Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ge Gao | 2417 | 47.37% | 1 | 1.85% |
Jean-Baptiste Maneyrol | 890 | 17.44% | 15 | 27.78% |
Matt Ranostay | 344 | 6.74% | 4 | 7.41% |
Brian Masney | 271 | 5.31% | 2 | 3.70% |
Adriana Reus | 269 | 5.27% | 6 | 11.11% |
Steve Moskovchenko | 182 | 3.57% | 1 | 1.85% |
Martin Kelly | 151 | 2.96% | 3 | 5.56% |
Randolph Maaßen | 142 | 2.78% | 1 | 1.85% |
Crestez Dan Leonard | 140 | 2.74% | 3 | 5.56% |
Grégor Boirie | 112 | 2.20% | 2 | 3.70% |
Srinivas Pandruvada | 53 | 1.04% | 3 | 5.56% |
Jonathan Cameron | 37 | 0.73% | 2 | 3.70% |
Douglas Fischer | 24 | 0.47% | 1 | 1.85% |
Sachin Kamat | 18 | 0.35% | 1 | 1.85% |
Atilla Filiz | 17 | 0.33% | 1 | 1.85% |
Daniel Baluta | 10 | 0.20% | 2 | 3.70% |
Hans de Goede | 9 | 0.18% | 1 | 1.85% |
H. Nikolaus Schaller | 9 | 0.18% | 1 | 1.85% |
Gustavo A. R. Silva | 2 | 0.04% | 1 | 1.85% |
Thomas Gleixner | 2 | 0.04% | 1 | 1.85% |
Colin Ian King | 2 | 0.04% | 1 | 1.85% |
Andy Shevchenko | 1 | 0.02% | 1 | 1.85% |
Total | 5102 | 54 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012 Invensense, Inc. */ #include <linux/module.h> #include <linux/slab.h> #include <linux/i2c.h> #include <linux/err.h> #include <linux/delay.h> #include <linux/sysfs.h> #include <linux/jiffies.h> #include <linux/irq.h> #include <linux/interrupt.h> #include <linux/iio/iio.h> #include <linux/acpi.h> #include <linux/platform_device.h> #include <linux/regulator/consumer.h> #include "inv_mpu_iio.h" /* * this is the gyro scale translated from dynamic range plus/minus * {250, 500, 1000, 2000} to rad/s */ static const int gyro_scale_6050[] = {133090, 266181, 532362, 1064724}; /* * this is the accel scale translated from dynamic range plus/minus * {2, 4, 8, 16} to m/s^2 */ static const int accel_scale[] = {598, 1196, 2392, 4785}; static const struct inv_mpu6050_reg_map reg_set_icm20602 = { .sample_rate_div = INV_MPU6050_REG_SAMPLE_RATE_DIV, .lpf = INV_MPU6050_REG_CONFIG, .accel_lpf = INV_MPU6500_REG_ACCEL_CONFIG_2, .user_ctrl = INV_MPU6050_REG_USER_CTRL, .fifo_en = INV_MPU6050_REG_FIFO_EN, .gyro_config = INV_MPU6050_REG_GYRO_CONFIG, .accl_config = INV_MPU6050_REG_ACCEL_CONFIG, .fifo_count_h = INV_MPU6050_REG_FIFO_COUNT_H, .fifo_r_w = INV_MPU6050_REG_FIFO_R_W, .raw_gyro = INV_MPU6050_REG_RAW_GYRO, .raw_accl = INV_MPU6050_REG_RAW_ACCEL, .temperature = INV_MPU6050_REG_TEMPERATURE, .int_enable = INV_MPU6050_REG_INT_ENABLE, .int_status = INV_MPU6050_REG_INT_STATUS, .pwr_mgmt_1 = INV_MPU6050_REG_PWR_MGMT_1, .pwr_mgmt_2 = INV_MPU6050_REG_PWR_MGMT_2, .int_pin_cfg = INV_MPU6050_REG_INT_PIN_CFG, .accl_offset = INV_MPU6500_REG_ACCEL_OFFSET, .gyro_offset = INV_MPU6050_REG_GYRO_OFFSET, .i2c_if = INV_ICM20602_REG_I2C_IF, }; static const struct inv_mpu6050_reg_map reg_set_6500 = { .sample_rate_div = INV_MPU6050_REG_SAMPLE_RATE_DIV, .lpf = INV_MPU6050_REG_CONFIG, .accel_lpf = INV_MPU6500_REG_ACCEL_CONFIG_2, .user_ctrl = INV_MPU6050_REG_USER_CTRL, .fifo_en = INV_MPU6050_REG_FIFO_EN, .gyro_config = INV_MPU6050_REG_GYRO_CONFIG, .accl_config = INV_MPU6050_REG_ACCEL_CONFIG, .fifo_count_h = INV_MPU6050_REG_FIFO_COUNT_H, .fifo_r_w = INV_MPU6050_REG_FIFO_R_W, .raw_gyro = INV_MPU6050_REG_RAW_GYRO, .raw_accl = INV_MPU6050_REG_RAW_ACCEL, .temperature = INV_MPU6050_REG_TEMPERATURE, .int_enable = INV_MPU6050_REG_INT_ENABLE, .int_status = INV_MPU6050_REG_INT_STATUS, .pwr_mgmt_1 = INV_MPU6050_REG_PWR_MGMT_1, .pwr_mgmt_2 = INV_MPU6050_REG_PWR_MGMT_2, .int_pin_cfg = INV_MPU6050_REG_INT_PIN_CFG, .accl_offset = INV_MPU6500_REG_ACCEL_OFFSET, .gyro_offset = INV_MPU6050_REG_GYRO_OFFSET, .i2c_if = 0, }; static const struct inv_mpu6050_reg_map reg_set_6050 = { .sample_rate_div = INV_MPU6050_REG_SAMPLE_RATE_DIV, .lpf = INV_MPU6050_REG_CONFIG, .user_ctrl = INV_MPU6050_REG_USER_CTRL, .fifo_en = INV_MPU6050_REG_FIFO_EN, .gyro_config = INV_MPU6050_REG_GYRO_CONFIG, .accl_config = INV_MPU6050_REG_ACCEL_CONFIG, .fifo_count_h = INV_MPU6050_REG_FIFO_COUNT_H, .fifo_r_w = INV_MPU6050_REG_FIFO_R_W, .raw_gyro = INV_MPU6050_REG_RAW_GYRO, .raw_accl = INV_MPU6050_REG_RAW_ACCEL, .temperature = INV_MPU6050_REG_TEMPERATURE, .int_enable = INV_MPU6050_REG_INT_ENABLE, .pwr_mgmt_1 = INV_MPU6050_REG_PWR_MGMT_1, .pwr_mgmt_2 = INV_MPU6050_REG_PWR_MGMT_2, .int_pin_cfg = INV_MPU6050_REG_INT_PIN_CFG, .accl_offset = INV_MPU6050_REG_ACCEL_OFFSET, .gyro_offset = INV_MPU6050_REG_GYRO_OFFSET, .i2c_if = 0, }; static const struct inv_mpu6050_chip_config chip_config_6050 = { .fsr = INV_MPU6050_FSR_2000DPS, .lpf = INV_MPU6050_FILTER_20HZ, .divider = INV_MPU6050_FIFO_RATE_TO_DIVIDER(INV_MPU6050_INIT_FIFO_RATE), .gyro_fifo_enable = false, .accl_fifo_enable = false, .accl_fs = INV_MPU6050_FS_02G, .user_ctrl = 0, }; /* Indexed by enum inv_devices */ static const struct inv_mpu6050_hw hw_info[] = { { .whoami = INV_MPU6050_WHOAMI_VALUE, .name = "MPU6050", .reg = ®_set_6050, .config = &chip_config_6050, }, { .whoami = INV_MPU6500_WHOAMI_VALUE, .name = "MPU6500", .reg = ®_set_6500, .config = &chip_config_6050, }, { .whoami = INV_MPU6515_WHOAMI_VALUE, .name = "MPU6515", .reg = ®_set_6500, .config = &chip_config_6050, }, { .whoami = INV_MPU6000_WHOAMI_VALUE, .name = "MPU6000", .reg = ®_set_6050, .config = &chip_config_6050, }, { .whoami = INV_MPU9150_WHOAMI_VALUE, .name = "MPU9150", .reg = ®_set_6050, .config = &chip_config_6050, }, { .whoami = INV_MPU9250_WHOAMI_VALUE, .name = "MPU9250", .reg = ®_set_6500, .config = &chip_config_6050, }, { .whoami = INV_MPU9255_WHOAMI_VALUE, .name = "MPU9255", .reg = ®_set_6500, .config = &chip_config_6050, }, { .whoami = INV_ICM20608_WHOAMI_VALUE, .name = "ICM20608", .reg = ®_set_6500, .config = &chip_config_6050, }, { .whoami = INV_ICM20602_WHOAMI_VALUE, .name = "ICM20602", .reg = ®_set_icm20602, .config = &chip_config_6050, }, }; int inv_mpu6050_switch_engine(struct inv_mpu6050_state *st, bool en, u32 mask) { unsigned int d, mgmt_1; int result; /* * switch clock needs to be careful. Only when gyro is on, can * clock source be switched to gyro. Otherwise, it must be set to * internal clock */ if (mask == INV_MPU6050_BIT_PWR_GYRO_STBY) { result = regmap_read(st->map, st->reg->pwr_mgmt_1, &mgmt_1); if (result) return result; mgmt_1 &= ~INV_MPU6050_BIT_CLK_MASK; } if ((mask == INV_MPU6050_BIT_PWR_GYRO_STBY) && (!en)) { /* * turning off gyro requires switch to internal clock first. * Then turn off gyro engine */ mgmt_1 |= INV_CLK_INTERNAL; result = regmap_write(st->map, st->reg->pwr_mgmt_1, mgmt_1); if (result) return result; } result = regmap_read(st->map, st->reg->pwr_mgmt_2, &d); if (result) return result; if (en) d &= ~mask; else d |= mask; result = regmap_write(st->map, st->reg->pwr_mgmt_2, d); if (result) return result; if (en) { /* Wait for output to stabilize */ msleep(INV_MPU6050_TEMP_UP_TIME); if (mask == INV_MPU6050_BIT_PWR_GYRO_STBY) { /* switch internal clock to PLL */ mgmt_1 |= INV_CLK_PLL; result = regmap_write(st->map, st->reg->pwr_mgmt_1, mgmt_1); if (result) return result; } } return 0; } int inv_mpu6050_set_power_itg(struct inv_mpu6050_state *st, bool power_on) { int result; if (power_on) { if (!st->powerup_count) { result = regmap_write(st->map, st->reg->pwr_mgmt_1, 0); if (result) return result; usleep_range(INV_MPU6050_REG_UP_TIME_MIN, INV_MPU6050_REG_UP_TIME_MAX); } st->powerup_count++; } else { if (st->powerup_count == 1) { result = regmap_write(st->map, st->reg->pwr_mgmt_1, INV_MPU6050_BIT_SLEEP); if (result) return result; } st->powerup_count--; } dev_dbg(regmap_get_device(st->map), "set power %d, count=%u\n", power_on, st->powerup_count); return 0; } EXPORT_SYMBOL_GPL(inv_mpu6050_set_power_itg); /** * inv_mpu6050_set_lpf_regs() - set low pass filter registers, chip dependent * * MPU60xx/MPU9150 use only 1 register for accelerometer + gyroscope * MPU6500 and above have a dedicated register for accelerometer */ static int inv_mpu6050_set_lpf_regs(struct inv_mpu6050_state *st, enum