Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Juergen Fitschen | 2321 | 71.72% | 2 | 7.41% |
Nikolaus Voss | 324 | 10.01% | 1 | 3.70% |
Ludovic Desroches | 287 | 8.87% | 7 | 25.93% |
Cyrille Pitchen | 135 | 4.17% | 6 | 22.22% |
Wenyou Yang | 91 | 2.81% | 3 | 11.11% |
Andy Shevchenko | 28 | 0.87% | 1 | 3.70% |
Michał Mirosław | 19 | 0.59% | 1 | 3.70% |
Marek Roszko | 16 | 0.49% | 1 | 3.70% |
Thierry Reding | 5 | 0.15% | 1 | 3.70% |
David Engraf | 5 | 0.15% | 1 | 3.70% |
Joachim Eastwood | 2 | 0.06% | 1 | 3.70% |
Sachin Kamat | 2 | 0.06% | 1 | 3.70% |
Arvind Yadav | 1 | 0.03% | 1 | 3.70% |
Total | 3236 | 27 |
// SPDX-License-Identifier: GPL-2.0 /* * i2c Support for Atmel's AT91 Two-Wire Interface (TWI) * * Copyright (C) 2011 Weinmann Medical GmbH * Author: Nikolaus Voss <n.voss@weinmann.de> * * Evolved from original work by: * Copyright (C) 2004 Rick Bronson * Converted to 2.6 by Andrew Victor <andrew@sanpeople.com> * * Borrowed heavily from original work by: * Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com> */ #include <linux/clk.h> #include <linux/completion.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/err.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/platform_data/dma-atmel.h> #include <linux/pm_runtime.h> #include "i2c-at91.h" void at91_init_twi_bus_master(struct at91_twi_dev *dev) { /* FIFO should be enabled immediately after the software reset */ if (dev->fifo_size) at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_FIFOEN); at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_MSEN); at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SVDIS); at91_twi_write(dev, AT91_TWI_CWGR, dev->twi_cwgr_reg); } /* * Calculate symmetric clock as stated in datasheet: * twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset)) */ static void at91_calc_twi_clock(struct at91_twi_dev *dev) { int ckdiv, cdiv, div, hold = 0; struct at91_twi_pdata *pdata = dev->pdata; int offset = pdata->clk_offset; int max_ckdiv = pdata->clk_max_div; struct i2c_timings timings, *t = &timings; i2c_parse_fw_timings(dev->dev, t, true); div = max(0, (int)DIV_ROUND_UP(clk_get_rate(dev->clk), 2 * t->bus_freq_hz) - offset); ckdiv = fls(div >> 8); cdiv = div >> ckdiv; if (ckdiv > max_ckdiv) { dev_warn(dev->dev, "%d exceeds ckdiv max value which is %d.\n", ckdiv, max_ckdiv); ckdiv = max_ckdiv; cdiv = 255; } if (pdata->has_hold_field) { /* * hold time = HOLD + 3 x T_peripheral_clock * Use clk rate in kHz to prevent overflows when computing * hold. */ hold = DIV_ROUND_UP(t->sda_hold_ns * (clk_get_rate(dev->clk) / 1000), 1000000); hold -= 3; if (hold < 0) hold = 0; if (hold > AT91_TWI_CWGR_HOLD_MAX) { dev_warn(dev->dev, "HOLD field set to its maximum value (%d instead of %d)\n", AT91_TWI_CWGR_HOLD_MAX, hold); hold = AT91_TWI_CWGR_HOLD_MAX; } } dev->twi_cwgr_reg = (ckdiv << 16) | (cdiv << 8) | cdiv | AT91_TWI_CWGR_HOLD(hold); dev_dbg(dev->dev, "cdiv %d ckdiv %d hold %d (%d ns)\n", cdiv, ckdiv, hold, t->sda_hold_ns); } static void at91_twi_dma_cleanup(struct at91_twi_dev *dev) { struct at91_twi_dma *dma = &dev->dma; at91_twi_irq_save(dev); if (dma->xfer_in_progress) { if (dma->direction == DMA_FROM_DEVICE) dmaengine_terminate_all(dma->chan_rx); else dmaengine_terminate_all(dma->chan_tx); dma->xfer_in_progress = false; } if (dma->buf_mapped) { dma_unmap_single(dev->dev, sg_dma_address(&dma->sg[0]), dev->buf_len, dma->direction); dma->buf_mapped = false; } at91_twi_irq_restore(dev); } static void