Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ville Syrjälä | 4366 | 85.86% | 8 | 28.57% |
Dmitry Torokhov | 257 | 5.05% | 6 | 21.43% |
Peter Stokes | 237 | 4.66% | 1 | 3.57% |
Vladis Dronov | 137 | 2.69% | 1 | 3.57% |
Rusty Russell | 39 | 0.77% | 1 | 3.57% |
JJ Ding | 23 | 0.45% | 1 | 3.57% |
Harvey Harrison | 9 | 0.18% | 1 | 3.57% |
Tejun Heo | 3 | 0.06% | 1 | 3.57% |
Paul Gortmaker | 3 | 0.06% | 1 | 3.57% |
Greg Kroah-Hartman | 2 | 0.04% | 1 | 3.57% |
Luis R. Rodriguez | 2 | 0.04% | 1 | 3.57% |
Daniel Mack | 2 | 0.04% | 1 | 3.57% |
Thomas Gleixner | 2 | 0.04% | 1 | 3.57% |
Arvind Yadav | 1 | 0.02% | 1 | 3.57% |
David Brownell | 1 | 0.02% | 1 | 3.57% |
Wolfram Sang | 1 | 0.02% | 1 | 3.57% |
Total | 5085 | 28 |
// SPDX-License-Identifier: GPL-2.0-only /* * ati_remote2 - ATI/Philips USB RF remote driver * * Copyright (C) 2005-2008 Ville Syrjala <syrjala@sci.fi> * Copyright (C) 2007-2008 Peter Stokes <linux@dadeos.co.uk> */ #include <linux/usb/input.h> #include <linux/slab.h> #include <linux/module.h> #define DRIVER_DESC "ATI/Philips USB RF remote driver" MODULE_DESCRIPTION(DRIVER_DESC); MODULE_AUTHOR("Ville Syrjala <syrjala@sci.fi>"); MODULE_LICENSE("GPL"); /* * ATI Remote Wonder II Channel Configuration * * The remote control can be assigned one of sixteen "channels" in order to facilitate * the use of multiple remote controls within range of each other. * A remote's "channel" may be altered by pressing and holding the "PC" button for * approximately 3 seconds, after which the button will slowly flash the count of the * currently configured "channel", using the numeric keypad enter a number between 1 and * 16 and then press the "PC" button again, the button will slowly flash the count of the * newly configured "channel". */ enum { ATI_REMOTE2_MAX_CHANNEL_MASK = 0xFFFF, ATI_REMOTE2_MAX_MODE_MASK = 0x1F, }; static int ati_remote2_set_mask(const char *val, const struct kernel_param *kp, unsigned int max) { unsigned int mask; int ret; if (!val) return -EINVAL; ret = kstrtouint(val, 0, &mask); if (ret) return ret; if (mask & ~max) return -EINVAL; *(unsigned int *)kp->arg = mask; return 0; } static int ati_remote2_set_channel_mask(const char *val, const struct kernel_param *kp) { pr_debug("%s()\n", __func__); return ati_remote2_set_mask(val, kp, ATI_REMOTE2_MAX_CHANNEL_MASK); } static int ati_remote2_get_channel_mask(char *buffer, const struct kernel_param *kp) { pr_debug("%s()\n", __func__); return sprintf(buffer, "0x%04x", *(unsigned int *)kp->arg); } static int ati_remote2_set_mode_mask(const char *val, const struct kernel_param *kp) { pr_debug("%s()\n", __func__); return ati_remote2_set_mask(val, kp, ATI_REMOTE2_MAX_MODE_MASK); } static int ati_remote2_get_mode_mask(char *buffer, const struct kernel_param *kp) { pr_debug("%s()\n", __func__); return sprintf(buffer, "0x%02x", *(unsigned int *)kp->arg); } static unsigned int channel_mask = ATI_REMOTE2_MAX_CHANNEL_MASK; #define param_check_channel_mask(name, p) __param_check(name, p, unsigned int) static const struct kernel_param_ops param_ops_channel_mask = { .set = ati_remote2_set_channel_mask, .get = ati_remote2_get_channel_mask, }; module_param(channel_mask, channel_mask, 0644); MODULE_PARM_DESC(channel_mask, "Bitmask of channels to accept <15:Channel16>...