inv_mpu6050_filter_e val) { int result; result = regmap_write(st->map, st->reg->lpf, val); if (result) return result; switch (st->chip_type) { case INV_MPU6050: case INV_MPU6000: case INV_MPU9150: /* old chips, nothing to do */ result = 0; break; default: /* set accel lpf */ result = regmap_write(st->map, st->reg->accel_lpf, val); break; } return result; } /** * inv_mpu6050_init_config() - Initialize hardware, disable FIFO. * * Initial configuration: * FSR: ± 2000DPS * DLPF: 20Hz * FIFO rate: 50Hz * Clock source: Gyro PLL */ static int inv_mpu6050_init_config(struct iio_dev *indio_dev) { int result; u8 d; struct inv_mpu6050_state *st = iio_priv(indio_dev); result = inv_mpu6050_set_power_itg(st, true); if (result) return result; d = (INV_MPU6050_FSR_2000DPS << INV_MPU6050_GYRO_CONFIG_FSR_SHIFT); result = regmap_write(st->map, st->reg->gyro_config, d); if (result) goto error_power_off; result = inv_mpu6050_set_lpf_regs(st, INV_MPU6050_FILTER_20HZ); if (result) goto error_power_off; d = INV_MPU6050_FIFO_RATE_TO_DIVIDER(INV_MPU6050_INIT_FIFO_RATE); result = regmap_write(st->map, st->reg->sample_rate_div, d); if (result) goto error_power_off; d = (INV_MPU6050_FS_02G << INV_MPU6050_ACCL_CONFIG_FSR_SHIFT); result = regmap_write(st->map, st->reg->accl_config, d); if (result) goto error_power_off; result = regmap_write(st->map, st->reg->int_pin_cfg, st->irq_mask); if (result) return result; memcpy(&st->chip_config, hw_info[st->chip_type].config, sizeof(struct inv_mpu6050_chip_config)); /* * Internal chip period is 1ms (1kHz). * Let's use at the beginning the theorical value before measuring * with interrupt timestamps. */ st->chip_period = NSEC_PER_MSEC; return inv_mpu6050_set_power_itg(st, false); error_power_off: inv_mpu6050_set_power_itg(st, false); return result; } static int inv_mpu6050_sensor_set(struct inv_mpu6050_state *st, int reg, int axis, int val) { int ind, result; __be16 d = cpu_to_be16(val); ind = (axis - IIO_MOD_X) * 2; result = regmap_bulk_write(st->map, reg + ind, (u8 *)&d, 2); if (result) return -EINVAL; return 0; } static int inv_mpu6050_sensor_show(struct inv_mpu6050_state *st, int reg, int axis, int *val) { int ind, result; __be16 d; ind = (axis - IIO_MOD_X) * 2; result = regmap_bulk_read(st->map, reg + ind, (u8 *)&d, 2); if (result) return -EINVAL; *val = (short)be16_to_cpup(&d); return IIO_VAL_INT; } static int inv_mpu6050_read_channel_data(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val) { struct inv_mpu6050_state *st = iio_priv(indio_dev); int result; int ret; result = inv_mpu6050_set_power_itg(st, true); if (result) return result; switch (chan->type) { case IIO_ANGL_VEL: result = inv_mpu6050_switch_engine(st, true, INV_MPU6050_BIT_PWR_GYRO_STBY); if (result) goto error_power_off; ret = inv_mpu6050_sensor_show(st, st->reg->raw_gyro, chan->channel2, val); result = inv_mpu6050_switch_engine(st, false, INV_MPU6050_BIT_PWR_GYRO_STBY); if (result) goto error_power_off; break; case IIO_ACCEL: result = inv_mpu6050_switch_engine(st, true, INV_MPU6050_BIT_PWR_ACCL_STBY); if (result) goto error_power_off; ret = inv_mpu6050_sensor_show(st, st->reg->raw_accl, chan->channel2, val); result = inv_mpu6050_switch_engine(st, false, INV_MPU6050_BIT_PWR_ACCL_STBY); if (result) goto error_power_off; break; case IIO_TEMP: /* wait for stablization */ msleep(INV_MPU6050_SENSOR_UP_TIME); ret = inv_mpu6050_sensor_show(st, st->reg->temperature, IIO_MOD_X, val); break; default: ret = -EINVAL; break; } result = inv_mpu6050_set_power_itg(st, false); if (result) goto error_power_off; return ret; error_power_off: inv_mpu6050_set_power_itg(st, false); return result; } static int inv_mpu6050_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct inv_mpu6050_state *st = iio_priv(indio_dev); int ret = 0; switch (mask) { case IIO_CHAN_INFO_RAW: ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; mutex_lock(&st->lock); ret = inv_mpu6050_read_channel_data(indio_dev, chan, val); mutex_unlock(&st->lock); iio_device_release_direct_mode(indio_dev); return ret; case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_ANGL_VEL: mutex_lock(&st->lock); *val = 0; *val2 = gyro_scale_6050[st->chip_config.fsr]; mutex_unlock(&st->lock); return IIO_VAL_INT_PLUS_NANO; case IIO_ACCEL: mutex_lock(&st->lock); *val = 0; *val2 = accel_scale[st->chip_config.accl_fs]; mutex_unlock(&st->lock); return IIO_VAL_INT_PLUS_MICRO; case IIO_TEMP: *val = 0; if (st->chip_type == INV_ICM20602) *val2 = INV_ICM20602_TEMP_SCALE; else *val2 = INV_MPU6050_TEMP_SCALE; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } case IIO_CHAN_INFO_OFFSET: switch (chan->type) { case IIO_TEMP: if (st->chip_type == INV_ICM20602) *val = INV_ICM20602_TEMP_OFFSET; else *val = INV_MPU6050_TEMP_OFFSET; return IIO_VAL_INT; default: return -EINVAL; } case IIO_CHAN_INFO_CALIBBIAS: switch (chan->type) { case IIO_ANGL_VEL: mutex_lock(&st->lock); ret = inv_mpu6050_sensor_show(st, st->reg->gyro_offset, chan->channel2, val); mutex_unlock(&st->lock); return IIO_VAL_INT; case IIO_ACCEL: mutex_lock(&st->lock); ret = inv_mpu6050_sensor_show(st, st->reg->accl_offset, chan->channel2, val); mutex_unlock(&st->lock); return IIO_VAL_INT; default: return -EINVAL; } default: return -EINVAL; } } static int inv_mpu6050_write_gyro_scale(struct inv_mpu6050_state *st, int val) { int result, i; u8 d; for (i = 0; i < ARRAY_SIZE(gyro_scale_6050); ++i) { if (gyro_scale_6050[i] == val) { d = (i << INV_MPU6050_GYRO_CONFIG_FSR_SHIFT); result = regmap_write(st->map, st->reg->gyro_config, d); if (result) return result; st->chip_config.fsr = i; return 0; } } return -EINVAL; } static int inv_write_raw_get_fmt(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, long mask) { switch (mask) { case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_ANGL_VEL: return IIO_VAL_INT_PLUS_NANO; default: return IIO_VAL_INT_PLUS_MICRO; } default: return IIO_VAL_INT_PLUS_MICRO; } return -EINVAL; } static int inv_mpu6050_write_accel_scale(struct inv_mpu6050_state *st, int val) { int result, i; u8 d; for (i = 0; i < ARRAY_SIZE(accel_scale); ++i) { if (accel_scale[i] == val) { d = (i << INV_MPU6050_ACCL_CONFIG_FSR_SHIFT); result = regmap_write(st->map, st->reg->accl_config, d); if (result) return result; st->chip_config.accl_fs = i; return 0; } } return -EINVAL; } static int inv_mpu6050_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct inv_mpu6050_state *st = iio_priv(indio_dev); int result; /* * we should only update scale when the chip is disabled, i.e. * not running */ result = iio_device_claim_direct_mode(indio_dev); if (result) return result; mutex_lock(&st->lock); result = inv_mpu6050_set_power_itg(st, true); if (result) goto error_write_raw_unlock; switch (mask) { case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_ANGL_VEL: result = inv_mpu6050_write_gyro_scale(st, val2); break; case IIO_ACCEL: result = inv_mpu6050_write_accel_scale(st, val2); break; default: result = -EINVAL; break; } break; case IIO_CHAN_INFO_CALIBBIAS: switch (chan->type) { case IIO_ANGL_VEL: result = inv_mpu6050_sensor_set(st, st->reg->gyro_offset, chan->channel2, val); break; case IIO_ACCEL: result = inv_mpu6050_sensor_set(st, st->reg->accl_offset, chan->channel2, val); break; default: result = -EINVAL; break; } break; default: result = -EINVAL; break; } result |= inv_mpu6050_set_power_itg(st, false); error_write_raw_unlock: mutex_unlock(&st->lock); iio_device_release_direct_mode(indio_dev); return result; } /** * inv_mpu6050_set_lpf() - set low pass filer based on fifo rate. * * Based on the Nyquist principle, the sampling rate must * exceed twice of the bandwidth of the signal, or there * would be alising. This function basically search for the * correct low pass parameters based on the fifo rate, e.g, * sampling frequency. * * lpf is set automatically when setting sampling rate to avoid any aliases. */ static