val; tx = chan->device->device_prep_dma_memcpy(chan, dsi->reg_paddr + offset, dsi->reg_dma_paddr, 4, 0); if (!tx) { DRM_ERROR("Failed to set up DMA register write\n"); return; } cookie = tx->tx_submit(tx); ret = dma_submit_error(cookie); if (ret) { DRM_ERROR("Failed to submit DMA: %d\n", ret); return; } ret = dma_sync_wait(chan, cookie); if (ret) DRM_ERROR("Failed to wait for DMA: %d\n", ret); } #define DSI_READ(offset) readl(dsi->regs + (offset)) #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val) #define DSI_PORT_READ(offset) \ DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset) #define DSI_PORT_WRITE(offset, val) \ DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val) #define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit) /* VC4 DSI encoder KMS struct */ struct vc4_dsi_encoder { struct vc4_encoder base; struct vc4_dsi *dsi; }; static inline struct vc4_dsi_encoder * to_vc4_dsi_encoder(struct drm_encoder *encoder) { return container_of(encoder, struct vc4_dsi_encoder, base.base); } static const struct debugfs_reg32 dsi0_regs[] = { VC4_REG32(DSI0_CTRL), VC4_REG32(DSI0_STAT), VC4_REG32(DSI0_HSTX_TO_CNT), VC4_REG32(DSI0_LPRX_TO_CNT), VC4_REG32(DSI0_TA_TO_CNT), VC4_REG32(DSI0_PR_TO_CNT), VC4_REG32(DSI0_DISP0_CTRL), VC4_REG32(DSI0_DISP1_CTRL), VC4_REG32(DSI0_INT_STAT), VC4_REG32(DSI0_INT_EN), VC4_REG32(DSI0_PHYC), VC4_REG32(DSI0_HS_CLT0), VC4_REG32(DSI0_HS_CLT1), VC4_REG32(DSI0_HS_CLT2), VC4_REG32(DSI0_HS_DLT3), VC4_REG32(DSI0_HS_DLT4), VC4_REG32(DSI0_HS_DLT5), VC4_REG32(DSI0_HS_DLT6), VC4_REG32(DSI0_HS_DLT7), VC4_REG32(DSI0_PHY_AFEC0), VC4_REG32(DSI0_PHY_AFEC1), VC4_REG32(DSI0_ID), }; static const struct debugfs_reg32 dsi1_regs[] = { VC4_REG32(DSI1_CTRL), VC4_REG32(DSI1_STAT), VC4_REG32(DSI1_HSTX_TO_CNT), VC4_REG32(DSI1_LPRX_TO_CNT), VC4_REG32(DSI1_TA_TO_CNT), VC4_REG32(DSI1_PR_TO_CNT), VC4_REG32(DSI1_DISP0_CTRL), VC4_REG32(DSI1_DISP1_CTRL), VC4_REG32(DSI1_INT_STAT), VC4_REG32(DSI1_INT_EN), VC4_REG32(DSI1_PHYC), VC4_REG32(DSI1_HS_CLT0), VC4_REG32(DSI1_HS_CLT1), VC4_REG32(DSI1_HS_CLT2), VC4_REG32(DSI1_HS_DLT3), VC4_REG32(DSI1_HS_DLT4), VC4_REG32(DSI1_HS_DLT5), VC4_REG32(DSI1_HS_DLT6), VC4_REG32(DSI1_HS_DLT7), VC4_REG32(DSI1_PHY_AFEC0), VC4_REG32(DSI1_PHY_AFEC1), VC4_REG32(DSI1_ID), }; static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder) { drm_encoder_cleanup(encoder); } static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = { .destroy = vc4_dsi_encoder_destroy, }; static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch) { u32 afec0 = DSI_PORT_READ(PHY_AFEC0); if (latch) afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); else afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); DSI_PORT_WRITE(PHY_AFEC0, afec0); } /* Enters or exits Ultra Low Power State. */ static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps) { bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS; u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) | DSI_PHYC_DLANE0_ULPS | (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) | (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) | (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0)); u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) | DSI1_STAT_PHY_D0_ULPS | (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) | (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) | (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0)); u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) | DSI1_STAT_PHY_D0_STOP | (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) | (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) | (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0)); int ret; bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) & DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS)); if (ulps == ulps_currently_enabled) return; DSI_PORT_WRITE(STAT, stat_ulps); DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps); ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200); if (ret) { dev_warn(&dsi->pdev->dev, "Timeout waiting for DSI ULPS entry: STAT 0x%08x", DSI_PORT_READ(STAT)); DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); vc4_dsi_latch_ulps(dsi, false); return; } /* The DSI module can't be disabled while the module is * generating ULPS state. So, to be able to disable the * module, we have the AFE latch the ULPS state and continue * on to having the module enter STOP. */ vc4_dsi_latch_ulps(dsi, ulps); DSI_PORT_WRITE(STAT, stat_stop); DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200); if (ret) { dev_warn(&dsi->pdev->dev, "Timeout waiting for DSI STOP entry: STAT 0x%08x", DSI_PORT_READ(STAT)); DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); return; } } static u32 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui) { /* The HS timings have to be rounded up to a multiple of 8 * because we're using the byte clock. */ return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8); } /* ESC always runs at 100Mhz. */ #define ESC_TIME_NS 10 static u32 dsi_esc_timing(u32 ns) { return DIV_ROUND_UP(ns, ESC_TIME_NS); } static void vc4_dsi_encoder_disable(struct drm_encoder *encoder) { struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); struct vc4_dsi *dsi = vc4_encoder->dsi; struct device *dev = &dsi->pdev->dev; drm_bridge_disable(dsi->bridge); vc4_dsi_ulps(dsi, true); drm_bridge_post_disable(dsi->bridge); clk_disable_unprepare(dsi->pll_phy_clock); clk_disable_unprepare(dsi->escape_clock); clk_disable_unprepare(dsi->pixel_clock); pm_runtime_put(dev); } /* Extends the mode's blank intervals to handle BCM2835's integer-only * DSI PLL divider. * * On 2835, PLLD is set to 2Ghz, and may not be changed by the display * driver since most peripherals are hanging off of the PLLD_PER * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore * the pixel clock), only has an integer divider off of DSI. * * To get our panel mode to refresh at the expected 60Hz, we need to * extend the horizontal blank time. This means we drive a * higher-than-expected clock rate to the panel, but that's what the * firmware does too. */ static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); struct vc4_dsi *dsi = vc4_encoder->dsi; struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock); unsigned long parent_rate = clk_get_rate(phy_parent); unsigned long pixel_clock_hz = mode->clock * 1000; unsigned long pll_clock = pixel_clock_hz * dsi->divider; int divider; /* Find what divider gets us a faster clock than the requested * pixel clock. */ for (divider = 1; divider < 8; divider++) { if (parent_rate / divider < pll_clock) { divider--; break; } } /* Now that we've picked a PLL divider, calculate back to its * pixel clock. */ pll_clock = parent_rate / divider; pixel_clock_hz = pll_clock / dsi->divider; adjusted_mode->clock = pixel_clock_hz / 1000; /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */ adjusted_mode->htotal = adjusted_mode->clock * mode->htotal / mode->clock; adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal; adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal; return true; } static void vc4_dsi_encoder_enable(struct drm_encoder *encoder) { struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode; struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); struct vc4_dsi *dsi = vc4_encoder->dsi; struct device *dev = &dsi->pdev->dev; bool debug_dump_regs = false; unsigned long hs_clock; u32 ui_ns; /* Minimum LP state duration in escape clock cycles. */ u32 lpx = dsi_esc_timing(60); unsigned long pixel_clock_hz = mode->clock * 1000; unsigned long dsip_clock; unsigned long phy_clock; int ret; ret = pm_runtime_get_sync(dev); if (ret) { DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port); return; } if (debug_dump_regs) { struct drm_printer p = drm_info_printer(&dsi->pdev->dev); dev_info(&dsi->pdev->dev, "DSI regs before:\n"); drm_print_regset32(&p, &dsi->regset); } /* Round up the clk_set_rate() request slightly, since * PLLD_DSI1 is an integer divider and its rate selection will * never round up. */ phy_clock = (pixel_clock_hz + 1000) * dsi->divider; ret = clk_set_rate(dsi->pll_phy_clock, phy_clock); if (ret) { dev_err(&dsi->pdev->dev, "Failed to set phy clock to %ld: %d\n", phy_clock, ret); } /* Reset the DSI and all its fifos. */ DSI_PORT_WRITE(CTRL, DSI_CTRL_SOFT_RESET_CFG | DSI_PORT_BIT(CTRL_RESET_FIFOS)); DSI_PORT_WRITE(CTRL, DSI_CTRL_HSDT_EOT_DISABLE | DSI_CTRL_RX_LPDT_EOT_DISABLE); /* Clear all stat bits so we see what has happened during enable. */ DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT)); /* Set AFE CTR00/CTR1 to release powerdown of analog. */ if (dsi->port == 0) { u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ)); if (dsi->lanes < 2) afec0 |= DSI0_PHY_AFEC0_PD_DLANE1; if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) afec0 |= DSI0_PHY_AFEC0_RESET; DSI_PORT_WRITE(PHY_AFEC0, afec0); DSI_PORT_WRITE(PHY_AFEC1, VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) | VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) | VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE)); } else { u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) | VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) | VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) | VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) | VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) | VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3)); if (dsi->lanes < 4) afec0 |= DSI1_PHY_AFEC0_PD_DLANE3; if (dsi->lanes < 3) afec0 |= DSI1_PHY_AFEC0_PD_DLANE2; if (dsi->lanes < 2) afec0 |= DSI1_PHY_AFEC0_PD_DLANE1; afec0 |= DSI1_PHY_AFEC0_RESET; DSI_PORT_WRITE(PHY_AFEC0, afec0); DSI_PORT_WRITE(PHY_AFEC1, 0); /* AFEC reset hold time */ mdelay(1); } ret = clk_prepare_enable(dsi->escape_clock); if (ret) { DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret); return; } ret = clk_prepare_enable(dsi->pll_phy_clock); if (ret) { DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret); return; } hs_clock = clk_get_rate(dsi->pll_phy_clock); /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate, * not the pixel clock rate. DSIxP take from the APHY's byte, * DDR2, or DDR4 clock (we use byte) and feed into the PV at * that rate. Separately, a value derived from PIX_CLK_DIV * and HS_CLKC is fed into the PV to divide down to the actual * pixel clock for pushing pixels into DSI. */ dsip_clock = phy_clock / 8; ret = clk_set_rate(dsi->pixel_clock, dsip_clock); if (ret) { dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n", dsip_clock, ret); } ret = clk_prepare_enable(dsi->pixel_clock); if (ret) { DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret); return; } /* How many ns one DSI unit interval is. Note that the clock * is DDR, so there's an extra divide by 2. */ ui_ns = DIV_ROUND_UP(500000000, hs_clock); DSI_PORT_WRITE(HS_CLT0, VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0), DSI_HS_CLT0_CZERO) | VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8), DSI_HS_CLT0_CPRE) | VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0), DSI_HS_CLT0_CPREP)); DSI_PORT_WRITE(HS_CLT1, VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0), DSI_HS_CLT1_CTRAIL) | VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52), DSI_HS_CLT1_CPOST)); DSI_PORT_WRITE(HS_CLT2, VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0), DSI_HS_CLT2_WUP)); DSI_PORT_WRITE(HS_DLT3, VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0), DSI_HS_DLT3_EXIT) | VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6), DSI_HS_DLT3_ZERO) | VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4), DSI_HS_DLT3_PRE)); DSI_PORT_WRITE(HS_DLT4, VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0), DSI_HS_DLT4_LPX) | VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8), dsi_hs_timing(ui_ns, 