at91_twi_write_next_byte(struct at91_twi_dev *dev) { if (!dev->buf_len) return; /* 8bit write works with and without FIFO */ writeb_relaxed(*dev->buf, dev->base + AT91_TWI_THR); /* send stop when last byte has been written */ if (--dev->buf_len == 0) { if (!dev->use_alt_cmd) at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP); at91_twi_write(dev, AT91_TWI_IDR, AT91_TWI_TXRDY); } dev_dbg(dev->dev, "wrote 0x%x, to go %zu\n", *dev->buf, dev->buf_len); ++dev->buf; } static void at91_twi_write_data_dma_callback(void *data) { struct at91_twi_dev *dev = (struct at91_twi_dev *)data; dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]), dev->buf_len, DMA_TO_DEVICE); /* * When this callback is called, THR/TX FIFO is likely not to be empty * yet. So we have to wait for TXCOMP or NACK bits to be set into the * Status Register to be sure that the STOP bit has been sent and the * transfer is completed. The NACK interrupt has already been enabled, * we just have to enable TXCOMP one. */ at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP); if (!dev->use_alt_cmd) at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP); } static void at91_twi_write_data_dma(struct at91_twi_dev *dev) { dma_addr_t dma_addr; struct dma_async_tx_descriptor *txdesc; struct at91_twi_dma *dma = &dev->dma; struct dma_chan *chan_tx = dma->chan_tx; unsigned int sg_len = 1; if (!dev->buf_len) return; dma->direction = DMA_TO_DEVICE; at91_twi_irq_save(dev); dma_addr = dma_map_single(dev->dev, dev->buf, dev->buf_len, DMA_TO_DEVICE); if (dma_mapping_error(dev->dev, dma_addr)) { dev_err(dev->dev, "dma map failed\n"); return; } dma->buf_mapped = true; at91_twi_irq_restore(dev); if (dev->fifo_size) { size_t part1_len, part2_len; struct scatterlist *sg; unsigned fifo_mr; sg_len = 0; part1_len = dev->buf_len & ~0x3; if (part1_len) { sg = &dma->sg[sg_len++]; sg_dma_len(sg) = part1_len; sg_dma_address(sg) = dma_addr; } part2_len = dev->buf_len & 0x3; if (part2_len) { sg = &dma->sg[sg_len++]; sg_dma_len(sg) = part2_len; sg_dma_address(sg) = dma_addr + part1_len; } /* * DMA controller is triggered when at least 4 data can be * written into the TX FIFO */ fifo_mr = at91_twi_read(dev, AT91_TWI_FMR); fifo_mr &= ~AT91_TWI_FMR_TXRDYM_MASK; fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_FOUR_DATA); at91_twi_write(dev, AT91_TWI_FMR, fifo_mr); } else { sg_dma_len(&dma->sg[0]) = dev->buf_len; sg_dma_address(&dma->sg[0]) = dma_addr; } txdesc = dmaengine_prep_slave_sg(chan_tx, dma->sg, sg_len, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!txdesc) { dev_err(dev->dev, "dma prep slave sg failed\n"); goto error; } txdesc->callback = at91_twi_write_data_dma_callback; txdesc->callback_param = dev; dma->xfer_in_progress = true; dmaengine_submit(txdesc); dma_async_issue_pending(chan_tx); return; error: at91_twi_dma_cleanup(dev); } static void at91_twi_read_next_byte(struct at91_twi_dev *dev) { /* * If we are in this case, it means there is garbage data in RHR, so * delete them. */ if (!dev->buf_len) { at91_twi_read(dev, AT91_TWI_RHR); return; } /* 8bit read works with and without FIFO */ *dev->buf = readb_relaxed(dev->base + AT91_TWI_RHR); --dev->buf_len; /* return if aborting, we only needed to read RHR to clear RXRDY*/ if (dev->recv_len_abort) return; /* handle I2C_SMBUS_BLOCK_DATA */ if (unlikely(dev->msg->flags & I2C_M_RECV_LEN)) { /* ensure length byte is a valid value */ if (*dev->buf <= I2C_SMBUS_BLOCK_MAX && *dev->buf > 0) { dev->msg->flags &= ~I2C_M_RECV_LEN; dev->buf_len += *dev->buf; dev->msg->len = dev->buf_len + 1; dev_dbg(dev->dev, "received block length %zu\n", dev->buf_len); } else { /* abort and send the stop by reading one more byte */ dev->recv_len_abort = true; dev->buf_len = 1; } } /* send stop if second but last byte has been read */ if (!dev->use_alt_cmd && dev->buf_len == 1) at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP); dev_dbg(dev->dev, "read 0x%x, to go %zu\n", *dev->buf, dev->buf_len); ++dev->buf; } static void at91_twi_read_data_dma_callback(void *data) { struct at91_twi_dev *dev = (struct at91_twi_dev *)data; unsigned ier = AT91_TWI_TXCOMP; dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]), dev->buf_len, DMA_FROM_DEVICE); if (!dev->use_alt_cmd) { /* The last two bytes have to be read without using dma */ dev->buf += dev->buf_len - 2; dev->buf_len = 2; ier |= AT91_TWI_RXRDY; } at91_twi_write(dev, AT91_TWI_IER, ier); } static void at91_twi_read_data_dma(struct at91_twi_dev *dev) { dma_addr_t dma_addr; struct dma_async_tx_descriptor *rxdesc; struct at91_twi_dma *dma = &dev->dma; struct dma_chan *chan_rx = dma->chan_rx; size_t buf_len; buf_len = (dev->use_alt_cmd) ? dev->buf_len : dev->buf_len - 2; dma->direction = DMA_FROM_DEVICE; /* Keep in mind that we won't use dma to read the last two bytes */ at91_twi_irq_save(dev); dma_addr = dma_map_single(dev->dev, dev->buf, buf_len, DMA_FROM_DEVICE); if (dma_mapping_error(dev->dev, dma_addr)) { dev_err(dev->dev, "dma map failed\n"); return; } dma->buf_mapped = true; at91_twi_irq_restore(dev); if (dev->fifo_size && IS_ALIGNED(buf_len, 4)) { unsigned fifo_mr; /* * DMA controller is triggered when at least 4 data can be * read from the RX FIFO */ fifo_mr = at91_twi_read(dev, AT91_TWI_FMR); fifo_mr &= ~AT91_TWI_FMR_RXRDYM_MASK; fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_FOUR_DATA); at91_twi_write(dev, AT91_TWI_FMR, fifo_mr); } sg_dma_len(&dma->sg[0]) = buf_len; sg_dma_address(&dma->sg[0]) = dma_addr; rxdesc = dmaengine_prep_slave_sg(chan_rx, dma->sg, 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!rxdesc) { dev_err(dev->dev, "dma prep slave sg failed\n"); goto error; } rxdesc->callback = at91_twi_read_data_dma_callback; rxdesc->callback_param = dev; dma->xfer_in_progress = true; dmaengine_submit(rxdesc); dma_async_issue_pending(dma->chan_rx); return; error: at91_twi_dma_cleanup(dev); } static irqreturn_t atmel_twi_interrupt(int irq, void *dev_id) { struct at91_twi_dev *dev = dev_id; const unsigned status = at91_twi_read(dev, AT91_TWI_SR); const unsigned irqstatus = status & at91_twi_read(dev, AT91_TWI_IMR); if (!irqstatus) return IRQ_NONE; /* * In reception, the behavior of the twi device (before sama5d2) is * weird. There is some magic about RXRDY flag! When a data has been * almost received, the reception of a new one is anticipated if there * is no stop command to send. That is the reason why ask for sending * the stop command not on the last data but on the second last one. * * Unfortunately, we could still have the RXRDY flag set even if the * transfer is done and we have read the last data. It might happen * when the i2c slave device sends too quickly data after receiving the * ack from the master. The data has been almost received before having * the order to send stop. In this case, sending the stop command could * cause a RXRDY interrupt with a TXCOMP one. It is better to manage * the RXRDY interrupt first in order to not keep garbage