Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Michael Hunold | 1853 | 71.00% | 3 | 10.71% |
Gerd Knorr | 361 | 13.83% | 1 | 3.57% |
Johannes Stezenbach | 155 | 5.94% | 4 | 14.29% |
Andrew de Quincey | 103 | 3.95% | 5 | 17.86% |
Mauro Carvalho Chehab | 64 | 2.45% | 6 | 21.43% |
Christopher Pascoe | 32 | 1.23% | 1 | 3.57% |
Patrick Boettcher | 18 | 0.69% | 1 | 3.57% |
Barry Scott | 7 | 0.27% | 1 | 3.57% |
Tim Schmielau | 6 | 0.23% | 1 | 3.57% |
Harvey Harrison | 4 | 0.15% | 1 | 3.57% |
Max Kellermann | 2 | 0.08% | 1 | 3.57% |
Thomas Gleixner | 2 | 0.08% | 1 | 3.57% |
Lawrence Rust | 2 | 0.08% | 1 | 3.57% |
Panagiotis Issaris | 1 | 0.04% | 1 | 3.57% |
Total | 2610 | 28 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Driver for Zarlink DVB-T MT352 demodulator * * Written by Holger Waechtler <holger@qanu.de> * and Daniel Mack <daniel@qanu.de> * * AVerMedia AVerTV DVB-T 771 support by * Wolfram Joost <dbox2@frokaschwei.de> * * Support for Samsung TDTC9251DH01C(M) tuner * Copyright (C) 2004 Antonio Mancuso <antonio.mancuso@digitaltelevision.it> * Amauri Celani <acelani@essegi.net> * * DVICO FusionHDTV DVB-T1 and DVICO FusionHDTV DVB-T Lite support by * Christopher Pascoe <c.pascoe@itee.uq.edu.au> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/string.h> #include <linux/slab.h> #include <media/dvb_frontend.h> #include "mt352_priv.h" #include "mt352.h" struct mt352_state { struct i2c_adapter* i2c; struct dvb_frontend frontend; /* configuration settings */ struct mt352_config config; }; static int debug; #define dprintk(args...) \ do { \ if (debug) printk(KERN_DEBUG "mt352: " args); \ } while (0) static int mt352_single_write(struct dvb_frontend *fe, u8 reg, u8 val) { struct mt352_state* state = fe->demodulator_priv; u8 buf[2] = { reg, val }; struct i2c_msg msg = { .addr = state->config.demod_address, .flags = 0, .buf = buf, .len = 2 }; int err = i2c_transfer(state->i2c, &msg, 1); if (err != 1) { printk("mt352_write() to reg %x failed (err = %d)!\n", reg, err); return err; } return 0; } static int _mt352_write(struct dvb_frontend* fe, const u8 ibuf[], int ilen) { int err,i; for (i=0; i < ilen-1; i++) if ((err = mt352_single_write(fe,ibuf[0]+i,ibuf[i+1]))) return err; return 0; } static int mt352_read_register(struct mt352_state* state, u8 reg) { int ret; u8 b0 [] = { reg }; u8 b1 [] = { 0 }; struct i2c_msg msg [] = { { .addr = state->config.demod_address, .flags = 0, .buf = b0, .len = 1 }, { .addr = state->config.demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 } }; ret = i2c_transfer(state->i2c, msg, 2); if (ret != 2) { printk("%s: readreg error (reg=%d, ret==%i)\n", __func__, reg, ret); return ret; } return b1[0]; } static int mt352_sleep(struct dvb_frontend* fe) { static u8 mt352_softdown[] = { CLOCK_CTL, 0x20, 0x08 }; _mt352_write(fe, mt352_softdown, sizeof(mt352_softdown)); return 0; } static void mt352_calc_nominal_rate(struct mt352_state* state, u32 bandwidth, unsigned char *buf) { u32 adc_clock = 20480; /* 20.340 MHz */ u32 bw,value; switch (bandwidth) { case 6000000: bw = 6; break; case 7000000: bw = 7; break; case 8000000: default: bw = 8; break; } if (state->config.adc_clock) adc_clock = state->config.adc_clock; value = 64 * bw * (1<<16) / (7 * 8); value = value * 1000 / adc_clock; dprintk("%s: bw %d, adc_clock %d => 0x%x\n", __func__, bw, adc_clock, value); buf[0] = msb(value); buf[1] = lsb(value); } static void mt352_calc_input_freq(struct mt352_state* state, unsigned char *buf) { int adc_clock = 20480; /* 20.480000 MHz */ int if2 = 36167; /* 36.166667 MHz */ int ife,value; if (state->config.adc_clock) adc_clock = state->config.adc_clock; if (state->config.if2) if2 = state->config.if2; if (adc_clock >= if2 * 2) ife = if2; else { ife = adc_clock - (if2 % adc_clock); if (ife > adc_clock / 2) ife = adc_clock - ife; } value = -16374 * ife / adc_clock; dprintk("%s: if2 %d, ife %d, adc_clock %d => %d / 0x%x\n", __func__, if2, ife, adc_clock, value, value & 0x3fff); buf[0] = msb(value); buf[1] = lsb(value); } static int mt352_set_parameters(struct dvb_frontend *fe) { struct dtv_frontend_properties *op = &fe->dtv_property_cache; struct mt352_state* state = fe->demodulator_priv; unsigned char buf[13]; static unsigned char tuner_go[] = { 0x5d, 0x01 }; static unsigned char fsm_go[] = { 0x5e, 0x01 }; unsigned int tps = 0; switch (op->code_rate_HP) { case FEC_2_3: tps |= (1 << 7); break; case FEC_3_4: tps |= (2 << 7); break; case FEC_5_6: tps |= (3 << 7); break; case FEC_7_8: tps |= (4 << 7); break; case FEC_1_2: case FEC_AUTO: break; default: return -EINVAL; } switch (op->code_rate_LP) { case FEC_2_3: tps |= (1 << 4); break; case FEC_3_4: tps |= (2 << 4); break; case FEC_5_6: tps |= (3 << 4); break; case FEC_7_8: tps |= (4 << 4); break; case FEC_1_2: case FEC_AUTO: break; case FEC_NONE: if (op->hierarchy == HIERARCHY_AUTO || op->hierarchy == HIERARCHY_NONE) break; /* fall through */ default: return -EINVAL; } switch (op->modulation) { case QPSK: break; case QAM_AUTO: case QAM_16: tps |= (1 << 13); break; case QAM_64: tps |= (2 << 13); break; default: return -EINVAL; } switch (op->transmission_mode) { case TRANSMISSION_MODE_2K: case TRANSMISSION_MODE_AUTO: break; case TRANSMISSION_MODE_8K: tps |= (1 << 0); break; default: return -EINVAL; } switch (op->guard_interval) { case GUARD_INTERVAL_1_32: case GUARD_INTERVAL_AUTO: break; case GUARD_INTERVAL_1_16: tps |= (1 << 2); break; case GUARD_INTERVAL_1_8: tps |= (2 << 2); break; case GUARD_INTERVAL_1_4: tps |= (3 << 2); break; default: return -EINVAL; } switch (op->hierarchy) { case HIERARCHY_AUTO: case HIERARCHY_NONE: break; case HIERARCHY_1: tps |= (1 << 10); break; case HIERARCHY_2: tps |= (2 << 10); break; case HIERARCHY_4: tps |= (3 << 10); break; default: return -EINVAL; } buf[0] = TPS_GIVEN_1; /* TPS_GIVEN_1 and following registers */ buf[1] = msb(tps); /* TPS_GIVEN_(1|0) */ buf[2] = lsb(tps); buf[3] = 0x50; // old // buf[3] = 0xf4; // pinnacle mt352_calc_nominal_rate(state, op->bandwidth_hz, buf+4); mt352_calc_input_freq(state, buf+6); if (state->config.no_tuner) { if (fe->ops.tuner_ops.set_params) { fe->ops.tuner_ops.set_params(fe); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); } _mt352_write(fe, buf, 8); _mt352_write(fe, fsm_go, 2); } else { if (fe->ops.tuner_ops.calc_regs) { fe->ops.tuner_ops.calc_regs(fe, buf+8, 5); buf[8] <<= 1; _mt352_write(fe, buf, sizeof(buf)); _mt352_write(fe, tuner_go, 2); } } return 0; } static int mt352_get_parameters(struct dvb_frontend* fe, struct dtv_frontend_properties *op) { struct