<1:Channel2><0:Channel1>"); static unsigned int mode_mask = ATI_REMOTE2_MAX_MODE_MASK; #define param_check_mode_mask(name, p) __param_check(name, p, unsigned int) static const struct kernel_param_ops param_ops_mode_mask = { .set = ati_remote2_set_mode_mask, .get = ati_remote2_get_mode_mask, }; module_param(mode_mask, mode_mask, 0644); MODULE_PARM_DESC(mode_mask, "Bitmask of modes to accept <4:PC><3:AUX4><2:AUX3><1:AUX2><0:AUX1>"); static const struct usb_device_id ati_remote2_id_table[] = { { USB_DEVICE(0x0471, 0x0602) }, /* ATI Remote Wonder II */ { } }; MODULE_DEVICE_TABLE(usb, ati_remote2_id_table); static DEFINE_MUTEX(ati_remote2_mutex); enum { ATI_REMOTE2_OPENED = 0x1, ATI_REMOTE2_SUSPENDED = 0x2, }; enum { ATI_REMOTE2_AUX1, ATI_REMOTE2_AUX2, ATI_REMOTE2_AUX3, ATI_REMOTE2_AUX4, ATI_REMOTE2_PC, ATI_REMOTE2_MODES, }; static const struct { u8 hw_code; u16 keycode; } ati_remote2_key_table[] = { { 0x00, KEY_0 }, { 0x01, KEY_1 }, { 0x02, KEY_2 }, { 0x03, KEY_3 }, { 0x04, KEY_4 }, { 0x05, KEY_5 }, { 0x06, KEY_6 }, { 0x07, KEY_7 }, { 0x08, KEY_8 }, { 0x09, KEY_9 }, { 0x0c, KEY_POWER }, { 0x0d, KEY_MUTE }, { 0x10, KEY_VOLUMEUP }, { 0x11, KEY_VOLUMEDOWN }, { 0x20, KEY_CHANNELUP }, { 0x21, KEY_CHANNELDOWN }, { 0x28, KEY_FORWARD }, { 0x29, KEY_REWIND }, { 0x2c, KEY_PLAY }, { 0x30, KEY_PAUSE }, { 0x31, KEY_STOP }, { 0x37, KEY_RECORD }, { 0x38, KEY_DVD }, { 0x39, KEY_TV }, { 0x3f, KEY_PROG1 }, /* AUX1-AUX4 and PC */ { 0x54, KEY_MENU }, { 0x58, KEY_UP }, { 0x59, KEY_DOWN }, { 0x5a, KEY_LEFT }, { 0x5b, KEY_RIGHT }, { 0x5c, KEY_OK }, { 0x78, KEY_A }, { 0x79, KEY_B }, { 0x7a, KEY_C }, { 0x7b, KEY_D }, { 0x7c, KEY_E }, { 0x7d, KEY_F }, { 0x82, KEY_ENTER }, { 0x8e, KEY_VENDOR }, { 0x96, KEY_COFFEE }, { 0xa9, BTN_LEFT }, { 0xaa, BTN_RIGHT }, { 0xbe, KEY_QUESTION }, { 0xd0, KEY_EDIT }, { 0xd5, KEY_FRONT }, { 0xf9, KEY_INFO }, }; struct ati_remote2 { struct input_dev *idev; struct usb_device *udev; struct usb_interface *intf[2]; struct usb_endpoint_descriptor *ep[2]; struct urb *urb[2]; void *buf[2]; dma_addr_t buf_dma[2]; unsigned long jiffies; int mode; char name[64]; char phys[64]; /* Each mode (AUX1-AUX4 and PC) can have an independent keymap. */ u16 keycode[ATI_REMOTE2_MODES][ARRAY_SIZE(ati_remote2_key_table)]; unsigned int flags; unsigned int channel_mask; unsigned int mode_mask; }; static int ati_remote2_probe(struct usb_interface *interface, const struct usb_device_id *id); static void ati_remote2_disconnect(struct usb_interface *interface); static int ati_remote2_suspend(struct usb_interface *interface, pm_message_t message); static int ati_remote2_resume(struct usb_interface *interface); static int ati_remote2_reset_resume(struct usb_interface *interface); static int ati_remote2_pre_reset(struct