Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Walleij | 3714 | 96.07% | 6 | 26.09% |
Wolfram Sang | 72 | 1.86% | 5 | 21.74% |
Rafael J. Wysocki | 27 | 0.70% | 1 | 4.35% |
Peter Rosin | 23 | 0.59% | 1 | 4.35% |
Thierry Reding | 10 | 0.26% | 1 | 4.35% |
Luis de Bethencourt | 7 | 0.18% | 1 | 4.35% |
Tejun Heo | 3 | 0.08% | 1 | 4.35% |
Thomas Gleixner | 2 | 0.05% | 1 | 4.35% |
Dan Carpenter | 2 | 0.05% | 1 | 4.35% |
Lucas De Marchi | 2 | 0.05% | 1 | 4.35% |
Thadeu Lima de Souza Cascardo | 1 | 0.03% | 1 | 4.35% |
Yong Zhang | 1 | 0.03% | 1 | 4.35% |
Masanari Iida | 1 | 0.03% | 1 | 4.35% |
Jingoo Han | 1 | 0.03% | 1 | 4.35% |
Total | 3866 | 23 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2007-2012 ST-Ericsson AB * ST DDC I2C master mode driver, used in e.g. U300 series platforms. * Author: Linus Walleij <linus.walleij@stericsson.com> * Author: Jonas Aaberg <jonas.aberg@stericsson.com> */ #include <linux/init.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/delay.h> #include <linux/i2c.h> #include <linux/spinlock.h> #include <linux/completion.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/slab.h> /* the name of this kernel module */ #define NAME "stu300" /* CR (Control Register) 8bit (R/W) */ #define I2C_CR (0x00000000) #define I2C_CR_RESET_VALUE (0x00) #define I2C_CR_RESET_UMASK (0x00) #define I2C_CR_DDC1_ENABLE (0x80) #define I2C_CR_TRANS_ENABLE (0x40) #define I2C_CR_PERIPHERAL_ENABLE (0x20) #define I2C_CR_DDC2B_ENABLE (0x10) #define I2C_CR_START_ENABLE (0x08) #define I2C_CR_ACK_ENABLE (0x04) #define I2C_CR_STOP_ENABLE (0x02) #define I2C_CR_INTERRUPT_ENABLE (0x01) /* SR1 (Status Register 1) 8bit (R/-) */ #define I2C_SR1 (0x00000004) #define I2C_SR1_RESET_VALUE (0x00) #define I2C_SR1_RESET_UMASK (0x00) #define I2C_SR1_EVF_IND (0x80) #define I2C_SR1_ADD10_IND (0x40) #define I2C_SR1_TRA_IND (0x20) #define I2C_SR1_BUSY_IND (0x10) #define I2C_SR1_BTF_IND (0x08) #define I2C_SR1_ADSL_IND (0x04) #define I2C_SR1_MSL_IND (0x02) #define I2C_SR1_SB_IND (0x01) /* SR2 (Status Register 2) 8bit (R/-) */ #define I2C_SR2 (0x00000008) #define I2C_SR2_RESET_VALUE (0x00) #define I2C_SR2_RESET_UMASK (0x40) #define I2C_SR2_MASK (0xBF) #define I2C_SR2_SCLFAL_IND (0x80) #define I2C_SR2_ENDAD_IND (0x20) #define I2C_SR2_AF_IND (0x10) #define I2C_SR2_STOPF_IND (0x08) #define I2C_SR2_ARLO_IND (0x04) #define I2C_SR2_BERR_IND (0x02) #define I2C_SR2_DDC2BF_IND (0x01) /* CCR (Clock Control Register) 8bit (R/W) */ #define I2C_CCR (0x0000000C) #define I2C_CCR_RESET_VALUE (0x00) #define I2C_CCR_RESET_UMASK (0x00) #define I2C_CCR_MASK (0xFF) #define I2C_CCR_FMSM (0x80) #define I2C_CCR_CC_MASK (0x7F) /* OAR1 (Own Address Register 1) 8bit (R/W) */ #define I2C_OAR1 (0x00000010) #define I2C_OAR1_RESET_VALUE (0x00) #define I2C_OAR1_RESET_UMASK (0x00) #define I2C_OAR1_ADD_MASK (0xFF) /* OAR2 (Own Address Register 2) 8bit (R/W) */ #define I2C_OAR2 (0x00000014) #define I2C_OAR2_RESET_VALUE (0x40) #define I2C_OAR2_RESET_UMASK (0x19) #define I2C_OAR2_MASK (0xE6) #define I2C_OAR2_FR_25_10MHZ (0x00) #define I2C_OAR2_FR_10_1667MHZ (0x20) #define I2C_OAR2_FR_1667_2667MHZ (0x40) #define I2C_OAR2_FR_2667_40MHZ (0x60) #define I2C_OAR2_FR_40_5333MHZ (0x80) #define I2C_OAR2_FR_5333_66MHZ (0xA0) #define I2C_OAR2_FR_66_80MHZ (0xC0) #define I2C_OAR2_FR_80_100MHZ (0xE0) #define I2C_OAR2_FR_MASK (0xE0) #define I2C_OAR2_ADD_MASK (0x06) /* DR (Data Register) 8bit (R/W) */ #define I2C_DR (0x00000018) #define I2C_DR_RESET_VALUE (0x00) #define I2C_DR_RESET_UMASK (0xFF) #define I2C_DR_D_MASK (0xFF) /* ECCR (Extended Clock Control Register) 8bit (R/W) */ #define I2C_ECCR (0x0000001C) #define I2C_ECCR_RESET_VALUE (0x00) #define I2C_ECCR_RESET_UMASK (0xE0) #define I2C_ECCR_MASK (0x1F) #define I2C_ECCR_CC_MASK (0x1F) /* * These events are more or less responses to commands * sent into the hardware, presumably reflecting the state * of an internal state machine. */ enum stu300_event { STU300_EVENT_NONE = 0, STU300_EVENT_1, STU300_EVENT_2, STU300_EVENT_3, STU300_EVENT_4, STU300_EVENT_5, STU300_EVENT_6, STU300_EVENT_7, STU300_EVENT_8, STU300_EVENT_9 }; enum stu300_error { STU300_ERROR_NONE = 0, STU300_ERROR_ACKNOWLEDGE_FAILURE, STU300_ERROR_BUS_ERROR, STU300_ERROR_ARBITRATION_LOST, STU300_ERROR_UNKNOWN }; /* timeout waiting for the controller to respond */ #define STU300_TIMEOUT (msecs_to_jiffies(1000)) /* * The number of address send athemps tried before giving up. * If the first one fails it seems like 5 to 8 attempts are required. */ #define NUM_ADDR_RESEND_ATTEMPTS 12 /* I2C clock speed, in Hz 0-400kHz*/ static unsigned int scl_frequency = 100000; module_param(scl_frequency, uint, 0644); /** * struct stu300_dev - the stu300 driver state holder * @pdev: parent platform device * @adapter: corresponding I2C adapter * @clk: hardware block clock * @irq: assigned interrupt line * @cmd_issue_lock: this locks the following cmd_ variables * @cmd_complete: acknowledge completion for an I2C command * @cmd_event: expected event coming in as a response to a command * @cmd_err: error code as response to a command * @speed: current bus speed in Hz * @msg_index: index of current message * @msg_len: length of current message */ struct stu300_dev { struct platform_device *pdev; struct i2c_adapter adapter; void __iomem *virtbase; struct clk *clk; int irq; spinlock_t cmd_issue_lock; struct completion cmd_complete; enum stu300_event cmd_event; enum stu300_error cmd_err; unsigned int speed; int msg_index; int msg_len; }; /* Local forward function declarations */ static int stu300_init_hw(struct stu300_dev *dev); /* * The block needs writes in both MSW and LSW in order * for all data lines to reach their destination. */ static inline void stu300_wr8(u32 value, void __iomem *address) { writel((value << 16) | value, address); } /* * This merely masks off the duplicates which appear * in bytes 1-3. You _MUST_ use 32-bit bus access on this * device, else it will not work. */ static inline u32 stu300_r8(void __iomem *address) { return readl(address) & 0x000000FFU; } static void stu300_irq_enable(struct stu300_dev *dev) { u32 val; val = stu300_r8(dev->virtbase + I2C_CR); val |= I2C_CR_INTERRUPT_ENABLE; /* Twice paranoia (possible HW glitch) */ stu300_wr8(val, dev->virtbase + I2C_CR); stu300_wr8(val, dev->virtbase + I2C_CR); } static void stu300_irq_disable(struct stu300_dev *dev) { u32 val; val = stu300_r8(dev->virtbase + I2C_CR); val &= ~I2C_CR_INTERRUPT_ENABLE; /* Twice paranoia (possible HW glitch) */ stu300_wr8(val, dev->virtbase + I2C_CR); stu300_wr8(val, dev->virtbase + I2C_CR); } /* * Tells whether a certain event or events occurred in * response to a command. The events represent states in * the internal state machine of the hardware. The events * are not very well described in the hardware * documentation and can only be treated as abstract state * machine states. * * @ret 0 = event has not occurred or unknown error, any * other value means the correct event occurred or an error. */ static int stu300_event_occurred(struct stu300_dev *dev, enum stu300_event mr_event) { u32 status1; u32 status2; /* What event happened? */ status1 = stu300_r8(dev->virtbase + I2C_SR1); if (!(status1 & I2C_SR1_EVF_IND)) /* No event at all */ return 0; status2 = stu300_r8(dev->virtbase + I2C_SR2); /* Block any multiple interrupts */ stu300_irq_disable(dev); /* Check for errors first */ if (status2 & I2C_SR2_AF_IND) { dev->cmd_err = STU300_ERROR_ACKNOWLEDGE_FAILURE; return 1; } else if (status2 & I2C_SR2_BERR_IND) { dev->cmd_err = STU300_ERROR_BUS_ERROR; return 1; } else if (status2 & I2C_SR2_ARLO_IND) { dev->cmd_err = STU300_ERROR_ARBITRATION_LOST; return 1; } switch (mr_event) { case STU300_EVENT_1: if (status1 & I2C_SR1_ADSL_IND) return 1; break; case STU300_EVENT_2: case STU300_EVENT_3: case STU300_EVENT_7: case STU300_EVENT_8: if (status1 & I2C_SR1_BTF_IND) { return 1; } break; case STU300_EVENT_4: if (status2 & I2C_SR2_STOPF_IND) return 1; break; case STU300_EVENT_5: if (status1 & I2C_SR1_SB_IND) /* Clear start bit */ return 1; break; case STU300_EVENT_6: if (status2 & I2C_SR2_ENDAD_IND) { /* First check for any errors */ return 1; } break; case STU300_EVENT_9: if (status1 & I2C_SR1_ADD10_IND) return 1; break; default: break; } /* If we get here, we're on thin ice. * Here we are in a status where we have * gotten a response that does not match * what we requested. */ dev->cmd_err = STU300_ERROR_UNKNOWN; dev_err(&dev->pdev->dev, "Unhandled interrupt! %d sr1: 0x%x sr2: 0x%x\n", mr_event, status1, status2); return 0; } static irqreturn_t stu300_irh(int irq, void *data) { struct stu300_dev *dev = data; int res; /* Just make sure that the block is clocked */ clk_enable(dev->clk); /* See if this was what we were waiting for */ spin_lock(&dev->cmd_issue_lock); res = stu300_event_occurred(dev, dev->cmd_event); if (res || dev->cmd_err != STU300_ERROR_NONE) complete(&dev->cmd_complete); spin_unlock(&dev->cmd_issue_lock); clk_disable(dev->clk); return IRQ_HANDLED; } /* * Sends a command and then waits for the bits masked by *flagmask* * to go high or low by IRQ awaiting. */ static int stu300_start_and_await_event(struct stu300_dev *dev, u8 cr_value, enum stu300_event mr_event) { int ret; /* Lock command issue, fill in an event we wait for */ spin_lock_irq(&dev->cmd_issue_lock); init_completion(&dev->cmd_complete); dev->cmd_err = STU300_ERROR_NONE; dev->cmd_event = mr_event; spin_unlock_irq(&dev->cmd_issue_lock); /* Turn on interrupt, send command and wait. */ cr_value |= I2C_CR_INTERRUPT_ENABLE; stu300_wr8(cr_value, dev->virtbase + I2C_CR); ret = wait_for_completion_interruptible_timeout(&dev->cmd_complete, STU300_TIMEOUT); if (ret < 0) { dev_err(&dev->pdev->dev, "wait_for_completion_interruptible_timeout() " "returned %d waiting for event %04x\n", ret, mr_event); return ret; } if (ret == 0) { dev_err(&dev->pdev->dev, "controller timed out " "waiting for event %d, reinit hardware\n", mr_event); (void) stu300_init_hw(dev); return -ETIMEDOUT; } if (dev->cmd_err != STU300_ERROR_NONE) { dev_err(&dev->pdev->dev, "controller (start) " "error %d waiting for event %d, reinit hardware\n", dev->cmd_err, mr_event); (void) stu300_init_hw(dev); return -EIO; } return 0; } /* * This waits for a flag to be set, if it is not set on entry, an interrupt is * configured to wait for the flag using a completion. */ static int stu300_await_event(struct stu300_dev *dev, enum stu300_event mr_event) { int ret; /* Is it already here? */ spin_lock_irq(&dev->cmd_issue_lock); dev->cmd_err = STU300_ERROR_NONE; dev->cmd_event = mr_event; init_completion(&dev->cmd_complete); /* Turn on the I2C interrupt for current operation */ stu300_irq_enable(dev); /* Unlock the command block and wait for the event to occur */ spin_unlock_irq(&dev->cmd_issue_lock); ret = wait_for_completion_interruptible_timeout(&dev->cmd_complete, STU300_TIMEOUT); if (ret < 0) { dev_err(&dev->pdev->dev, "wait_for_completion_interruptible_timeout()" "returned %d waiting for event %04x\n", ret, mr_event); return ret; } if (ret == 0) { if (mr_event != STU300_EVENT_6) { dev_err(&dev->pdev->dev, "controller " "timed out waiting for event %d, reinit " "hardware\n", mr_event); (void) stu300_init_hw(dev); } return -ETIMEDOUT; } if (dev->cmd_err != STU300_ERROR_NONE) { if (mr_event != STU300_EVENT_6) { dev_err(&dev->pdev->dev, "controller " "error (await_event) %d waiting for event %d, " "reinit hardware\n", dev->cmd_err, mr_event); (void) stu300_init_hw(dev); } return -EIO; } return 0; } /* * Waits for the busy bit to go low by repeated polling. */ #define BUSY_RELEASE_ATTEMPTS 10 static int stu300_wait_while_busy(struct stu300_dev *dev) { unsigned long timeout; int i; for (i = 0; i < BUSY_RELEASE_ATTEMPTS; i++) { timeout = jiffies + STU300_TIMEOUT; while (!time_after(jiffies, timeout)) { /* Is not busy? */ if ((stu300_r8(dev->virtbase + I2C_SR1) & I2C_SR1_BUSY_IND) == 0) return 0; msleep(1); } dev_err(&dev->pdev->dev, "transaction timed out " "waiting for device to be free (not busy). " "Attempt: %d\n", i+1); dev_err(&dev->pdev->dev, "base address = " "0x%08x, reinit hardware\n", (u32) dev->virtbase); (void) stu300_init_hw(dev); } dev_err(&dev->pdev->dev, "giving up after %d attempts " "to reset the bus.\n", BUSY_RELEASE_ATTEMPTS); return -ETIMEDOUT; } struct stu300_clkset { unsigned long rate; u32 setting; }; static const struct stu300_clkset stu300_clktable[] = { { 0, 0xFFU }, { 2500000, I2C_OAR2_FR_25_10MHZ }, { 10000000, I2C_OAR2_FR_10_1667MHZ }, { 16670000, I2C_OAR2_FR_1667_2667MHZ }, { 26670000, I2C_OAR2_FR_2667_40MHZ }, { 40000000, I2C_OAR2_FR_40_5333MHZ }, { 53330000, I2C_OAR2_FR_5333_66MHZ }, { 66000000, I2C_OAR2_FR_66_80MHZ }, { 80000000, I2C_OAR2_FR_80_100MHZ }, { 100000000, 0xFFU }, }; static int stu300_set_clk(struct stu300_dev *dev, unsigned long clkrate) { u32 val; int i = 0; /* Locate the appropriate clock setting */ while (i < ARRAY_SIZE(stu300_clktable) - 1 && stu300_clktable[i].rate < clkrate) i++; if (stu300_clktable[i].setting == 0xFFU) { dev_err(&dev->pdev->dev, "too %s clock rate requested " "(%lu Hz).