int inv_mpu6050_set_lpf(struct inv_mpu6050_state *st, int rate) { static const int hz[] = {188, 98, 42, 20, 10, 5}; static const int d[] = { INV_MPU6050_FILTER_188HZ, INV_MPU6050_FILTER_98HZ, INV_MPU6050_FILTER_42HZ, INV_MPU6050_FILTER_20HZ, INV_MPU6050_FILTER_10HZ, INV_MPU6050_FILTER_5HZ }; int i, h, result; u8 data; h = (rate >> 1); i = 0; while ((h < hz[i]) && (i < ARRAY_SIZE(d) - 1)) i++; data = d[i]; result = inv_mpu6050_set_lpf_regs(st, data); if (result) return result; st->chip_config.lpf = data; return 0; } /** * inv_mpu6050_fifo_rate_store() - Set fifo rate. */ static ssize_t inv_mpu6050_fifo_rate_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int fifo_rate; u8 d; int result; struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct inv_mpu6050_state *st = iio_priv(indio_dev); if (kstrtoint(buf, 10, &fifo_rate)) return -EINVAL; if (fifo_rate < INV_MPU6050_MIN_FIFO_RATE || fifo_rate > INV_MPU6050_MAX_FIFO_RATE) return -EINVAL; result = iio_device_claim_direct_mode(indio_dev); if (result) return result; /* compute the chip sample rate divider */ d = INV_MPU6050_FIFO_RATE_TO_DIVIDER(fifo_rate); /* compute back the fifo rate to handle truncation cases */ fifo_rate = INV_MPU6050_DIVIDER_TO_FIFO_RATE(d); mutex_lock(&st->lock); if (d == st->chip_config.divider) { result = 0; goto fifo_rate_fail_unlock; } result = inv_mpu6050_set_power_itg(st, true); if (result) goto fifo_rate_fail_unlock; result = regmap_write(st->map, st->reg->sample_rate_div, d); if (result) goto fifo_rate_fail_power_off; st->chip_config.divider = d; result = inv_mpu6050_set_lpf(st, fifo_rate); if (result) goto fifo_rate_fail_power_off; fifo_rate_fail_power_off: result |= inv_mpu6050_set_power_itg(st, false); fifo_rate_fail_unlock: mutex_unlock(&st->lock); iio_device_release_direct_mode(indio_dev); if (result) return result; return count; } /** * inv_fifo_rate_show() - Get the current sampling rate. */ static ssize_t inv_fifo_rate_show(struct device *dev, struct device_attribute *attr, char *buf) { struct inv_mpu6050_state *st = iio_priv(dev_to_iio_dev(dev)); unsigned fifo_rate; mutex_lock(&st->lock); fifo_rate = INV_MPU6050_DIVIDER_TO_FIFO_RATE(st->chip_config.divider); mutex_unlock(&st->lock); return scnprintf(buf, PAGE_SIZE, "%u\n", fifo_rate); } /** * inv_attr_show() - calling this function will show current * parameters. * * Deprecated in favor of IIO mounting matrix API. * * See inv_get_mount_matrix() */ static ssize_t inv_attr_show(struct device *dev, struct device_attribute *attr, char *buf) { struct inv_mpu6050_state *st = iio_priv(dev_to_iio_dev(dev)); struct iio_dev_attr *this_attr = to_iio_dev_attr(attr); s8 *m; switch (this_attr->address) { /* * In MPU6050, the two matrix are the same because gyro and accel * are integrated in one chip */ case ATTR_GYRO_MATRIX: case ATTR_ACCL_MATRIX: m = st->plat_data.orientation; return scnprintf(buf, PAGE_SIZE, "%d, %d, %d; %d, %d, %d; %d, %d, %d\n", m[0], m[1], m[2], m[3], m[4], m[5], m[6], m[7], m[8]); default: return -EINVAL; } } /** * inv_mpu6050_validate_trigger() - validate_trigger callback for invensense * MPU6050 device. * @indio_dev: The IIO device * @trig: The new trigger * * Returns: 0 if the 'trig' matches the trigger registered by the MPU6050 * device, -EINVAL otherwise. */ static int inv_mpu6050_validate_trigger(struct iio_dev *indio_dev, struct iio_trigger *trig) { struct inv_mpu6050_state *st = iio_priv(indio_dev); if (st->trig != trig) return -EINVAL; return 0; } static const struct iio_mount_matrix * inv_get_mount_matrix(const struct iio_dev *indio_dev, const struct iio_chan_spec *chan) { struct inv_mpu6050_state *data = iio_priv(indio_dev); return &data->orientation; } static const struct iio_chan_spec_ext_info inv_ext_info[] = { IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, inv_get_mount_matrix), { } }; #define INV_MPU6050_CHAN(_type, _channel2, _index) \ { \ .type = _type, \ .modified = 1, \ .channel2 = _channel2, \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_CALIBBIAS), \ .scan_index = _index, \ .scan_type = { \ .sign = 's', \ .realbits = 16, \ .storagebits = 16, \ .shift = 0, \ .endianness = IIO_BE, \ }, \ .ext_info = inv_ext_info, \ } static const struct iio_chan_spec inv_mpu_channels[] = { IIO_CHAN_SOFT_TIMESTAMP(INV_MPU6050_SCAN_TIMESTAMP), /* * Note that temperature should only be via polled reading only, * not the final scan elements output. */ { .type = IIO_TEMP, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_OFFSET) | BIT(IIO_CHAN_INFO_SCALE), .scan_index = -1, }, INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_X, INV_MPU6050_SCAN_GYRO_X), INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Y, INV_MPU6050_SCAN_GYRO_Y), INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Z, INV_MPU6050_SCAN_GYRO_Z), INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_X, INV_MPU6050_SCAN_ACCL_X), INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Y, INV_MPU6050_SCAN_ACCL_Y), INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Z, INV_MPU6050_SCAN_ACCL_Z), }; static const unsigned long inv_mpu_scan_masks[] = { /* 3-axis accel */ BIT(INV_MPU6050_SCAN_ACCL_X) | BIT(INV_MPU6050_SCAN_ACCL_Y) | BIT(INV_MPU6050_SCAN_ACCL_Z), /* 3-axis gyro */ BIT(INV_MPU6050_SCAN_GYRO_X) | BIT(INV_MPU6050_SCAN_GYRO_Y) | BIT(INV_MPU6050_SCAN_GYRO_Z), /* 6-axis accel + gyro */ BIT(INV_MPU6050_SCAN_ACCL_X) | BIT(INV_MPU6050_SCAN_ACCL_Y) | BIT(INV_MPU6050_SCAN_ACCL_Z) | BIT(INV_MPU6050_SCAN_GYRO_X) | BIT(INV_MPU6050_SCAN_GYRO_Y) | BIT(INV_MPU6050_SCAN_GYRO_Z), 0, }; static const struct iio_chan_spec inv_icm20602_channels[] = { IIO_CHAN_SOFT_TIMESTAMP(INV_ICM20602_SCAN_TIMESTAMP), { .type = IIO_TEMP, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_OFFSET) | BIT(IIO_CHAN_INFO_SCALE), .scan_index = INV_ICM20602_SCAN_TEMP, .scan_type = { .sign = 's', .realbits = 16, .storagebits = 16, .shift = 0, .endianness = IIO_BE, }, }, INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_X, INV_ICM20602_SCAN_GYRO_X), INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Y, INV_ICM20602_SCAN_GYRO_Y), INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Z, INV_ICM20602_SCAN_GYRO_Z), INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Y, INV_ICM20602_SCAN_ACCL_Y), INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_X, INV_ICM20602_SCAN_ACCL_X), INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Z, INV_ICM20602_SCAN_ACCL_Z), }; static const unsigned long inv_icm20602_scan_masks[] = { /* 3-axis accel + temp (mandatory) */ BIT(INV_ICM20602_SCAN_ACCL_X) | BIT(INV_ICM20602_SCAN_ACCL_Y) | BIT(INV_ICM20602_SCAN_ACCL_Z) | BIT(INV_ICM20602_SCAN_TEMP), /* 3-axis gyro + temp (mandatory) */ BIT(INV_ICM20602_SCAN_GYRO_X) | BIT(INV_ICM20602_SCAN_GYRO_Y) | BIT(INV_ICM20602_SCAN_GYRO_Z) | BIT(INV_ICM20602_SCAN_TEMP), /* 6-axis accel + gyro + temp (mandatory) */ BIT(INV_ICM20602_SCAN_ACCL_X) | BIT(INV_ICM20602_SCAN_ACCL_Y) | BIT(INV_ICM20602_SCAN_ACCL_Z) | BIT(INV_ICM20602_SCAN_GYRO_X) | BIT(INV_ICM20602_SCAN_GYRO_Y) | BIT(INV_ICM20602_SCAN_GYRO_Z) | BIT(INV_ICM20602_SCAN_TEMP), 0, }; /* * The user can choose any frequency between INV_MPU6050_MIN_FIFO_RATE and * INV_MPU6050_MAX_FIFO_RATE, but only these frequencies are matched by the * low-pass filter. Specifically, each of these sampling rates are about twice * the bandwidth of a corresponding low-pass filter, which should eliminate * aliasing following the Nyquist principle. By picking a frequency different * from these, the user risks aliasing effects. */ static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("10 20 50 100 200 500"); static IIO_CONST_ATTR(in_anglvel_scale_available, "0.000133090 0.000266181 0.000532362 0.001064724"); static IIO_CONST_ATTR(in_accel_scale_available, "0.000598 0.001196 0.002392 0.004785"); static IIO_DEV_ATTR_SAMP_FREQ(S_IRUGO | S_IWUSR, inv_fifo_rate_show, inv_mpu6050_fifo_rate_store); /* Deprecated: kept for userspace backward compatibility. */ static IIO_DEVICE_ATTR(in_gyro_matrix, S_IRUGO, inv_attr_show, NULL, ATTR_GYRO_MATRIX); static IIO_DEVICE_ATTR(in_accel_matrix, S_IRUGO, inv_attr_show, NULL, ATTR_ACCL_MATRIX); static struct attribute *inv_attributes[] = { &iio_dev_attr_in_gyro_matrix.dev_attr.attr, /* deprecated */ &iio_dev_attr_in_accel_matrix.dev_attr.attr, /* deprecated */ &iio_dev_attr_sampling_frequency.dev_attr.attr, &iio_const_attr_sampling_frequency_available.dev_attr.attr, &iio_const_attr_in_accel_scale_available.dev_attr.attr, &iio_const_attr_in_anglvel_scale_available.dev_attr.attr, NULL, }; static const struct attribute_group inv_attribute_group = { .attrs = inv_attributes }; static const struct iio_info mpu_info = { .read_raw = &inv_mpu6050_read_raw, .write_raw = &inv_mpu6050_write_raw, .write_raw_get_fmt = &inv_write_raw_get_fmt, .attrs = &inv_attribute_group, .validate_trigger = inv_mpu6050_validate_trigger, }; /** * inv_check_and_setup_chip() - check and setup chip. */ static int inv_check_and_setup_chip(struct inv_mpu6050_state *st) { int result; unsigned int regval; int i; st->hw = &hw_info[st->chip_type]; st->reg = hw_info[st->chip_type].reg; /* check chip self-identification */ result = regmap_read(st->map, INV_MPU6050_REG_WHOAMI, ®val); if (result) return result; if (regval != st->hw->whoami) { /* check whoami against all possible values */ for (i = 0; i < INV_NUM_PARTS; ++i) { if (regval == hw_info[i].whoami) { dev_warn(regmap_get_device(st->map), "whoami mismatch got %#02x (%s)" "expected %#02hhx (%s)\n", regval, hw_info[i].name, st->hw->whoami, st->hw->name); break; } } if (i >= INV_NUM_PARTS) { dev_err(regmap_get_device(st->map), "invalid whoami %#02x expected %#02hhx (%s)\n", regval, st->hw->whoami, st->hw->name); return -ENODEV; } } /* reset to make sure previous state are not there */ result = regmap_write(st->map, st->reg->pwr_mgmt_1, INV_MPU6050_BIT_H_RESET); if (result) return result; msleep(INV_MPU6050_POWER_UP_TIME); /* * Turn power on. After reset, the sleep bit could be on * or off depending on the OTP settings. Turning power on * make it in a definite state as well as making the hardware * state align with the software state */ result = inv_mpu6050_set_power_itg(st, true); if (result) return result; result = inv_mpu6050_switch_engine(st, false, INV_MPU6050_BIT_PWR_ACCL_STBY); if (result) goto error_power_off; result = inv_mpu6050_switch_engine(st, false, INV_MPU6050_BIT_PWR_GYRO_STBY); if (result) goto error_power_off; return inv_mpu6050_set_power_itg(st, false); error_power_off: inv_mpu6050_set_power_itg(st, false); return result; } static int inv_mpu_core_enable_regulator(struct inv_mpu6050_state *st) { int result; result = regulator_enable(st->vddio_supply); if (result) { dev_err(regmap_get_device(st->map), "Failed to enable regulator: %d\n", result); } else { /* Give the device a little bit of time to start up. */ usleep_range(35000, 70000); } return result; } static int inv_mpu_core_disable_regulator(struct inv_mpu6050_state *st) { int result; result = regulator_disable(st->vddio_supply); if (result) dev_err(regmap_get_device(st->map), "Failed to disable regulator: %d\n", result); return result; } static void inv_mpu_core_disable_regulator_action(void *_data) { inv_mpu_core_disable_regulator(_data); } int inv_mpu_core_probe(struct regmap *regmap, int irq, const char *name, int (*inv_mpu_bus_setup)(struct iio_dev *), int chip_type) { struct inv_mpu6050_state *st; struct iio_dev *indio_dev; struct inv_mpu6050_platform_data *pdata; struct device *dev = regmap_get_device(regmap); int result; struct irq_data *desc; int irq_type; indio_dev = devm_iio_device_alloc(dev, sizeof(*st)); if (!indio_dev) return -ENOMEM; BUILD_BUG_ON(ARRAY_SIZE(hw_info) != INV_NUM_PARTS); if (chip_type < 0 || chip_type >= INV_NUM_PARTS) { dev_err(dev, "Bad invensense chip_type=%d