60, 4)), DSI_HS_DLT4_TRAIL) | VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT)); /* T_INIT is how long STOP is driven after power-up to * indicate to the slave (also coming out of power-up) that * master init is complete, and should be greater than the * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The * D-PHY spec gives a minimum 100us for T_INIT,MASTER and * T_INIT,SLAVE, while allowing protocols on top of it to give * greater minimums. The vc4 firmware uses an extremely * conservative 5ms, and we maintain that here. */ DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns, 5 * 1000 * 1000, 0), DSI_HS_DLT5_INIT)); DSI_PORT_WRITE(HS_DLT6, VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) | VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) | VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) | VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX)); DSI_PORT_WRITE(HS_DLT7, VC4_SET_FIELD(dsi_esc_timing(1000000), DSI_HS_DLT7_LP_WUP)); DSI_PORT_WRITE(PHYC, DSI_PHYC_DLANE0_ENABLE | (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) | (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) | (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) | DSI_PORT_BIT(PHYC_CLANE_ENABLE) | ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ? 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) | (dsi->port == 0 ? VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) : VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT))); DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI_CTRL_CAL_BYTE); /* HS timeout in HS clock cycles: disabled. */ DSI_PORT_WRITE(HSTX_TO_CNT, 0); /* LP receive timeout in HS clocks. */ DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff); /* Bus turnaround timeout */ DSI_PORT_WRITE(TA_TO_CNT, 100000); /* Display reset sequence timeout */ DSI_PORT_WRITE(PR_TO_CNT, 100000); /* Set up DISP1 for transferring long command payloads through * the pixfifo. */ DSI_PORT_WRITE(DISP1_CTRL, VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE, DSI_DISP1_PFORMAT) | DSI_DISP1_ENABLE); /* Ungate the block. */ if (dsi->port == 0) DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0); else DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN); /* Bring AFE out of reset. */ if (dsi->port == 0) { } else { DSI_PORT_WRITE(PHY_AFEC0, DSI_PORT_READ(PHY_AFEC0) & ~DSI1_PHY_AFEC0_RESET); } vc4_dsi_ulps(dsi, false); drm_bridge_pre_enable(dsi->bridge); if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) { DSI_PORT_WRITE(DISP0_CTRL, VC4_SET_FIELD(dsi->divider, DSI_DISP0_PIX_CLK_DIV) | VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) | VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME, DSI_DISP0_LP_STOP_CTRL) | DSI_DISP0_ST_END | DSI_DISP0_ENABLE); } else { DSI_PORT_WRITE(DISP0_CTRL, DSI_DISP0_COMMAND_MODE | DSI_DISP0_ENABLE); } drm_bridge_enable(dsi->bridge); if (debug_dump_regs) { struct drm_printer p = drm_info_printer(&dsi->pdev->dev); dev_info(&dsi->pdev->dev, "DSI regs after:\n"); drm_print_regset32(&p, &dsi->regset); } } static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host, const struct mipi_dsi_msg *msg) { struct vc4_dsi *dsi = host_to_dsi(host); struct mipi_dsi_packet packet; u32 pkth = 0, pktc = 0; int i, ret; bool is_long = mipi_dsi_packet_format_is_long(msg->type); u32 cmd_fifo_len = 0, pix_fifo_len = 0; mipi_dsi_create_packet(&packet, msg); pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT); pkth |= VC4_SET_FIELD(packet.header[1] | (packet.header[2] << 8), DSI_TXPKT1H_BC_PARAM); if (is_long) { /* Divide data across the various FIFOs we have available. * The command FIFO takes byte-oriented data, but is of * limited size. The pixel FIFO (never actually used for * pixel data in reality) is word oriented, and substantially * larger. So, we use the pixel FIFO for most of the data, * sending the residual bytes in the command FIFO at the start. * * With this arrangement, the command FIFO will never get full. */ if (packet.payload_length <= 16) { cmd_fifo_len = packet.payload_length; pix_fifo_len = 0; } else { cmd_fifo_len = (packet.payload_length % DSI_PIX_FIFO_WIDTH); pix_fifo_len = ((packet.payload_length - cmd_fifo_len) / DSI_PIX_FIFO_WIDTH); } WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH); pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO); } if (msg->rx_len) { pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX, DSI_TXPKT1C_CMD_CTRL); } else { pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX, DSI_TXPKT1C_CMD_CTRL); } for (i = 0; i < cmd_fifo_len; i++) DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]); for (i = 0; i < pix_fifo_len; i++) { const u8 *pix = packet.payload + cmd_fifo_len + i * 4; DSI_PORT_WRITE(TXPKT_PIX_FIFO, pix[0] | pix[1] << 8 | pix[2] << 16 | pix[3] << 24); } if (msg->flags & MIPI_DSI_MSG_USE_LPM) pktc |= DSI_TXPKT1C_CMD_MODE_LP; if (is_long) pktc |= DSI_TXPKT1C_CMD_TYPE_LONG; /* Send one copy of the packet. Larger repeats are used for pixel * data in command mode. */ pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT); pktc |= DSI_TXPKT1C_CMD_EN; if (pix_fifo_len) { pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY, DSI_TXPKT1C_DISPLAY_NO); } else { pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT, DSI_TXPKT1C_DISPLAY_NO); } /* Enable the appropriate interrupt for the transfer completion. */ dsi->xfer_result = 0; reinit_completion(&dsi->xfer_completion); DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF); if (msg->rx_len) { DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | DSI1_INT_PHY_DIR_RTF)); } else { DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | DSI1_INT_TXPKT1_DONE)); } /* Send the packet. */ DSI_PORT_WRITE(TXPKT1H, pkth); DSI_PORT_WRITE(TXPKT1C, pktc); if (!wait_for_completion_timeout(&dsi->xfer_completion, msecs_to_jiffies(1000))) { dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout"); dev_err(&dsi->pdev->dev, "instat: 0x%08x\n", DSI_PORT_READ(INT_STAT)); ret = -ETIMEDOUT; } else { ret = dsi->xfer_result; } DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); if (ret) goto reset_fifo_and_return; if (ret == 0 && msg->rx_len) { u32 rxpkt1h = DSI_PORT_READ(RXPKT1H); u8 *msg_rx = msg->rx_buf; if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) { u32 rxlen = VC4_GET_FIELD(rxpkt1h, DSI_RXPKT1H_BC_PARAM); if (rxlen != msg->rx_len) { DRM_ERROR("DSI returned %db, expecting %db\n", rxlen, (int)msg->rx_len); ret = -ENXIO; goto reset_fifo_and_return; } for (i = 0; i < msg->rx_len; i++) msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO); } else { /* FINISHME: Handle AWER */ msg_rx[0] = VC4_GET_FIELD(rxpkt1h, DSI_RXPKT1H_SHORT_0); if (msg->rx_len > 1) { msg_rx[1] = VC4_GET_FIELD(rxpkt1h, DSI_RXPKT1H_SHORT_1); } } } return ret; reset_fifo_and_return: DRM_ERROR("DSI transfer failed, resetting: %d\n", ret); DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN); udelay(1); DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI_PORT_BIT(CTRL_RESET_FIFOS)); DSI_PORT_WRITE(TXPKT1C, 0); DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); return ret; } static int vc4_dsi_host_attach(struct mipi_dsi_host *host, struct mipi_dsi_device *device) { struct vc4_dsi *dsi = host_to_dsi(host); dsi->lanes = device->lanes; dsi->channel = device->channel; dsi->mode_flags = device->mode_flags; switch (device->format) { case MIPI_DSI_FMT_RGB888: dsi->format = DSI_PFORMAT_RGB888; dsi->divider = 24 / dsi->lanes; break; case MIPI_DSI_FMT_RGB666: dsi->format = DSI_PFORMAT_RGB666; dsi->divider = 24 / dsi->lanes; break; case MIPI_DSI_FMT_RGB666_PACKED: dsi->format = DSI_PFORMAT_RGB666_PACKED; dsi->divider = 18 / dsi->lanes; break; case MIPI_DSI_FMT_RGB565: dsi->format = DSI_PFORMAT_RGB565; dsi->divider = 16 / dsi->lanes; break; default: dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n", dsi->format); return 0; } if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) { dev_err(&dsi->pdev->dev, "Only VIDEO mode panels supported currently.\n"); return 0; } return 0; } static int vc4_dsi_host_detach(struct mipi_dsi_host *host, struct mipi_dsi_device *device) { return 0; } static const struct mipi_dsi_host_ops vc4_dsi_host_ops = { .attach = vc4_dsi_host_attach, .detach = vc4_dsi_host_detach, .transfer = vc4_dsi_host_transfer, }; static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = { .disable = vc4_dsi_encoder_disable, .enable = vc4_dsi_encoder_enable, .mode_fixup = vc4_dsi_encoder_mode_fixup, }; static const struct of_device_id vc4_dsi_dt_match[] = { { .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 }, {} }; static void dsi_handle_error(struct vc4_dsi *dsi, irqreturn_t *ret, u32 stat, u32 bit, const char *type) { if (!(stat & bit)) return; DRM_ERROR("DSI%d: %s error\n", dsi->port, type); *ret = IRQ_HANDLED; } /* * Initial handler for port 1 where we need the reg_dma workaround. * The register DMA writes sleep, so we can't do it in the top half. * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the * parent interrupt contrller until our interrupt thread is done. */ static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data) { struct vc4_dsi *dsi = data; u32 stat = DSI_PORT_READ(INT_STAT); if (!stat) return IRQ_NONE; return IRQ_WAKE_THREAD; } /* * Normal IRQ handler for port 0, or the threaded IRQ handler for port * 1 where we need the reg_dma workaround. */ static irqreturn_t vc4_dsi_irq_handler(int irq, void *data) { struct vc4_dsi *dsi = data; u32 stat = DSI_PORT_READ(INT_STAT); irqreturn_t ret = IRQ_NONE; DSI_PORT_WRITE(INT_STAT, stat); dsi_handle_error(dsi, &ret, stat, DSI1_INT_ERR_SYNC_ESC, "LPDT sync"); dsi_handle_error(dsi, &ret, stat, DSI1_INT_ERR_CONTROL, "data lane 0 sequence"); dsi_handle_error(dsi, &ret, stat, DSI1_INT_ERR_CONT_LP0, "LP0 contention"); dsi_handle_error(dsi, &ret, stat, DSI1_INT_ERR_CONT_LP1, "LP1 contention"); dsi_handle_error(dsi, &ret, stat, DSI1_INT_HSTX_TO, "HSTX timeout"); dsi_handle_error(dsi, &ret, stat, DSI1_INT_LPRX_TO, "LPRX timeout"); dsi_handle_error(dsi, &ret, stat, DSI1_INT_TA_TO, "turnaround timeout"); dsi_handle_error(dsi, &ret, stat, DSI1_INT_PR_TO, "peripheral reset timeout"); if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) { complete(&dsi->xfer_completion); ret = IRQ_HANDLED; } else if (stat & DSI1_INT_HSTX_TO) { complete(&dsi->xfer_completion); dsi->xfer_result = -ETIMEDOUT; ret = IRQ_HANDLED; } return ret; } /** * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog * PHY that are consumed by CPRMAN (clk-bcm2835.c). * @dsi: DSI encoder */ static int vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi) { struct device *dev = &dsi->pdev->dev; const char *parent_name = __clk_get_name(dsi->pll_phy_clock); static const struct { const char *dsi0_name, *dsi1_name; int div; } phy_clocks[] = { { "dsi0_byte", "dsi1_byte", 8 }, { "dsi0_ddr2", "dsi1_ddr2", 4 }, { "dsi0_ddr", "dsi1_ddr", 2 }, }; int i; dsi->clk_onecell = devm_kzalloc(dev, sizeof(*dsi->clk_onecell) + ARRAY_SIZE(phy_clocks) * sizeof(struct clk_hw *), GFP_KERNEL); if (!dsi->clk_onecell) return -ENOMEM; dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks); for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) { struct