usb_interface *interface); static int ati_remote2_post_reset(struct usb_interface *interface); static struct usb_driver ati_remote2_driver = { .name = "ati_remote2", .probe = ati_remote2_probe, .disconnect = ati_remote2_disconnect, .id_table = ati_remote2_id_table, .suspend = ati_remote2_suspend, .resume = ati_remote2_resume, .reset_resume = ati_remote2_reset_resume, .pre_reset = ati_remote2_pre_reset, .post_reset = ati_remote2_post_reset, .supports_autosuspend = 1, }; static int ati_remote2_submit_urbs(struct ati_remote2 *ar2) { int r; r = usb_submit_urb(ar2->urb[0], GFP_KERNEL); if (r) { dev_err(&ar2->intf[0]->dev, "%s(): usb_submit_urb() = %d\n", __func__, r); return r; } r = usb_submit_urb(ar2->urb[1], GFP_KERNEL); if (r) { usb_kill_urb(ar2->urb[0]); dev_err(&ar2->intf[1]->dev, "%s(): usb_submit_urb() = %d\n", __func__, r); return r; } return 0; } static void ati_remote2_kill_urbs(struct ati_remote2 *ar2) { usb_kill_urb(ar2->urb[1]); usb_kill_urb(ar2->urb[0]); } static int ati_remote2_open(struct input_dev *idev) { struct ati_remote2 *ar2 = input_get_drvdata(idev); int r; dev_dbg(&ar2->intf[0]->dev, "%s()\n", __func__); r = usb_autopm_get_interface(ar2->intf[0]); if (r) { dev_err(&ar2->intf[0]->dev, "%s(): usb_autopm_get_interface() = %d\n", __func__, r); goto fail1; } mutex_lock(&ati_remote2_mutex); if (!(ar2->flags & ATI_REMOTE2_SUSPENDED)) { r = ati_remote2_submit_urbs(ar2); if (r) goto fail2; } ar2->flags |= ATI_REMOTE2_OPENED; mutex_unlock(&ati_remote2_mutex); usb_autopm_put_interface(ar2->intf[0]); return 0; fail2: mutex_unlock(&ati_remote2_mutex); usb_autopm_put_interface(ar2->intf[0]); fail1: return r; } static void ati_remote2_close(struct input_dev *idev) { struct ati_remote2 *ar2 = input_get_drvdata(idev); dev_dbg(&ar2->intf[0]->dev, "%s()\n", __func__); mutex_lock(&ati_remote2_mutex); if (!(ar2->flags & ATI_REMOTE2_SUSPENDED)) ati_remote2_kill_urbs(ar2); ar2->flags &= ~ATI_REMOTE2_OPENED; mutex_unlock(&ati_remote2_mutex); } static void ati_remote2_input_mouse(struct ati_remote2 *ar2) { struct input_dev *idev = ar2->idev; u8 *data = ar2->buf[0]; int channel, mode; channel = data[0] >> 4; if (!((1 << channel) & ar2->channel_mask)) return; mode = data[0] & 0x0F; if (mode > ATI_REMOTE2_PC) { dev_err(&ar2->intf[0]->dev, "Unknown mode byte (%02x %02x %02x %02x)\n", data[3], data[2], data[1], data[0]); return; } if (!((1 << mode) & ar2->mode_mask)) return; input_event(idev, EV_REL, REL_X, (s8) data[1]); input_event(idev, EV_REL, REL_Y, (s8) data[2]); input_sync(idev); } static int ati_remote2_lookup(unsigned int hw_code) { int i; for (i = 0; i < ARRAY_SIZE(ati_remote2_key_table); i++) if (ati_remote2_key_table[i].hw_code == hw_code) return i; return -1; } static void ati_remote2_input_key(struct ati_remote2 *ar2) { struct input_dev *idev = ar2->idev; u8 *data = ar2->buf[1]; int channel, mode, hw_code, index; channel = data[0] >> 4; if (!