data in the * Receive Holding Register for the next transfer. */ if (irqstatus & AT91_TWI_RXRDY) { /* * Read all available bytes at once by polling RXRDY usable w/ * and w/o FIFO. With FIFO enabled we could also read RXFL and * avoid polling RXRDY. */ do { at91_twi_read_next_byte(dev); } while (at91_twi_read(dev, AT91_TWI_SR) & AT91_TWI_RXRDY); } /* * When a NACK condition is detected, the I2C controller sets the NACK, * TXCOMP and TXRDY bits all together in the Status Register (SR). * * 1 - Handling NACK errors with CPU write transfer. * * In such case, we should not write the next byte into the Transmit * Holding Register (THR) otherwise the I2C controller would start a new * transfer and the I2C slave is likely to reply by another NACK. * * 2 - Handling NACK errors with DMA write transfer. * * By setting the TXRDY bit in the SR, the I2C controller also triggers * the DMA controller to write the next data into the THR. Then the * result depends on the hardware version of the I2C controller. * * 2a - Without support of the Alternative Command mode. * * This is the worst case: the DMA controller is triggered to write the * next data into the THR, hence starting a new transfer: the I2C slave * is likely to reply by another NACK. * Concurrently, this interrupt handler is likely to be called to manage * the first NACK before the I2C controller detects the second NACK and * sets once again the NACK bit into the SR. * When handling the first NACK, this interrupt handler disables the I2C * controller interruptions, especially the NACK interrupt. * Hence, the NACK bit is pending into the SR. This is why we should * read the SR to clear all pending interrupts at the beginning of * at91_do_twi_transfer() before actually starting a new transfer. * * 2b - With support of the Alternative Command mode. * * When a NACK condition is detected, the I2C controller also locks the * THR (and sets the LOCK bit in the SR): even though the DMA controller * is triggered by the TXRDY bit to write the next data into the THR, * this data actually won't go on the I2C bus hence a second NACK is not * generated. */ if (irqstatus & (AT91_TWI_TXCOMP | AT91_TWI_NACK)) { at91_disable_twi_interrupts(dev); complete(&dev->cmd_complete); } else if (irqstatus & AT91_TWI_TXRDY) { at91_twi_write_next_byte(dev); } /* catch error flags */ dev->transfer_status |= status; return IRQ_HANDLED; } static int at91_do_twi_transfer(struct at91_twi_dev *dev) { int ret; unsigned long time_left; bool has_unre_flag = dev->pdata->has_unre_flag; bool has_alt_cmd = dev->pdata->has_alt_cmd; /* * WARNING: the TXCOMP bit in the Status Register is NOT a clear on * read flag but shows the state of the transmission at the time the * Status Register is read. According to the programmer datasheet, * TXCOMP is set when both holding register and internal shifter are * empty and STOP condition has been sent. * Consequently, we should enable NACK interrupt rather than TXCOMP to * detect transmission failure. * Indeed let's take the case of an i2c write command using DMA. * Whenever the slave doesn't acknowledge a byte, the LOCK, NACK and * TXCOMP bits are set together into the Status Register. * LOCK is a clear on write bit, which is set to prevent the DMA * controller from sending new data on the i2c bus after a NACK * condition has happened. Once locked, this i2c peripheral stops * triggering the DMA controller for new data but it is more than * likely that a new DMA