clk_fixed_factor *fix = &dsi->phy_clocks[i]; struct clk_init_data init; int ret; /* We just use core fixed factor clock ops for the PHY * clocks. The clocks are actually gated by the * PHY_AFEC0_DDRCLK_EN bits, which we should be * setting if we use the DDR/DDR2 clocks. However, * vc4_dsi_encoder_enable() is setting up both AFEC0, * setting both our parent DSI PLL's rate and this * clock's rate, so it knows if DDR/DDR2 are going to * be used and could enable the gates itself. */ fix->mult = 1; fix->div = phy_clocks[i].div; fix->hw.init = &init; memset(&init, 0, sizeof(init)); init.parent_names = &parent_name; init.num_parents = 1; if (dsi->port == 1) init.name = phy_clocks[i].dsi1_name; else init.name = phy_clocks[i].dsi0_name; init.ops = &clk_fixed_factor_ops; ret = devm_clk_hw_register(dev, &fix->hw); if (ret) return ret; dsi->clk_onecell->hws[i] = &fix->hw; } return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get, dsi->clk_onecell); } static int vc4_dsi_bind(struct device *dev, struct device *master, void *data) { struct platform_device *pdev = to_platform_device(dev); struct drm_device *drm = dev_get_drvdata(master); struct vc4_dev *vc4 = to_vc4_dev(drm); struct vc4_dsi *dsi = dev_get_drvdata(dev); struct vc4_dsi_encoder *vc4_dsi_encoder; struct drm_panel *panel; const struct of_device_id *match; dma_cap_mask_t dma_mask; int ret; match = of_match_device(vc4_dsi_dt_match, dev); if (!match) return -ENODEV; dsi->port = (uintptr_t)match->data; vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder), GFP_KERNEL); if (!vc4_dsi_encoder) return -ENOMEM; vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1; vc4_dsi_encoder->dsi = dsi; dsi->encoder = &vc4_dsi_encoder->base.base; dsi->regs = vc4_ioremap_regs(pdev, 0); if (IS_ERR(dsi->regs)) return PTR_ERR(dsi->regs); dsi->regset.base = dsi->regs; if (dsi->port == 0) { dsi->regset.regs = dsi0_regs; dsi->regset.nregs = ARRAY_SIZE(dsi0_regs); } else { dsi->regset.regs = dsi1_regs; dsi->regset.nregs = ARRAY_SIZE(dsi1_regs); } if (DSI_PORT_READ(ID) != DSI_ID_VALUE) { dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n", DSI_PORT_READ(ID), DSI_ID_VALUE); return -ENODEV; } /* DSI1 has a broken AXI slave that doesn't respond to writes * from the ARM. It does handle writes from the DMA engine, * so set up a channel for talking to it. */ if (dsi->port == 1) { dsi->reg_dma_mem = dma_alloc_coherent(dev, 4, &dsi->reg_dma_paddr, GFP_KERNEL); if (!dsi->reg_dma_mem) { DRM_ERROR("Failed to get DMA memory\n"); return -ENOMEM; } dma_cap_zero(dma_mask); dma_cap_set(DMA_MEMCPY, dma_mask); dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask); if (IS_ERR(dsi->reg_dma_chan)) { ret = PTR_ERR(dsi->reg_dma_chan); if (ret != -EPROBE_DEFER) DRM_ERROR("Failed to get DMA channel: %d\n", ret); return ret; } /* Get the physical address of the device's registers. The * struct resource for the regs gives us the bus address * instead. */ dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node, 0, NULL, NULL)); } init_completion(&dsi->xfer_completion); /* At startup enable error-reporting interrupts and nothing else. */ DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); /* Clear any existing interrupt state. */ DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT)); if (dsi->reg_dma_mem) ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0), vc4_dsi_irq_defer_to_thread_handler, vc4_dsi_irq_handler, IRQF_ONESHOT, "vc4 dsi", dsi); else ret = devm_request_irq(dev, platform_get_irq(pdev, 0), vc4_dsi_irq_handler, 0, "vc4 dsi", dsi); if (ret) { if (ret != -EPROBE_DEFER) dev_err(dev, "Failed to get interrupt: %d\n", ret); return ret; } dsi->escape_clock = devm_clk_get(dev, "escape"); if (IS_ERR(dsi->escape_clock)) { ret = PTR_ERR(dsi->escape_clock); if (ret != -EPROBE_DEFER) dev_err(dev, "Failed to get escape clock: %d\n", ret); return ret; } dsi->pll_phy_clock = devm_clk_get(dev, "phy"); if (IS_ERR(dsi->pll_phy_clock)) { ret = PTR_ERR(dsi->pll_phy_clock); if (ret != -EPROBE_DEFER) dev_err(dev, "Failed to get phy clock: %d\n", ret); return ret; } dsi->pixel_clock = devm_clk_get(dev, "pixel"); if (IS_ERR(dsi->pixel_clock)) { ret = PTR_ERR(dsi->pixel_clock); if (ret != -EPROBE_DEFER) dev_err(dev, "Failed to get pixel clock: %d\n", ret); return ret; } ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0, &panel, &dsi->bridge); if (ret) { /* If the bridge or panel pointed by dev->of_node is not * enabled, just return 0 here so that we don't prevent the DRM * dev from being registered. Of course that means the DSI * encoder won't be exposed, but that's not a problem since * nothing is connected to it. */ if (ret == -ENODEV) return 0; return ret; } if (panel) { dsi->bridge = devm_drm_panel_bridge_add(dev, panel, DRM_MODE_CONNECTOR_DSI); if (IS_ERR(dsi->bridge)) return PTR_ERR(dsi->bridge); } /* The esc clock rate is supposed to always be 100Mhz. */ ret = clk_set_rate(dsi->escape_clock, 100 * 1000000); if (ret) { dev_err(dev, "Failed to set esc clock: %d\n", ret); return ret; } ret = vc4_dsi_init_phy_clocks(dsi); if (ret) return ret; if (dsi->port == 1) vc4->dsi1 = dsi; drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs, DRM_MODE_ENCODER_DSI, NULL); drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs); ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL); if (ret) { dev_err(dev, "bridge attach failed: %d\n", ret); return ret; } /* Disable the atomic helper calls into the bridge. We * manually call the bridge pre_enable / enable / etc. calls * from our driver, since we need to sequence them within the * encoder's enable/disable paths. */ dsi->encoder->bridge = NULL; if (dsi->port == 0) vc4_debugfs_add_regset32(drm, "dsi0_regs", &dsi->regset); else vc4_debugfs_add_regset32(drm, "dsi1_regs", &dsi->regset); pm_runtime_enable(dev); return 0; } static void vc4_dsi_unbind(struct device *dev, struct device *master, void *data) { struct drm_device *drm = dev_get_drvdata(master); struct vc4_dev *vc4 = to_vc4_dev(drm); struct vc4_dsi *dsi = dev_get_drvdata(dev); if (dsi->bridge) pm_runtime_disable(dev); vc4_dsi_encoder_destroy(dsi->encoder); if (dsi->port == 1) vc4->dsi1 = NULL; } static const struct component_ops vc4_dsi_ops = { .bind = vc4_dsi_bind, .unbind = vc4_dsi_unbind, }; static int vc4_dsi_dev_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct vc4_dsi *dsi; int ret; dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL); if (!dsi) return -ENOMEM; dev_set_drvdata(dev, dsi); dsi->pdev = pdev; /* Note, the initialization sequence for DSI and panels is * tricky. The component bind above won't get past its * -EPROBE_DEFER until the panel/bridge probes. The * panel/bridge will return -EPROBE_DEFER until it has a * mipi_dsi_host to register its device to. So, we register * the host during pdev probe time, so vc4 as a whole can then * -EPROBE_DEFER its component bind process until the panel * successfully attaches. */ dsi->dsi_host.ops = &vc4_dsi_host_ops; dsi->dsi_host.dev = dev; mipi_dsi_host_register(&dsi->dsi_host); ret = component_add(&pdev->dev, &vc4_dsi_ops); if (ret) { mipi_dsi_host_unregister(&dsi->dsi_host); return ret; } return 0; } static int vc4_dsi_dev_remove(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct vc4_dsi *dsi = dev_get_drvdata(dev); component_del(&pdev->dev, &vc4_dsi_ops); mipi_dsi_host_unregister(&dsi->dsi_host); return 0; } struct platform_driver vc4_dsi_driver = { .probe = vc4_dsi_dev_probe, .remove = vc4_dsi_dev_remove, .driver = { .name = "vc4_dsi", .of_match_table = vc4_dsi_dt_match, }, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1