Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kent Overstreet | 939 | 87.35% | 26 | 72.22% |
Coly Li | 101 | 9.40% | 4 | 11.11% |
tang.junhui | 14 | 1.30% | 1 | 2.78% |
Slava Pestov | 11 | 1.02% | 2 | 5.56% |
Wang Sheng-Hui | 8 | 0.74% | 1 | 2.78% |
Ingo Molnar | 1 | 0.09% | 1 | 2.78% |
Greg Kroah-Hartman | 1 | 0.09% | 1 | 2.78% |
Total | 1075 | 36 |
/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _BCACHE_BTREE_H #define _BCACHE_BTREE_H /* * THE BTREE: * * At a high level, bcache's btree is relatively standard b+ tree. All keys and * pointers are in the leaves; interior nodes only have pointers to the child * nodes. * * In the interior nodes, a struct bkey always points to a child btree node, and * the key is the highest key in the child node - except that the highest key in * an interior node is always MAX_KEY. The size field refers to the size on disk * of the child node - this would allow us to have variable sized btree nodes * (handy for keeping the depth of the btree 1 by expanding just the root). * * Btree nodes are themselves log structured, but this is hidden fairly * thoroughly. Btree nodes on disk will in practice have extents that overlap * (because they were written at different times), but in memory we never have * overlapping extents - when we read in a btree node from disk, the first thing * we do is resort all the sets of keys with a mergesort, and in the same pass * we check for overlapping extents and adjust them appropriately. * * struct btree_op is a central interface to the btree code. It's used for * specifying read vs. write locking, and the embedded closure is used for * waiting on IO or reserve memory. * * BTREE CACHE: * * Btree nodes are cached in memory; traversing the btree might require reading * in btree nodes which is handled mostly transparently. * * bch_btree_node_get() looks up a btree node in the cache and reads it in from * disk if necessary. This function is almost never called directly though - the * btree() macro is used to get a btree node, call some function on it, and * unlock the node after the function returns. * * The root is special cased - it's taken out of the cache's lru (thus pinning * it in memory), so we can find the root of the btree by just dereferencing a * pointer instead of looking it up in the cache. This makes locking a bit * tricky, since the root pointer is protected by the lock in the btree node it * points to - the btree_root() macro handles this. * * In various places we must be able to allocate memory for multiple btree nodes * in order to make forward progress. To do this we use the btree cache itself * as a reserve; if __get_free_pages() fails, we'll find a node in the btree * cache we can reuse. We can't allow more than one thread to be doing this at a * time, so there's a lock, implemented by a pointer to the btree_op closure - * this allows the btree_root() macro to implicitly release this lock. * * BTREE IO: * * Btree nodes never have to be explicitly read in; bch_btree_node_get() handles * this. * * For writing, we have two btree_write structs embeddded in struct btree - one * write in flight, and one being set up, and we toggle between them. * * Writing is done with a single function - bch_btree_write() really serves two * different purposes and should be broken up into two different functions. When * passing now = false, it merely indicates that the node is now dirty - calling * it ensures that the dirty keys will be written at some point in the future. * * When passing now = true, bch_btree_write() causes a write to happen * "immediately" (if there was already a write in flight, it'll cause the write * to happen as soon as the previous write completes). It returns immediately * though - but it takes a refcount on the closure in struct btree_op you passed * to it, so a closure_sync() later can be used to wait for the write to * complete. * * This is handy because btree_split() and garbage collection can issue writes * in parallel, reducing the amount of time they have to hold write locks. * * LOCKING: * * When traversing the btree, we may need write locks starting at some level - * inserting a key into the btree will typically only require a write lock on * the leaf node. * * This is specified with the lock field in struct btree_op; lock = 0 means we * take write locks at level <= 0, i.e. only leaf nodes. bch_btree_node_get() * checks this field and returns the node with the appropriate lock held. * * If, after traversing the btree, the insertion code discovers it has to split * then it must restart from the root and take new locks - to do this it changes * the lock field and returns -EINTR, which causes the btree_root() macro to * loop. * * Handling cache misses require a different mechanism for upgrading to a write * lock. We do cache lookups with only a read lock held, but if we get a cache * miss and we wish to insert this data into the cache, we have to insert a * placeholder key to detect races - otherwise, we could race with a write and * overwrite the data that was just written to the cache with stale data from * the backing device. * * For this we use a sequence number that write locks and unlocks increment - to * insert the check key it unlocks the btree node and then takes a write lock, * and fails if the sequence number doesn't match. */ #include "bset.h" #include "debug.h" struct btree_write { atomic_t *journal; /* If btree_split() frees a btree node, it writes a new pointer to that * btree node indicating it was freed; it takes a refcount on * c->prio_blocked because we can't write the gens until the new * pointer is on disk. This allows btree_write_endio() to release the * refcount that btree_split() took. */ int prio_blocked; }; struct btree { /* Hottest entries first */ struct hlist_node hash; /* Key/pointer