Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sylwester Nawrocki | 7613 | 92.40% | 1 | 4.35% |
Akinobu Mita | 508 | 6.17% | 3 | 13.04% |
Hugues Fruchet | 32 | 0.39% | 2 | 8.70% |
Javier Martinez Canillas | 20 | 0.24% | 1 | 4.35% |
Hans Verkuil | 19 | 0.23% | 1 | 4.35% |
Mauro Carvalho Chehab | 17 | 0.21% | 7 | 30.43% |
Gustavo A. R. Silva | 8 | 0.10% | 1 | 4.35% |
Arnd Bergmann | 7 | 0.08% | 1 | 4.35% |
Boris Brezillon | 5 | 0.06% | 1 | 4.35% |
Nicholas Mc Guire | 4 | 0.05% | 1 | 4.35% |
Guennadi Liakhovetski | 2 | 0.02% | 1 | 4.35% |
Thomas Gleixner | 2 | 0.02% | 1 | 4.35% |
Dan Carpenter | 1 | 0.01% | 1 | 4.35% |
Andrew Morton | 1 | 0.01% | 1 | 4.35% |
Total | 8239 | 23 |
// SPDX-License-Identifier: GPL-2.0-only /* * Omnivision OV9650/OV9652 CMOS Image Sensor driver * * Copyright (C) 2013, Sylwester Nawrocki <sylvester.nawrocki@gmail.com> * * Register definitions and initial settings based on a driver written * by Vladimir Fonov. * Copyright (c) 2010, Vladimir Fonov */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/gpio.h> #include <linux/gpio/consumer.h> #include <linux/i2c.h> #include <linux/kernel.h> #include <linux/media.h> #include <linux/module.h> #include <linux/ratelimit.h> #include <linux/regmap.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/videodev2.h> #include <media/media-entity.h> #include <media/v4l2-async.h> #include <media/v4l2-ctrls.h> #include <media/v4l2-device.h> #include <media/v4l2-event.h> #include <media/v4l2-image-sizes.h> #include <media/v4l2-subdev.h> #include <media/v4l2-mediabus.h> #include <media/i2c/ov9650.h> static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Debug level (0-2)"); #define DRIVER_NAME "OV9650" /* * OV9650/OV9652 register definitions */ #define REG_GAIN 0x00 /* Gain control, AGC[7:0] */ #define REG_BLUE 0x01 /* AWB - Blue channel gain */ #define REG_RED 0x02 /* AWB - Red channel gain */ #define REG_VREF 0x03 /* [7:6] - AGC[9:8], [5:3]/[2:0] */ #define VREF_GAIN_MASK 0xc0 /* - VREF end/start low 3 bits */ #define REG_COM1 0x04 #define COM1_CCIR656 0x40 #define REG_B_AVE 0x05 #define REG_GB_AVE 0x06 #define REG_GR_AVE 0x07 #define REG_R_AVE 0x08 #define REG_COM2 0x09 #define REG_PID 0x0a /* Product ID MSB */ #define REG_VER 0x0b /* Product ID LSB */ #define REG_COM3 0x0c #define COM3_SWAP 0x40 #define COM3_VARIOPIXEL1 0x04 #define REG_COM4 0x0d /* Vario Pixels */ #define COM4_VARIOPIXEL2 0x80 #define REG_COM5 0x0e /* System clock options */ #define COM5_SLAVE_MODE 0x10 #define COM5_SYSTEMCLOCK48MHZ 0x80 #define REG_COM6 0x0f /* HREF & ADBLC options */ #define REG_AECH 0x10 /* Exposure value, AEC[9:2] */ #define REG_CLKRC 0x11 /* Clock control */ #define CLK_EXT 0x40 /* Use external clock directly */ #define CLK_SCALE 0x3f /* Mask for internal clock scale */ #define REG_COM7 0x12 /* SCCB reset, output format */ #define COM7_RESET 0x80 #define COM7_FMT_MASK 0x38 #define COM7_FMT_VGA 0x40 #define COM7_FMT_CIF 0x20 #define COM7_FMT_QVGA 0x10 #define COM7_FMT_QCIF 0x08 #define COM7_RGB 0x04 #define COM7_YUV 0x00 #define COM7_BAYER 0x01 #define COM7_PBAYER 0x05 #define REG_COM8 0x13 /* AGC/AEC options */ #define COM8_FASTAEC 0x80 /* Enable fast AGC/AEC */ #define COM8_AECSTEP 0x40 /* Unlimited AEC step size */ #define COM8_BFILT 0x20 /* Band filter enable */ #define COM8_AGC 0x04 /* Auto gain enable */ #define COM8_AWB 0x02 /* White balance enable */ #define COM8_AEC 0x01 /* Auto exposure enable */ #define REG_COM9 0x14 /* Gain ceiling */ #define COM9_GAIN_CEIL_MASK 0x70 /* */ #define REG_COM10 0x15 /* PCLK, HREF, HSYNC signals polarity */ #define COM10_HSYNC 0x40 /* HSYNC instead of HREF */ #define COM10_PCLK_HB 0x20 /* Suppress PCLK on horiz blank */ #define COM10_HREF_REV 0x08 /* Reverse HREF */ #define COM10_VS_LEAD 0x04 /* VSYNC on clock leading edge */ #define COM10_VS_NEG 0x02 /* VSYNC negative */ #define COM10_HS_NEG 0x01 /* HSYNC negative */ #define REG_HSTART 0x17 /* Horiz start high bits */ #define REG_HSTOP 0x18 /* Horiz stop