name=%s\n", chip_type, name); return -ENODEV; } st = iio_priv(indio_dev); mutex_init(&st->lock); st->chip_type = chip_type; st->powerup_count = 0; st->irq = irq; st->map = regmap; pdata = dev_get_platdata(dev); if (!pdata) { result = iio_read_mount_matrix(dev, "mount-matrix", &st->orientation); if (result) { dev_err(dev, "Failed to retrieve mounting matrix %d\n", result); return result; } } else { st->plat_data = *pdata; } desc = irq_get_irq_data(irq); if (!desc) { dev_err(dev, "Could not find IRQ %d\n", irq); return -EINVAL; } irq_type = irqd_get_trigger_type(desc); if (!irq_type) irq_type = IRQF_TRIGGER_RISING; if (irq_type == IRQF_TRIGGER_RISING) st->irq_mask = INV_MPU6050_ACTIVE_HIGH; else if (irq_type == IRQF_TRIGGER_FALLING) st->irq_mask = INV_MPU6050_ACTIVE_LOW; else if (irq_type == IRQF_TRIGGER_HIGH) st->irq_mask = INV_MPU6050_ACTIVE_HIGH | INV_MPU6050_LATCH_INT_EN; else if (irq_type == IRQF_TRIGGER_LOW) st->irq_mask = INV_MPU6050_ACTIVE_LOW | INV_MPU6050_LATCH_INT_EN; else { dev_err(dev, "Invalid interrupt type 0x%x specified\n", irq_type); return -EINVAL; } st->vddio_supply = devm_regulator_get(dev, "vddio"); if (IS_ERR(st->vddio_supply)) { if (PTR_ERR(st->vddio_supply) != -EPROBE_DEFER) dev_err(dev, "Failed to get vddio regulator %d\n", (int)PTR_ERR(st->vddio_supply)); return PTR_ERR(st->vddio_supply); } result = inv_mpu_core_enable_regulator(st); if (result) return result; result = devm_add_action(dev, inv_mpu_core_disable_regulator_action, st); if (result) { inv_mpu_core_disable_regulator_action(st); dev_err(dev, "Failed to setup regulator cleanup action %d\n", result); return result; } /* power is turned on inside check chip type*/ result = inv_check_and_setup_chip(st); if (result) return result; result = inv_mpu6050_init_config(indio_dev); if (result) { dev_err(dev, "Could not initialize device.\n"); return result; } if (inv_mpu_bus_setup) inv_mpu_bus_setup(indio_dev); dev_set_drvdata(dev, indio_dev); indio_dev->dev.parent = dev; /* name will be NULL when enumerated via ACPI */ if (name) indio_dev->name = name; else indio_dev->name = dev_name(dev); if (chip_type == INV_ICM20602) { indio_dev->channels = inv_icm20602_channels; indio_dev->num_channels = ARRAY_SIZE(inv_icm20602_channels); indio_dev->available_scan_masks = inv_icm20602_scan_masks; } else { indio_dev->channels = inv_mpu_channels; indio_dev->num_channels = ARRAY_SIZE(inv_mpu_channels); indio_dev->available_scan_masks = inv_mpu_scan_masks; } indio_dev->info = &mpu_info; indio_dev->modes = INDIO_BUFFER_TRIGGERED; result = devm_iio_triggered_buffer_setup(dev, indio_dev, iio_pollfunc_store_time, inv_mpu6050_read_fifo, NULL); if (result) { dev_err(dev, "configure buffer fail %d\n", result); return result; } result = inv_mpu6050_probe_trigger(indio_dev, irq_type); if (result) { dev_err(dev, "trigger probe fail %d\n", result); return result; } result = devm_iio_device_register(dev, indio_dev); if (result) { dev_err(dev, "IIO register fail %d\n", result); return result; } return 0; } EXPORT_SYMBOL_GPL(inv_mpu_core_probe); #ifdef CONFIG_PM_SLEEP static int inv_mpu_resume(struct device *dev) { struct inv_mpu6050_state *st = iio_priv(dev_get_drvdata(dev)); int result; mutex_lock(&st->lock); result = inv_mpu_core_enable_regulator(st); if (result) goto out_unlock; result = inv_mpu6050_set_power_itg(st, true); out_unlock: mutex_unlock(&st->lock); return result; } static int inv_mpu_suspend(struct device *dev) { struct inv_mpu6050_state *st = iio_priv(dev_get_drvdata(dev)); int result; mutex_lock(&st->lock); result = inv_mpu6050_set_power_itg(st, false); inv_mpu_core_disable_regulator(st); mutex_unlock(&st->lock); return result; } #endif /* CONFIG_PM_SLEEP */ SIMPLE_DEV_PM_OPS(inv_mpu_pmops, inv_mpu_suspend, inv_mpu_resume); EXPORT_SYMBOL_GPL(inv_mpu_pmops); MODULE_AUTHOR("Invensense Corporation"); MODULE_DESCRIPTION("Invensense device MPU6050 driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1