((1 << channel) & ar2->channel_mask)) return; mode = data[0] & 0x0F; if (mode > ATI_REMOTE2_PC) { dev_err(&ar2->intf[1]->dev, "Unknown mode byte (%02x %02x %02x %02x)\n", data[3], data[2], data[1], data[0]); return; } hw_code = data[2]; if (hw_code == 0x3f) { /* * For some incomprehensible reason the mouse pad generates * events which look identical to the events from the last * pressed mode key. Naturally we don't want to generate key * events for the mouse pad so we filter out any subsequent * events from the same mode key. */ if (ar2->mode == mode) return; if (data[1] == 0) ar2->mode = mode; } if (!((1 << mode) & ar2->mode_mask)) return; index = ati_remote2_lookup(hw_code); if (index < 0) { dev_err(&ar2->intf[1]->dev, "Unknown code byte (%02x %02x %02x %02x)\n", data[3], data[2], data[1], data[0]); return; } switch (data[1]) { case 0: /* release */ break; case 1: /* press */ ar2->jiffies = jiffies + msecs_to_jiffies(idev->rep[REP_DELAY]); break; case 2: /* repeat */ /* No repeat for mouse buttons. */ if (ar2->keycode[mode][index] == BTN_LEFT || ar2->keycode[mode][index] == BTN_RIGHT) return; if (!time_after_eq(jiffies, ar2->jiffies)) return; ar2->jiffies = jiffies + msecs_to_jiffies(idev->rep[REP_PERIOD]); break; default: dev_err(&ar2->intf[1]->dev, "Unknown state byte (%02x %02x %02x %02x)\n", data[3], data[2], data[1], data[0]); return; } input_event(idev, EV_KEY, ar2->keycode[mode][index], data[1]); input_sync(idev); } static void ati_remote2_complete_mouse(struct urb *urb) { struct ati_remote2 *ar2 = urb->context; int r; switch (urb->status) { case 0: usb_mark_last_busy(ar2->udev); ati_remote2_input_mouse(ar2); break; case -ENOENT: case -EILSEQ: case -ECONNRESET: case -ESHUTDOWN: dev_dbg(&ar2->intf[0]->dev, "%s(): urb status = %d\n", __func__, urb->status); return; default: usb_mark_last_busy(ar2->udev); dev_err(&ar2->intf[0]->dev, "%s(): urb status = %d\n", __func__, urb->status); } r = usb_submit_urb(urb, GFP_ATOMIC); if (r) dev_err(&ar2->intf[0]->dev, "%s(): usb_submit_urb() = %d\n", __func__, r); } static void ati_remote2_complete_key(struct urb *urb) { struct ati_remote2 *ar2 = urb->context; int r; switch (urb->status) { case 0: usb_mark_last_busy(ar2->udev); ati_remote2_input_key(ar2); break; case -ENOENT: case -EILSEQ: case -ECONNRESET: case -ESHUTDOWN: dev_dbg(&ar2->intf[1]->dev, "%s(): urb status = %d\n", __func__, urb->status); return; default: usb_mark_last_busy(ar2->udev); dev_err(&ar2->intf[1]->dev, "%s(): urb status = %d\n", __func__, urb->status); } r = usb_submit_urb(urb, GFP_ATOMIC); if (r) dev_err(&ar2->intf[1]->dev, "%s(): usb_submit_urb() = %d\n", __func__, r); } static int ati_remote2_getkeycode(struct input_dev *idev, struct input_keymap_entry *ke) { struct ati_remote2 *ar2 = input_get_drvdata(idev); unsigned int mode; int offset; unsigned int index; unsigned int scancode; if (ke->flags & INPUT_KEYMAP_BY_INDEX) { index = ke->index; if (index >= ATI_REMOTE2_MODES * ARRAY_SIZE(ati_remote2_key_table)) return -EINVAL; mode = ke->index / ARRAY_SIZE(ati_remote2_key_table); offset = ke->index % ARRAY_SIZE(ati_remote2_key_table); scancode = (mode << 8) + ati_remote2_key_table[offset].hw_code; } else { if (input_scancode_to_scalar(ke, &scancode)) return -EINVAL; mode = scancode >> 8; if (mode > ATI_REMOTE2_PC) return -EINVAL; offset = ati_remote2_lookup(scancode & 0xff); if (offset < 0) return -EINVAL; index = mode * ARRAY_SIZE(ati_remote2_key_table) + offset; } ke->keycode = ar2->keycode[mode][offset]; ke->len = sizeof(scancode); memcpy(&ke->scancode, &scancode, sizeof(scancode)); ke->index = index; return 0; } static int ati_remote2_setkeycode(struct input_dev *idev, const struct input_keymap_entry *ke, unsigned int *old_keycode) { struct ati_remote2 *ar2 = input_get_drvdata(idev); unsigned int mode; int offset; unsigned int index; unsigned int scancode; if (ke->flags & INPUT_KEYMAP_BY_INDEX) { if (ke->index >= ATI_REMOTE2_MODES * ARRAY_SIZE(ati_remote2_key_table)) return -EINVAL; mode = ke->index / ARRAY_SIZE(ati_remote2_key_table); offset = ke->index % ARRAY_SIZE(ati_remote2_key_table); } else { if (input_scancode_to_scalar(ke, &scancode)) return -EINVAL; mode = scancode >> 8; if (mode > ATI_REMOTE2_PC) return -EINVAL; offset = ati_remote2_lookup(scancode & 0xff); if (offset < 0) return -EINVAL; } *old_keycode = ar2->keycode[mode][offset]; ar2->keycode[mode][offset] = ke->keycode; __set_bit(ke->keycode, idev->keybit); for (mode = 0; mode < ATI_REMOTE2_MODES; mode++) { for (index = 0; index < ARRAY_SIZE(ati_remote2_key_table); index++) { if (ar2->keycode[mode][index] == *old_keycode) return 0; } } __clear_bit(*old_keycode, idev->keybit); return 0; } static int ati_remote2_input_init(struct ati_remote2 *ar2) { struct input_dev *idev; int index, mode, retval; idev = input_allocate_device(); if (!idev) return -ENOMEM; ar2->idev = idev; input_set_drvdata(idev, ar2); idev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REP) | BIT_MASK(EV_REL); idev->keybit[BIT_WORD(BTN_MOUSE)] = BIT_MASK(BTN_LEFT) | BIT_MASK(BTN_RIGHT); idev->relbit[0] = BIT_MASK(REL_X) | BIT_MASK(REL_Y); for (mode = 0; mode < ATI_REMOTE2_MODES; mode++) { for (index = 0; index < ARRAY_SIZE(ati_remote2_key_table); index++) { ar2->keycode[mode][index] = ati_remote2_key_table[index].keycode; __set_bit(ar2->keycode[mode][index], idev->keybit); } } /* AUX1-AUX4 and PC generate the same scancode. */ index = ati_remote2_lookup(0x3f); ar2->keycode[ATI_REMOTE2_AUX1][index] = KEY_PROG1; ar2->keycode[ATI_REMOTE2_AUX2][index] = KEY_PROG2; ar2->keycode[ATI_REMOTE2_AUX3][index] = KEY_PROG3; ar2->keycode[ATI_REMOTE2_AUX4][index] = KEY_PROG4; ar2->keycode[ATI_REMOTE2_PC][index] = KEY_PC; __set_bit(KEY_PROG1, idev->keybit); __set_bit(KEY_PROG2, idev->keybit); __set_bit(KEY_PROG3, idev->keybit); __set_bit(KEY_PROG4, idev->keybit); __set_bit(KEY_PC, idev->keybit); idev->rep[REP_DELAY] = 250; idev->rep[REP_PERIOD] = 33; idev->open = ati_remote2_open; idev->close = ati_remote2_close; idev->getkeycode = ati_remote2_getkeycode; idev->setkeycode = ati_remote2_setkeycode; idev->name = ar2->name; idev->phys = ar2->phys; usb_to_input_id(ar2->udev, &idev->id); idev->dev.parent = &ar2->udev->dev; retval = input_register_device(idev); if (retval) input_free_device(idev); return retval; } static int ati_remote2_urb_init(struct ati_remote2 *ar2) { struct usb_device *udev = ar2->udev; int i, pipe, maxp; for (i = 0; i < 2; i++) { ar2->buf[i] = usb_alloc_coherent(udev, 4, GFP_KERNEL, &ar2->buf_dma[i]); if (!ar2->buf[i]) return -ENOMEM; ar2->urb[i] = usb_alloc_urb(0, GFP_KERNEL); if (!ar2->urb[i]) return -ENOMEM; pipe = usb_rcvintpipe(udev, ar2->ep[i]->bEndpointAddress); maxp = usb_maxpacket(udev, pipe, usb_pipeout(pipe)); maxp = maxp > 4 ? 4 : maxp; usb_fill_int_urb(ar2->urb[i], udev, pipe, ar2->buf[i], maxp, i ? ati_remote2_complete_key : ati_remote2_complete_mouse, ar2, ar2->ep[i]->bInterval); ar2->urb[i]->transfer_dma = ar2->buf_dma[i]; ar2->urb[i]->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; } return 0; } static void ati_remote2_urb_cleanup(struct ati_remote2 *ar2) { int i; for (i = 0; i < 2; i++) { usb_free_urb(ar2->urb[i]); usb_free_coherent(ar2->udev, 4, ar2->buf[i], ar2->buf_dma[i]); } } static int ati_remote2_setup(struct ati_remote2 *ar2, unsigned int ch_mask) { int r, i, channel; /* * Configure receiver to only accept input from remote "channel" * channel == 0 -> Accept input from any remote channel * channel == 1 -> Only accept input from remote channel 1 * channel == 2 -> Only accept input from remote channel 2 * ... * channel == 16 -> Only accept input from remote channel 16 */ channel = 0; for (i = 0; i < 16; i++) { if ((1 << i) & ch_mask) { if (!(~(1 << i) & ch_mask)) channel = i + 1; break; } } r = usb_control_msg(ar2->udev, usb_sndctrlpipe(ar2->udev, 0), 0x20, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, channel, 0x0, NULL, 0, USB_CTRL_SET_TIMEOUT); if (r) { dev_err(&ar2->udev->dev, "%s - failed to set channel due to error: %d\n", __func__, r); return r; } return 0; } static ssize_t ati_remote2_show_channel_mask(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_device *udev = to_usb_device(dev); struct usb_interface *intf = usb_ifnum_to_if(udev, 0); struct ati_remote2 *ar2 = usb_get_intfdata(intf); return sprintf(buf, "0x%04x\n", ar2->channel_mask); } static ssize_t ati_remote2_store_channel_mask(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct usb_device *udev = to_usb_device(dev); struct usb_interface *intf = usb_ifnum_to_if(udev, 0); struct ati_remote2 *ar2 = usb_get_intfdata(intf); unsigned int mask; int r; r = kstrtouint(buf, 0, &mask); if (r) return r; if (mask & ~ATI_REMOTE2_MAX_CHANNEL_MASK) return -EINVAL; r = usb_autopm_get_interface(ar2->intf[0]); if (r) { dev_err(&ar2->intf[0]->dev, "%s(): usb_autopm_get_interface() = %d\n", __func__, r); return r; } mutex_lock(&ati_remote2_mutex); if (mask != ar2->channel_mask) { r = ati_remote2_setup(ar2, mask); if (!r) ar2->channel_mask = mask; } mutex_unlock(&ati_remote2_mutex); usb_autopm_put_interface(ar2->intf[0]); return r ? r : count; } static ssize_t