\n", i ? "high" : "low", clkrate); return -EINVAL; } stu300_wr8(stu300_clktable[i].setting, dev->virtbase + I2C_OAR2); dev_dbg(&dev->pdev->dev, "Clock rate %lu Hz, I2C bus speed %d Hz " "virtbase %p\n", clkrate, dev->speed, dev->virtbase); if (dev->speed > 100000) /* Fast Mode I2C */ val = ((clkrate/dev->speed) - 9)/3 + 1; else /* Standard Mode I2C */ val = ((clkrate/dev->speed) - 7)/2 + 1; /* According to spec the divider must be > 2 */ if (val < 0x002) { dev_err(&dev->pdev->dev, "too low clock rate (%lu Hz).\n", clkrate); return -EINVAL; } /* We have 12 bits clock divider only! */ if (val & 0xFFFFF000U) { dev_err(&dev->pdev->dev, "too high clock rate (%lu Hz).\n", clkrate); return -EINVAL; } if (dev->speed > 100000) { /* CC6..CC0 */ stu300_wr8((val & I2C_CCR_CC_MASK) | I2C_CCR_FMSM, dev->virtbase + I2C_CCR); dev_dbg(&dev->pdev->dev, "set clock divider to 0x%08x, " "Fast Mode I2C\n", val); } else { /* CC6..CC0 */ stu300_wr8((val & I2C_CCR_CC_MASK), dev->virtbase + I2C_CCR); dev_dbg(&dev->pdev->dev, "set clock divider to " "0x%08x, Standard Mode I2C\n", val); } /* CC11..CC7 */ stu300_wr8(((val >> 7) & 0x1F), dev->virtbase + I2C_ECCR); return 0; } static int stu300_init_hw(struct stu300_dev *dev) { u32 dummy; unsigned long clkrate; int ret; /* Disable controller */ stu300_wr8(0x00, dev->virtbase + I2C_CR); /* * Set own address to some default value (0x00). * We do not support slave mode anyway. */ stu300_wr8(0x00, dev->virtbase + I2C_OAR1); /* * The I2C controller only operates properly in 26 MHz but we * program this driver as if we didn't know. This will also set the two * high bits of the own address to zero as well. * There is no known hardware issue with running in 13 MHz * However, speeds over 200 kHz are not used. */ clkrate = clk_get_rate(dev->clk); ret = stu300_set_clk(dev, clkrate); if (ret) return ret; /* * Enable block, do it TWICE (hardware glitch) * Setting bit 7 can enable DDC mode. (Not used currently.) */ stu300_wr8(I2C_CR_PERIPHERAL_ENABLE, dev->virtbase + I2C_CR); stu300_wr8(I2C_CR_PERIPHERAL_ENABLE, dev->virtbase + I2C_CR); /* Make a dummy read of the status register SR1 & SR2 */ dummy = stu300_r8(dev->virtbase + I2C_SR2); dummy = stu300_r8(dev->virtbase + I2C_SR1); return 0; } /* Send slave address. */ static int stu300_send_address(struct stu300_dev *dev, struct i2c_msg *msg, int resend) { u32 val; int ret; if (msg->flags & I2C_M_TEN) { /* This is probably how 10 bit addresses look */ val = (0xf0 | (((u32) msg->addr & 0x300) >> 7)) & I2C_DR_D_MASK; if (msg->flags & I2C_M_RD) /* This is the direction bit */ val |= 0x01; } else { val = i2c_8bit_addr_from_msg(msg); } if (resend) { if (msg->flags & I2C_M_RD) dev_dbg(&dev->pdev->dev, "read resend\n"); else dev_dbg(&dev->pdev->dev, "write resend\n"); } stu300_wr8(val, dev->virtbase + I2C_DR); /* For 10bit addressing, await 10bit request (EVENT 9) */ if (msg->flags & I2C_M_TEN) { ret = stu300_await_event(dev, STU300_EVENT_9); /* * The slave device wants a 10bit address, send the rest * of the bits (the LSBits) */ val = msg->addr & I2C_DR_D_MASK; /* This clears "event 9" */ stu300_wr8(val, dev->virtbase + I2C_DR); if (ret != 0) return ret; } /* FIXME: Why no else here? two events for 10bit? * Await event 6 (normal) or event 9 (10bit) */ if (resend) dev_dbg(&dev->pdev->dev, "await event 6\n"); ret = stu300_await_event(dev, STU300_EVENT_6); /* * Clear any pending EVENT 6 no matter what happened during * await_event. */ val = stu300_r8(dev->virtbase + I2C_CR); val |= I2C_CR_PERIPHERAL_ENABLE; stu300_wr8(val, dev->virtbase + I2C_CR); return ret; } static int stu300_xfer_msg(struct i2c_adapter *adap, struct i2c_msg *msg, int stop) { u32 cr; u32 val; u32 i; int ret; int attempts = 0; struct stu300_dev *dev = i2c_get_adapdata(adap); clk_enable(dev->clk); /* Remove this if (0) to trace each and every message. */ if (0) { dev_dbg(&dev->pdev->dev, "I2C message to: 0x%04x, len: %d, " "flags: 0x%04x, stop: %d\n", msg->addr, msg->len, msg->flags, stop); } /* * For some reason, sending the address sometimes fails when running * on the 13 MHz clock. No interrupt arrives. This is a work around, * which tries to restart and send the address up to 10 times before * really giving up. Usually 5 to 8 attempts are enough. */ do { if (attempts) dev_dbg(&dev->pdev->dev, "wait while busy\n"); /* Check that the bus is free, or wait until some timeout */ ret = stu300_wait_while_busy(dev); if (ret != 0) goto exit_disable; if (attempts) dev_dbg(&dev->pdev->dev, "re-int hw\n"); /* * According to ST, there is no problem if the clock is * changed between 13 and 26 MHz during a transfer. */ ret = stu300_init_hw(dev); if (ret) goto exit_disable; /* Send a start condition */ cr = I2C_CR_PERIPHERAL_ENABLE; /* Setting the START bit puts the block in master mode */ if (!(msg->flags & I2C_M_NOSTART)) cr |= I2C_CR_START_ENABLE; if ((msg->flags & I2C_M_RD) && (msg->len > 1)) /* On read more than 1 byte, we need ack. */ cr |= I2C_CR_ACK_ENABLE; /* Check that it gets through */ if (!(msg->flags & I2C_M_NOSTART)) { if (attempts) dev_dbg(&dev->pdev->dev, "send start event\n"); ret = stu300_start_and_await_event(dev, cr, STU300_EVENT_5); } if (attempts) dev_dbg(&dev->pdev->dev, "send address\n"); if (ret == 0) /* Send address */ ret = stu300_send_address(dev, msg, attempts != 0); if (ret != 0) { attempts++; dev_dbg(&dev->pdev->dev, "failed sending address, " "retrying. Attempt: %d msg_index: %d/%d\n", attempts, dev->msg_index, dev->msg_len); } } while (ret != 0 && attempts < NUM_ADDR_RESEND_ATTEMPTS); if (attempts < NUM_ADDR_RESEND_ATTEMPTS && attempts > 0) { dev_dbg(&dev->pdev->dev, "managed to get address " "through after %d attempts\n", attempts); } else if (attempts == NUM_ADDR_RESEND_ATTEMPTS) { dev_dbg(&dev->pdev->dev, "I give up, tried %d times " "to resend address.