mt352_state* state = fe->demodulator_priv; u16 tps; u16 div; u8 trl; static const u8 tps_fec_to_api[8] = { FEC_1_2, FEC_2_3, FEC_3_4, FEC_5_6, FEC_7_8, FEC_AUTO, FEC_AUTO, FEC_AUTO }; if ( (mt352_read_register(state,0x00) & 0xC0) != 0xC0 ) return -EINVAL; /* Use TPS_RECEIVED-registers, not the TPS_CURRENT-registers because * the mt352 sometimes works with the wrong parameters */ tps = (mt352_read_register(state, TPS_RECEIVED_1) << 8) | mt352_read_register(state, TPS_RECEIVED_0); div = (mt352_read_register(state, CHAN_START_1) << 8) | mt352_read_register(state, CHAN_START_0); trl = mt352_read_register(state, TRL_NOMINAL_RATE_1); op->code_rate_HP = tps_fec_to_api[(tps >> 7) & 7]; op->code_rate_LP = tps_fec_to_api[(tps >> 4) & 7]; switch ( (tps >> 13) & 3) { case 0: op->modulation = QPSK; break; case 1: op->modulation = QAM_16; break; case 2: op->modulation = QAM_64; break; default: op->modulation = QAM_AUTO; break; } op->transmission_mode = (tps & 0x01) ? TRANSMISSION_MODE_8K : TRANSMISSION_MODE_2K; switch ( (tps >> 2) & 3) { case 0: op->guard_interval = GUARD_INTERVAL_1_32; break; case 1: op->guard_interval = GUARD_INTERVAL_1_16; break; case 2: op->guard_interval = GUARD_INTERVAL_1_8; break; case 3: op->guard_interval = GUARD_INTERVAL_1_4; break; default: op->guard_interval = GUARD_INTERVAL_AUTO; break; } switch ( (tps >> 10) & 7) { case 0: op->hierarchy = HIERARCHY_NONE; break; case 1: op->hierarchy = HIERARCHY_1; break; case 2: op->hierarchy = HIERARCHY_2; break; case 3: op->hierarchy = HIERARCHY_4; break; default: op->hierarchy = HIERARCHY_AUTO; break; } op->frequency = (500 * (div - IF_FREQUENCYx6)) / 3 * 1000; if (trl == 0x72) op->bandwidth_hz = 8000000; else if (trl == 0x64) op->bandwidth_hz = 7000000; else op->bandwidth_hz = 6000000; if (mt352_read_register(state, STATUS_2) & 0x02) op->inversion = INVERSION_OFF; else op->inversion = INVERSION_ON; return 0; } static int mt352_read_status(struct dvb_frontend *fe, enum fe_status *status) { struct mt352_state* state = fe->demodulator_priv; int s0, s1, s3; /* FIXME: * * The MT352 design manual from Zarlink states (page 46-47): * * Notes about the TUNER_GO register: * * If the Read_Tuner_Byte (bit-1) is activated, then the tuner status * byte is copied from the tuner to the STATUS_3 register and * completion of the read operation is indicated by bit-5 of the * INTERRUPT_3 register. */ if ((s0 = mt352_read_register(state, STATUS_0)) < 0) return -EREMOTEIO; if ((s1 = mt352_read_register(state, STATUS_1)) < 0) return -EREMOTEIO; if ((s3 = mt352_read_register(state, STATUS_3)) < 0) return -EREMOTEIO; *status = 0; if (s0 & (1 << 4)) *status |= FE_HAS_CARRIER; if (s0 & (1 << 1)) *status |= FE_HAS_VITERBI; if (s0 & (1 << 5)) *status |= FE_HAS_LOCK; if (s1 & (1 << 1)) *status |= FE_HAS_SYNC; if (s3 & (1 << 6)) *status |= FE_HAS_SIGNAL; if ((*status & (FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)) != (FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)) *status &= ~FE_HAS_LOCK; return 0; } static int mt352_read_ber(struct dvb_frontend* fe, u32* ber) { struct mt352_state* state = fe->demodulator_priv; *ber = (mt352_read_register (state, RS_ERR_CNT_2) << 16) | (mt352_read_register (state, RS_ERR_CNT_1) << 8) | (mt352_read_register (state, RS_ERR_CNT_0)); return 