ati_remote2_show_mode_mask(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_device *udev = to_usb_device(dev); struct usb_interface *intf = usb_ifnum_to_if(udev, 0); struct ati_remote2 *ar2 = usb_get_intfdata(intf); return sprintf(buf, "0x%02x\n", ar2->mode_mask); } static ssize_t ati_remote2_store_mode_mask(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct usb_device *udev = to_usb_device(dev); struct usb_interface *intf = usb_ifnum_to_if(udev, 0); struct ati_remote2 *ar2 = usb_get_intfdata(intf); unsigned int mask; int err; err = kstrtouint(buf, 0, &mask); if (err) return err; if (mask & ~ATI_REMOTE2_MAX_MODE_MASK) return -EINVAL; ar2->mode_mask = mask; return count; } static DEVICE_ATTR(channel_mask, 0644, ati_remote2_show_channel_mask, ati_remote2_store_channel_mask); static DEVICE_ATTR(mode_mask, 0644, ati_remote2_show_mode_mask, ati_remote2_store_mode_mask); static struct attribute *ati_remote2_attrs[] = { &dev_attr_channel_mask.attr, &dev_attr_mode_mask.attr, NULL, }; static struct attribute_group ati_remote2_attr_group = { .attrs = ati_remote2_attrs, }; static int ati_remote2_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(interface); struct usb_host_interface *alt = interface->cur_altsetting; struct ati_remote2 *ar2; int r; if (alt->desc.bInterfaceNumber) return -ENODEV; ar2 = kzalloc(sizeof (struct ati_remote2), GFP_KERNEL); if (!ar2) return -ENOMEM; ar2->udev = udev; /* Sanity check, first interface must have an endpoint */ if (alt->desc.bNumEndpoints < 1 || !alt->endpoint) { dev_err(&interface->dev, "%s(): interface 0 must have an endpoint\n", __func__); r = -ENODEV; goto fail1; } ar2->intf[0] = interface; ar2->ep[0] = &alt->endpoint[0].desc; /* Sanity check, the device must have two interfaces */ ar2->intf[1] = usb_ifnum_to_if(udev, 1); if ((udev->actconfig->desc.bNumInterfaces < 2) || !ar2->intf[1]) { dev_err(&interface->dev, "%s(): need 2 interfaces, found %d\n", __func__, udev->actconfig->desc.bNumInterfaces); r = -ENODEV; goto fail1; } r = usb_driver_claim_interface(&ati_remote2_driver, ar2->intf[1], ar2); if (r) goto fail1; /* Sanity check, second interface must have an endpoint */ alt = ar2->intf[1]->cur_altsetting; if (alt->desc.bNumEndpoints < 1 || !alt->endpoint) { dev_err(&interface->dev, "%s(): interface 1 must have an endpoint\n", __func__); r = -ENODEV; goto fail2; } ar2->ep[1] = &alt->endpoint[0].desc; r = ati_remote2_urb_init(ar2); if (r) goto fail3; ar2->channel_mask = channel_mask; ar2->mode_mask = mode_mask; r = ati_remote2_setup(ar2, ar2->channel_mask); if (r) goto fail3; usb_make_path(udev, ar2->phys, sizeof(ar2->phys)); strlcat(ar2->phys, "/input0", sizeof(ar2->phys)); strlcat(ar2->name, "ATI Remote Wonder II", sizeof(ar2->name)); r = sysfs_create_group(&udev->dev.kobj, &ati_remote2_attr_group); if (r) goto fail3; r = ati_remote2_input_init(ar2); if (r) goto fail4; usb_set_intfdata(interface, ar2); interface->needs_remote_wakeup = 1; return 0; fail4: sysfs_remove_group(&udev->dev.kobj, &ati_remote2_attr_group); fail3: ati_remote2_urb_cleanup(ar2); fail2: usb_driver_release_interface(&ati_remote2_driver, ar2->intf[1]); fail1: kfree(ar2); return r; } static void ati_remote2_disconnect(struct usb_interface *interface) { struct ati_remote2 *ar2; struct usb_host_interface *alt = interface->cur_altsetting; if (alt->desc.bInterfaceNumber) return; ar2 = usb_get_intfdata(interface); usb_set_intfdata(interface, NULL); input_unregister_device(ar2->idev); sysfs_remove_group(&ar2->udev->dev.kobj, &ati_remote2_attr_group); ati_remote2_urb_cleanup(ar2); usb_driver_release_interface(&ati_remote2_driver, ar2->intf[1]); kfree(ar2); } static int ati_remote2_suspend(struct usb_interface *interface, pm_message_t message) { struct ati_remote2 *ar2; struct usb_host_interface *alt = interface->cur_altsetting; if (alt->desc.bInterfaceNumber) return 0; ar2 = usb_get_intfdata(interface); dev_dbg(&ar2->intf[0]->dev, "%s()\n", __func__); mutex_lock(&ati_remote2_mutex); if (ar2->flags & ATI_REMOTE2_OPENED) ati_remote2_kill_urbs(ar2); ar2->flags |= ATI_REMOTE2_SUSPENDED; mutex_unlock(&ati_remote2_mutex); return 0; } static int ati_remote2_resume(struct usb_interface *interface) { struct ati_remote2 *ar2; struct usb_host_interface *alt = interface->cur_altsetting; int r = 0; if (alt->desc.bInterfaceNumber) return 0; ar2 = usb_get_intfdata(interface); dev_dbg(&ar2->intf[0]->dev, "%s()\n", __func__); mutex_lock(&ati_remote2_mutex); if (ar2->flags & ATI_REMOTE2_OPENED) r = ati_remote2_submit_urbs(ar2); if (!r) ar2->flags &= ~ATI_REMOTE2_SUSPENDED; mutex_unlock(&ati_remote2_mutex); return r; } static int ati_remote2_reset_resume(struct usb_interface *interface) { struct ati_remote2 *ar2; struct usb_host_interface *alt = interface->cur_altsetting; int r = 0; if (alt->desc.bInterfaceNumber) return 0; ar2 = usb_get_intfdata(interface); dev_dbg(&ar2->intf[0]->dev, "%s()\n", __func__); mutex_lock(&ati_remote2_mutex); r = ati_remote2_setup(ar2, ar2->channel_mask); if (r) goto out; if (ar2->flags & ATI_REMOTE2_OPENED) r = ati_remote2_submit_urbs(ar2); if (!r) ar2->flags &= ~ATI_REMOTE2_SUSPENDED; out: mutex_unlock(&ati_remote2_mutex); return r; } static int ati_remote2_pre_reset(struct usb_interface *interface) { struct ati_remote2 *ar2; struct usb_host_interface *alt = interface->cur_altsetting; if (alt->desc.bInterfaceNumber) return 0; ar2 = usb_get_intfdata(interface); dev_dbg(&ar2->intf[0]->dev, "%s()\n", __func__); mutex_lock(&ati_remote2_mutex); if (ar2->flags == ATI_REMOTE2_OPENED) ati_remote2_kill_urbs(ar2); return 0; } static int ati_remote2_post_reset(struct usb_interface *interface) { struct ati_remote2 *ar2; struct usb_host_interface *alt = interface->cur_altsetting; int r = 0; if (alt->desc.bInterfaceNumber) return 0; ar2 = usb_get_intfdata(interface); dev_dbg(&ar2->intf[0]->dev, "%s()\n", __func__); if (ar2->flags == ATI_REMOTE2_OPENED) r = ati_remote2_submit_urbs(ar2); mutex_unlock(&ati_remote2_mutex); return r; } module_usb_driver(ati_remote2_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1