transaction is already in progress, writing * into the Transmit Holding Register. Since the peripheral is locked, * these new data won't be sent to the i2c bus but they will remain * into the Transmit Holding Register, so TXCOMP bit is cleared. * Then when the interrupt handler is called, the Status Register is * read: the TXCOMP bit is clear but NACK bit is still set. The driver * manage the error properly, without waiting for timeout. * This case can be reproduced easyly when writing into an at24 eeprom. * * Besides, the TXCOMP bit is already set before the i2c transaction * has been started. For read transactions, this bit is cleared when * writing the START bit into the Control Register. So the * corresponding interrupt can safely be enabled just after. * However for write transactions managed by the CPU, we first write * into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP * interrupt. If TXCOMP interrupt were enabled before writing into THR, * the interrupt handler would be called immediately and the i2c command * would be reported as completed. * Also when a write transaction is managed by the DMA controller, * enabling the TXCOMP interrupt in this function may lead to a race * condition since we don't know whether the TXCOMP interrupt is enabled * before or after the DMA has started to write into THR. So the TXCOMP * interrupt is enabled later by at91_twi_write_data_dma_callback(). * Immediately after in that DMA callback, if the alternative command * mode is not used, we still need to send the STOP condition manually * writing the corresponding bit into the Control Register. */ dev_dbg(dev->dev, "transfer: %s %zu bytes.\n", (dev->msg->flags & I2C_M_RD) ? "read" : "write", dev->buf_len); reinit_completion(&dev->cmd_complete); dev->transfer_status = 0; /* Clear pending interrupts, such as NACK. */ at91_twi_read(dev, AT91_TWI_SR); if (dev->fifo_size) { unsigned fifo_mr = at91_twi_read(dev, AT91_TWI_FMR); /* Reset FIFO mode register */ fifo_mr &= ~(AT91_TWI_FMR_TXRDYM_MASK | AT91_TWI_FMR_RXRDYM_MASK); fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_ONE_DATA); fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_ONE_DATA); at91_twi_write(dev, AT91_TWI_FMR, fifo_mr); /* Flush FIFOs */ at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_THRCLR | AT91_TWI_RHRCLR); } if (!dev->buf_len) { at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_QUICK); at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP); } else if (dev->msg->flags & I2C_M_RD) { unsigned start_flags = AT91_TWI_START; /* if only one byte is to be read, immediately stop transfer */ if (!dev->use_alt_cmd && dev->buf_len <= 1 && !(dev->msg->flags & I2C_M_RECV_LEN)) start_flags |= AT91_TWI_STOP; at91_twi_write(dev, AT91_TWI_CR, start_flags); /* * When using dma without alternative command mode, the last * byte has to be read manually in order to not send the stop * command too late and then to receive extra data. * In practice, there are some issues if you use the dma to * read n-1 bytes because of latency. * Reading n-2 bytes with dma and the two last ones manually * seems to be the best solution. */ if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) { at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK); at91_twi_read_data_dma(dev); } else { at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP | AT91_TWI_NACK | AT91_TWI_RXRDY); } } else { if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) { at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK); at91_twi_write_data_dma(dev); } else { at91_twi_write_next_byte(dev); at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP | AT91_TWI_NACK | (dev->buf_len ? AT91_TWI_TXRDY : 0)); } } time_left = wait_for_completion_timeout(&dev->cmd_complete, dev->adapter.timeout); if (time_left == 0) { dev->transfer_status |= at91_twi_read(dev, AT91_TWI_SR); dev_err(dev->dev, "controller timed out\n"); at91_init_twi_bus(dev); ret = -ETIMEDOUT; goto error; } if (dev->transfer_status & AT91_TWI_NACK) { dev_dbg(dev->dev, "received nack\n"); ret = -EREMOTEIO; goto error; } if (dev->transfer_status & AT91_TWI_OVRE) { dev_err(dev->dev, "overrun while reading\n"); ret = -EIO; goto error; } if (has_unre_flag && dev->transfer_status & AT91_TWI_UNRE) { dev_err(dev->dev, "underrun while writing\n"); ret = -EIO; goto error; } if ((has_alt_cmd || dev->fifo_size) && (dev->transfer_status & AT91_TWI_LOCK)) { dev_err(dev->dev, "tx locked\n"); ret = -EIO; goto error; } if (dev->recv_len_abort) { dev_err(dev->dev, "invalid smbus block length recvd\n"); ret = -EPROTO; goto error; } dev_dbg(dev->dev, "transfer complete\n"); return 0; error: /* first stop DMA transfer if still in progress */ at91_twi_dma_cleanup(dev); /* then flush THR/FIFO and unlock TX if locked */ if ((has_alt_cmd || dev->fifo_size) && (dev->transfer_status & AT91_TWI_LOCK)) { dev_dbg(dev->dev, "unlock tx\n"); at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_THRCLR | AT91_TWI_LOCKCLR); } return ret; } static int at91_twi_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, int num) { struct at91_twi_dev *dev = i2c_get_adapdata(adap); int ret; unsigned int_addr_flag = 0; struct i2c_msg *m_start = msg; bool is_read; dev_dbg(&adap->dev, "at91_xfer: processing %d messages:\n", num); ret = pm_runtime_get_sync(dev->dev); if (ret < 0) goto out; if (num == 2) { int internal_address = 0; int i; /* 1st msg is put into the internal address, start with 2nd */ m_start = &msg[1]; for (i = 0; i < msg->len; ++i) { const unsigned addr = msg->buf[msg->len - 1 - i]; internal_address |= addr << (8 * i); int_addr_flag += AT91_TWI_IADRSZ_1; } at91_twi_write(dev, AT91_TWI_IADR, internal_address); } dev->use_alt_cmd = false; is_read = (m_start->flags & I2C_M_RD); if (dev->pdata->has_alt_cmd) { if (m_start->len > 0 && m_start->len < AT91_I2C_MAX_ALT_CMD_DATA_SIZE) { at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMEN); at91_twi_write(dev, AT91_TWI_ACR, AT91_TWI_ACR_DATAL(m_start->len) | ((is_read) ? AT91_TWI_ACR_DIR : 0)); dev->use_alt_cmd = true; } else { at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMDIS); } } at91_twi_write(dev, AT91_TWI_MMR, (m_start->addr << 16) | int_addr_flag | ((!dev->use_alt_cmd && is_read) ? AT91_TWI_MREAD : 0)); dev->buf_len = m_start->len; dev->buf = m_start->buf; dev->msg = m_start; dev->recv_len_abort = false; ret = at91_do_twi_transfer(dev); ret = (ret < 0) ? ret : num; out: pm_runtime_mark_last_busy(dev->dev); pm_runtime_put_autosuspend(dev->dev); return ret; } /* * The hardware can handle at most two messages concatenated by a * repeated start via it's internal address feature. */ static const struct i2c_adapter_quirks at91_twi_quirks = { .flags = I2C_AQ_COMB | I2C_AQ_COMB_WRITE_FIRST | I2C_AQ_COMB_SAME_ADDR, .max_comb_1st_msg_len = 3, }; static u32 at91_twi_func(struct i2c_adapter *adapter) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_SMBUS_READ_BLOCK_DATA; } static