for this btree node */ BKEY_PADDED(key); /* Single bit - set when accessed, cleared by shrinker */ unsigned long accessed; unsigned long seq; struct rw_semaphore lock; struct cache_set *c; struct btree *parent; struct mutex write_lock; unsigned long flags; uint16_t written; /* would be nice to kill */ uint8_t level; struct btree_keys keys; /* For outstanding btree writes, used as a lock - protects write_idx */ struct closure io; struct semaphore io_mutex; struct list_head list; struct delayed_work work; struct btree_write writes[2]; struct bio *bio; }; #define BTREE_FLAG(flag) \ static inline bool btree_node_ ## flag(struct btree *b) \ { return test_bit(BTREE_NODE_ ## flag, &b->flags); } \ \ static inline void set_btree_node_ ## flag(struct btree *b) \ { set_bit(BTREE_NODE_ ## flag, &b->flags); } enum btree_flags { BTREE_NODE_io_error, BTREE_NODE_dirty, BTREE_NODE_write_idx, BTREE_NODE_journal_flush, }; BTREE_FLAG(io_error); BTREE_FLAG(dirty); BTREE_FLAG(write_idx); BTREE_FLAG(journal_flush); static inline struct btree_write *btree_current_write(struct btree *b) { return b->writes + btree_node_write_idx(b); } static inline struct btree_write *btree_prev_write(struct btree *b) { return b->writes + (btree_node_write_idx(b) ^ 1); } static inline struct bset *btree_bset_first(struct btree *b) { return b->keys.set->data; } static inline struct bset *btree_bset_last(struct btree *b) { return bset_tree_last(&b->keys)->data; } static inline unsigned int bset_block_offset(struct btree *b, struct bset *i) { return bset_sector_offset(&b->keys, i) >> b->c->block_bits; } static inline void set_gc_sectors(struct cache_set *c) { atomic_set(&c->sectors_to_gc, c->sb.bucket_size * c->nbuckets / 16); } void bkey_put(struct cache_set *c, struct bkey *k); /* Looping macros */ #define for_each_cached_btree(b, c, iter) \ for (iter = 0; \ iter < ARRAY_SIZE((c)->bucket_hash); \ iter++) \ hlist_for_each_entry_rcu((b), (c)->bucket_hash + iter, hash) /* Recursing down the btree */ struct btree_op { /* for waiting on btree reserve in btree_split() */ wait_queue_entry_t wait; /* Btree level at which we start taking write locks */ short lock; unsigned int insert_collision:1; }; static inline void bch_btree_op_init(struct btree_op *op, int write_lock_level) { memset(op, 0, sizeof(struct btree_op)); init_wait(&op->wait); op->lock = write_lock_level; } static inline void rw_lock(bool w, struct btree *b, int level) { w ? down_write_nested(&b->lock, level + 1) : down_read_nested(&b->lock, level + 1); if (w) b->seq++; } static inline void rw_unlock(bool w, struct btree *b) { if (w) b->seq++; (w ? up_write : up_read)(&b->lock); } void bch_btree_node_read_done(struct btree *b); void __bch_btree_node_write(struct btree *b, struct closure *parent); void bch_btree_node_write(struct btree *b, struct closure *parent); void bch_btree_set_root(struct btree *b); struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op, int level, bool wait, struct btree *parent); struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op, struct bkey *k, int level, bool write, struct btree *parent); int bch_btree_insert_check_key(struct btree *b, struct btree_op *op, struct bkey *check_key); int bch_btree_insert(struct cache_set *c, struct keylist *keys, atomic_t *journal_ref, struct bkey *replace_key); int bch_gc_thread_start(struct cache_set *c); void bch_initial_gc_finish(struct cache_set *c); void bch_moving_gc(struct cache_set *c); int bch_btree_check(struct cache_set *c); void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k); static inline void wake_up_gc(struct cache_set *c) { wake_up(&c->gc_wait); } static inline void force_wake_up_gc(struct cache_set *c) { /* * Garbage collection thread only works when sectors_to_gc < 0, * calling wake_up_gc() won't start gc thread if sectors_to_gc is * not a nagetive value. * Therefore sectors_to_gc is set to -1 here, before waking up * gc thread by calling wake_up_gc(). Then gc_should_run() will * give a chance to permit gc thread to run. "Give a chance" means * before going into gc_should_run(), there is still possibility * that c->sectors_to_gc being set to other positive value. So * this routine won't 100% make sure gc thread will be woken up * to run. */ atomic_set(&c->sectors_to_gc, -1); wake_up_gc(c); } #define MAP_DONE 0 #define MAP_CONTINUE 1 #define MAP_ALL_NODES 0 #define MAP_LEAF_NODES 1 #define MAP_END_KEY 1 typedef int (btree_map_nodes_fn)(struct btree_op *b_op, struct btree *b); int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c, struct bkey *from, btree_map_nodes_fn *fn, int flags); static inline int bch_btree_map_nodes(struct btree_op *op, struct cache_set *c, struct bkey *from, btree_map_nodes_fn *fn) { return __bch_btree_map_nodes(op, c, from, fn, MAP_ALL_NODES); } static inline int bch_btree_map_leaf_nodes(struct btree_op *op, struct cache_set *c, struct bkey *from, btree_map_nodes_fn *fn) { return __bch_btree_map_nodes(op, c, from, fn, MAP_LEAF_NODES); } typedef int (btree_map_keys_fn)(struct btree_op *op, struct btree *b, struct bkey *k); int bch_btree_map_keys(struct btree_op *op, struct cache_set *c, struct bkey *from, btree_map_keys_fn *fn, int flags); typedef bool (keybuf_pred_fn)(struct keybuf *buf, struct bkey *k); void bch_keybuf_init(struct keybuf *buf); void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf, struct bkey *end, keybuf_pred_fn *pred); bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start, struct bkey *end); void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w); struct keybuf_key *bch_keybuf_next(struct keybuf *buf); struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c, struct keybuf *buf, struct bkey *end, keybuf_pred_fn *pred); void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats); #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1