\n", NUM_ADDR_RESEND_ATTEMPTS); goto exit_disable; } if (msg->flags & I2C_M_RD) { /* READ: we read the actual bytes one at a time */ for (i = 0; i < msg->len; i++) { if (i == msg->len-1) { /* * Disable ACK and set STOP condition before * reading last byte */ val = I2C_CR_PERIPHERAL_ENABLE; if (stop) val |= I2C_CR_STOP_ENABLE; stu300_wr8(val, dev->virtbase + I2C_CR); } /* Wait for this byte... */ ret = stu300_await_event(dev, STU300_EVENT_7); if (ret != 0) goto exit_disable; /* This clears event 7 */ msg->buf[i] = (u8) stu300_r8(dev->virtbase + I2C_DR); } } else { /* WRITE: we send the actual bytes one at a time */ for (i = 0; i < msg->len; i++) { /* Write the byte */ stu300_wr8(msg->buf[i], dev->virtbase + I2C_DR); /* Check status */ ret = stu300_await_event(dev, STU300_EVENT_8); /* Next write to DR will clear event 8 */ if (ret != 0) { dev_err(&dev->pdev->dev, "error awaiting " "event 8 (%d)\n", ret); goto exit_disable; } } /* Check NAK */ if (!(msg->flags & I2C_M_IGNORE_NAK)) { if (stu300_r8(dev->virtbase + I2C_SR2) & I2C_SR2_AF_IND) { dev_err(&dev->pdev->dev, "I2C payload " "send returned NAK!\n"); ret = -EIO; goto exit_disable; } } if (stop) { /* Send stop condition */ val = I2C_CR_PERIPHERAL_ENABLE; val |= I2C_CR_STOP_ENABLE; stu300_wr8(val, dev->virtbase + I2C_CR); } } /* Check that the bus is free, or wait until some timeout occurs */ ret = stu300_wait_while_busy(dev); if (ret != 0) { dev_err(&dev->pdev->dev, "timeout waiting for transfer " "to commence.\n"); goto exit_disable; } /* Dummy read status registers */ val = stu300_r8(dev->virtbase + I2C_SR2); val = stu300_r8(dev->virtbase + I2C_SR1); ret = 0; exit_disable: /* Disable controller */ stu300_wr8(0x00, dev->virtbase + I2C_CR); clk_disable(dev->clk); return ret; } static int stu300_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { int ret = -1; int i; struct stu300_dev *dev = i2c_get_adapdata(adap); dev->msg_len = num; for (i = 0; i < num; i++) { /* * Another driver appears to send stop for each message, * here we only do that for the last message. Possibly some * peripherals require this behaviour, then their drivers * have to send single messages in order to get "stop" for * each message. */ dev->msg_index = i; ret = stu300_xfer_msg(adap, &msgs[i], (i == (num - 1))); if (ret != 0) { num = ret; break; } } return num; } static int stu300_xfer_todo(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { /* TODO: implement polling for this case if need be. */ WARN(1, "%s: atomic transfers not implemented\n", dev_name(&adap->dev)); return -EOPNOTSUPP; } static u32 stu300_func(struct i2c_adapter *adap) { /* This is the simplest thing you can think of... */ return I2C_FUNC_I2C | I2C_FUNC_10BIT_ADDR; } static const struct i2c_algorithm stu300_algo = { .master_xfer = stu300_xfer, .master_xfer_atomic = stu300_xfer_todo, .functionality = stu300_func, }; static const struct i2c_adapter_quirks stu300_quirks = { .flags = I2C_AQ_NO_ZERO_LEN, }; static int stu300_probe(struct platform_device *pdev) { struct stu300_dev *dev; struct i2c_adapter *adap; struct resource *res; int bus_nr; int ret = 0; dev = devm_kzalloc(&pdev->dev, sizeof(struct stu300_dev), GFP_KERNEL); if (!dev) return -ENOMEM; bus_nr = pdev->id; dev->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(dev->clk)) { dev_err(&pdev->dev, "could not retrieve i2c bus clock\n"); return PTR_ERR(dev->clk); } dev->pdev = pdev; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); dev->virtbase = devm_ioremap_resource(&pdev->dev, res); dev_dbg(&pdev->dev, "initialize bus device I2C%d on virtual " "base %p\n", bus_nr, dev->virtbase); if (IS_ERR(dev->virtbase)) return PTR_ERR(dev->virtbase); dev->irq = platform_get_irq(pdev, 0); ret = devm_request_irq(&pdev->dev, dev->irq, stu300_irh, 0, NAME, dev); if (ret < 0) return ret; dev->speed = scl_frequency; clk_prepare_enable(dev->clk); ret = stu300_init_hw(dev); clk_disable(dev->clk); if (ret != 0) { dev_err(&dev->pdev->dev, "error initializing hardware.\n"); return -EIO; } /* IRQ event handling initialization */ spin_lock_init(&dev->cmd_issue_lock); dev->cmd_event = STU300_EVENT_NONE; dev->cmd_err = STU300_ERROR_NONE; adap = &dev->adapter; adap->owner = THIS_MODULE; /* DDC class but actually often used for more generic I2C */ adap->class = I2C_CLASS_DEPRECATED; strlcpy(adap->name, "ST Microelectronics DDC I2C adapter", sizeof(adap->name)); adap->nr = bus_nr; adap->algo = &stu300_algo; adap->dev.parent = &pdev->dev; adap->dev.of_node = pdev->dev.of_node; adap->quirks = &stu300_quirks; i2c_set_adapdata(adap, dev); /* i2c device drivers may be active on return from add_adapter() */ ret = i2c_add_numbered_adapter(adap); if (ret) return ret; platform_set_drvdata(pdev, dev); dev_info(&pdev->dev, "ST DDC I2C @ %p, irq %d\n", dev->virtbase, dev->irq); return 0; } #ifdef CONFIG_PM_SLEEP static int stu300_suspend(struct device *device) { struct stu300_dev *dev = dev_get_drvdata(device); /* Turn off everything */ stu300_wr8(0x00, dev->virtbase + I2C_CR); return 0; } static int stu300_resume(struct device *device) { int ret = 0; struct stu300_dev *dev = dev_get_drvdata(device); clk_enable(dev->clk); ret = stu300_init_hw(dev); clk_disable(dev->clk); if (ret != 0) dev_err(device, "error re-initializing hardware.\n"); return ret; } static SIMPLE_DEV_PM_OPS(stu300_pm, stu300_suspend, stu300_resume); #define STU300_I2C_PM (&stu300_pm) #else #define STU300_I2C_PM NULL #endif static int stu300_remove(struct platform_device *pdev) { struct stu300_dev *dev = platform_get_drvdata(pdev); i2c_del_adapter(&dev->adapter); /* Turn off everything */ stu300_wr8(0x00, dev->virtbase + I2C_CR); return 0; } static const struct of_device_id stu300_dt_match[] = { { .compatible = "st,ddci2c" }, {}, }; MODULE_DEVICE_TABLE(of, stu300_dt_match); static struct platform_driver stu300_i2c_driver = { .driver = { .name = NAME, .pm = STU300_I2C_PM, .of_match_table = stu300_dt_match, }, .probe = stu300_probe, .remove = stu300_remove, }; static int __init stu300_init(void) { return platform_driver_register(&stu300_i2c_driver); } static void __exit stu300_exit(void) { platform_driver_unregister(&stu300_i2c_driver); } /* * The systems using this bus often have very basic devices such * as regulators on the I2C bus, so this needs to be loaded early. * Therefore it is registered in the subsys_initcall(). */ subsys_initcall(stu300_init); module_exit(stu300_exit); MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>"); MODULE_DESCRIPTION("ST Micro DDC I2C adapter (" NAME ")"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:" NAME);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1