const struct i2c_algorithm at91_twi_algorithm = { .master_xfer = at91_twi_xfer, .functionality = at91_twi_func, }; static int at91_twi_configure_dma(struct at91_twi_dev *dev, u32 phy_addr) { int ret = 0; struct dma_slave_config slave_config; struct at91_twi_dma *dma = &dev->dma; enum dma_slave_buswidth addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; /* * The actual width of the access will be chosen in * dmaengine_prep_slave_sg(): * for each buffer in the scatter-gather list, if its size is aligned * to addr_width then addr_width accesses will be performed to transfer * the buffer. On the other hand, if the buffer size is not aligned to * addr_width then the buffer is transferred using single byte accesses. * Please refer to the Atmel eXtended DMA controller driver. * When FIFOs are used, the TXRDYM threshold can always be set to * trigger the XDMAC when at least 4 data can be written into the TX * FIFO, even if single byte accesses are performed. * However the RXRDYM threshold must be set to fit the access width, * deduced from buffer length, so the XDMAC is triggered properly to * read data from the RX FIFO. */ if (dev->fifo_size) addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; memset(&slave_config, 0, sizeof(slave_config)); slave_config.src_addr = (dma_addr_t)phy_addr + AT91_TWI_RHR; slave_config.src_addr_width = addr_width; slave_config.src_maxburst = 1; slave_config.dst_addr = (dma_addr_t)phy_addr + AT91_TWI_THR; slave_config.dst_addr_width = addr_width; slave_config.dst_maxburst = 1; slave_config.device_fc = false; dma->chan_tx = dma_request_slave_channel_reason(dev->dev, "tx"); if (IS_ERR(dma->chan_tx)) { ret = PTR_ERR(dma->chan_tx); dma->chan_tx = NULL; goto error; } dma->chan_rx = dma_request_slave_channel_reason(dev->dev, "rx"); if (IS_ERR(dma->chan_rx)) { ret = PTR_ERR(dma->chan_rx); dma->chan_rx = NULL; goto error; } slave_config.direction = DMA_MEM_TO_DEV; if (dmaengine_slave_config(dma->chan_tx, &slave_config)) { dev_err(dev->dev, "failed to configure tx channel\n"); ret = -EINVAL; goto error; } slave_config.direction = DMA_DEV_TO_MEM; if (dmaengine_slave_config(dma->chan_rx, &slave_config)) { dev_err(dev->dev, "failed to configure rx channel\n"); ret = -EINVAL; goto error; } sg_init_table(dma->sg, 2); dma->buf_mapped = false; dma->xfer_in_progress = false; dev->use_dma = true; dev_info(dev->dev, "using %s (tx) and %s (rx) for DMA transfers\n", dma_chan_name(dma->chan_tx), dma_chan_name(dma->chan_rx)); return ret; error: if (ret != -EPROBE_DEFER) dev_info(dev->dev, "can't get DMA channel, continue without DMA support\n"); if (dma->chan_rx) dma_release_channel(dma->chan_rx); if (dma->chan_tx) dma_release_channel(dma->chan_tx); return ret; } int at91_twi_probe_master(struct platform_device *pdev, u32 phy_addr, struct at91_twi_dev *dev) { int rc; init_completion(&dev->cmd_complete); rc = devm_request_irq(&pdev->dev, dev->irq, atmel_twi_interrupt, 0, dev_name(dev->dev), dev); if (rc) { dev_err(dev->dev, "Cannot get irq %d: %d\n", dev->irq, rc); return rc; } if (dev->dev->of_node) { rc = at91_twi_configure_dma(dev, phy_addr); if (rc == -EPROBE_DEFER) return rc; } if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size", &dev->fifo_size)) { dev_info(dev->dev, "Using FIFO (%u data)\n", dev->fifo_size); } at91_calc_twi_clock(dev); dev->adapter.algo = &at91_twi_algorithm; dev->adapter.quirks = &at91_twi_quirks; return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1