0; } static int mt352_read_signal_strength(struct dvb_frontend* fe, u16* strength) { struct mt352_state* state = fe->demodulator_priv; /* align the 12 bit AGC gain with the most significant bits */ u16 signal = ((mt352_read_register(state, AGC_GAIN_1) & 0x0f) << 12) | (mt352_read_register(state, AGC_GAIN_0) << 4); /* inverse of gain is signal strength */ *strength = ~signal; return 0; } static int mt352_read_snr(struct dvb_frontend* fe, u16* snr) { struct mt352_state* state = fe->demodulator_priv; u8 _snr = mt352_read_register (state, SNR); *snr = (_snr << 8) | _snr; return 0; } static int mt352_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks) { struct mt352_state* state = fe->demodulator_priv; *ucblocks = (mt352_read_register (state, RS_UBC_1) << 8) | (mt352_read_register (state, RS_UBC_0)); return 0; } static int mt352_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fe_tune_settings) { fe_tune_settings->min_delay_ms = 800; fe_tune_settings->step_size = 0; fe_tune_settings->max_drift = 0; return 0; } static int mt352_init(struct dvb_frontend* fe) { struct mt352_state* state = fe->demodulator_priv; static u8 mt352_reset_attach [] = { RESET, 0xC0 }; dprintk("%s: hello\n",__func__); if ((mt352_read_register(state, CLOCK_CTL) & 0x10) == 0 || (mt352_read_register(state, CONFIG) & 0x20) == 0) { /* Do a "hard" reset */ _mt352_write(fe, mt352_reset_attach, sizeof(mt352_reset_attach)); return state->config.demod_init(fe); } return 0; } static void mt352_release(struct dvb_frontend* fe) { struct mt352_state* state = fe->demodulator_priv; kfree(state); } static const struct dvb_frontend_ops mt352_ops; struct dvb_frontend* mt352_attach(const struct mt352_config* config, struct i2c_adapter* i2c) { struct mt352_state* state = NULL; /* allocate memory for the internal state */ state = kzalloc(sizeof(struct mt352_state), GFP_KERNEL); if (state == NULL) goto error; /* setup the state */ state->i2c = i2c; memcpy(&state->config,config,sizeof(struct mt352_config)); /* check if the demod is there */ if (mt352_read_register(state, CHIP_ID) != ID_MT352) goto error; /* create dvb_frontend */ memcpy(&state->frontend.ops, &mt352_ops, sizeof(struct dvb_frontend_ops)); state->frontend.demodulator_priv = state; return &state->frontend; error: kfree(state); return NULL; } static const struct dvb_frontend_ops mt352_ops = { .delsys = { SYS_DVBT }, .info = { .name = "Zarlink MT352 DVB-T", .frequency_min_hz = 174 * MHz, .frequency_max_hz = 862 * MHz, .frequency_stepsize_hz = 166667, .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS }, .release = mt352_release, .init = mt352_init, .sleep = mt352_sleep, .write = _mt352_write, .set_frontend = mt352_set_parameters, .get_frontend = mt352_get_parameters, .get_tune_settings = mt352_get_tune_settings, .read_status = mt352_read_status, .read_ber = mt352_read_ber, .read_signal_strength = mt352_read_signal_strength, .read_snr = mt352_read_snr, .read_ucblocks = mt352_read_ucblocks, }; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off)."); MODULE_DESCRIPTION("Zarlink MT352 DVB-T Demodulator driver"); MODULE_AUTHOR("Holger Waechtler, Daniel Mack, Antonio Mancuso"); MODULE_LICENSE("GPL"); EXPORT_SYMBOL(mt352_attach);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1