high bits */ #define REG_VSTART 0x19 /* Vert start high bits */ #define REG_VSTOP 0x1a /* Vert stop high bits */ #define REG_PSHFT 0x1b /* Pixel delay after HREF */ #define REG_MIDH 0x1c /* Manufacturer ID MSB */ #define REG_MIDL 0x1d /* Manufufacturer ID LSB */ #define REG_MVFP 0x1e /* Image mirror/flip */ #define MVFP_MIRROR 0x20 /* Mirror image */ #define MVFP_FLIP 0x10 /* Vertical flip */ #define REG_BOS 0x20 /* B channel Offset */ #define REG_GBOS 0x21 /* Gb channel Offset */ #define REG_GROS 0x22 /* Gr channel Offset */ #define REG_ROS 0x23 /* R channel Offset */ #define REG_AEW 0x24 /* AGC upper limit */ #define REG_AEB 0x25 /* AGC lower limit */ #define REG_VPT 0x26 /* AGC/AEC fast mode op region */ #define REG_BBIAS 0x27 /* B channel output bias */ #define REG_GBBIAS 0x28 /* Gb channel output bias */ #define REG_GRCOM 0x29 /* Analog BLC & regulator */ #define REG_EXHCH 0x2a /* Dummy pixel insert MSB */ #define REG_EXHCL 0x2b /* Dummy pixel insert LSB */ #define REG_RBIAS 0x2c /* R channel output bias */ #define REG_ADVFL 0x2d /* LSB of dummy line insert */ #define REG_ADVFH 0x2e /* MSB of dummy line insert */ #define REG_YAVE 0x2f /* Y/G channel average value */ #define REG_HSYST 0x30 /* HSYNC rising edge delay LSB*/ #define REG_HSYEN 0x31 /* HSYNC falling edge delay LSB*/ #define REG_HREF 0x32 /* HREF pieces */ #define REG_CHLF 0x33 /* reserved */ #define REG_ADC 0x37 /* reserved */ #define REG_ACOM 0x38 /* reserved */ #define REG_OFON 0x39 /* Power down register */ #define OFON_PWRDN 0x08 /* Power down bit */ #define REG_TSLB 0x3a /* YUVU format */ #define TSLB_YUYV_MASK 0x0c /* UYVY or VYUY - see com13 */ #define REG_COM11 0x3b /* Night mode, banding filter enable */ #define COM11_NIGHT 0x80 /* Night mode enable */ #define COM11_NMFR 0x60 /* Two bit NM frame rate */ #define COM11_BANDING 0x01 /* Banding filter */ #define COM11_AEC_REF_MASK 0x18 /* AEC reference area selection */ #define REG_COM12 0x3c /* HREF option, UV average */ #define COM12_HREF 0x80 /* HREF always */ #define REG_COM13 0x3d /* Gamma selection, Color matrix en. */ #define COM13_GAMMA 0x80 /* Gamma enable */ #define COM13_UVSAT 0x40 /* UV saturation auto adjustment */ #define COM13_UVSWAP 0x01 /* V before U - w/TSLB */ #define REG_COM14 0x3e /* Edge enhancement options */ #define COM14_EDGE_EN 0x02 #define COM14_EEF_X2 0x01 #define REG_EDGE 0x3f /* Edge enhancement factor */ #define EDGE_FACTOR_MASK 0x0f #define REG_COM15 0x40 /* Output range, RGB 555/565 */ #define COM15_R10F0 0x00 /* Data range 10 to F0 */ #define COM15_R01FE 0x80 /* 01 to FE */ #define COM15_R00FF 0xc0 /* 00 to FF */ #define COM15_RGB565 0x10 /* RGB565 output */ #define COM15_RGB555 0x30 /* RGB555 output */ #define COM15_SWAPRB 0x04 /* Swap R&B */ #define REG_COM16 0x41 /* Color matrix coeff options */ #define REG_COM17 0x42 /* Single frame out, banding filter */ /* n = 1...9, 0x4f..0x57 */ #define REG_MTX(__n) (0x4f + (__n) - 1) #define REG_MTXS 0x58 /* Lens Correction Option 1...5, __n = 0...5 */ #define REG_LCC(__n) (0x62 + (__n) - 1) #define LCC5_LCC_ENABLE 0x01 /* LCC5, enable lens correction */ #define LCC5_LCC_COLOR 0x04 #define REG_MANU 0x67 /* Manual U value */ #define REG_MANV 0x68 /* Manual V value */ #define REG_HV 0x69 /* Manual banding filter MSB */ #define REG_MBD 0x6a /* Manual banding filter value */ #define REG_DBLV 0x6b /* reserved */ #define REG_GSP 0x6c /* Gamma curve */ #define GSP_LEN 15 #define REG_GST 0x7c /* Gamma curve */ #define GST_LEN 15 #define REG_COM21 0x8b #define REG_COM22 0x8c /* Edge enhancement, denoising */ #define COM22_WHTPCOR 0x02 /* White pixel correction enable */ #define COM22_WHTPCOROPT 0x01 /* White pixel correction option */ #define COM22_DENOISE 0x10 /* White pixel correction option */ #define REG_COM23 0x8d /* Color bar test, color gain */ #define COM23_TEST_MODE 0x10 #define REG_DBLC1 0x8f /* Digital BLC */ #define REG_DBLC_B 0x90 /* Digital BLC B channel offset */ #define REG_DBLC_R 0x91 /* Digital BLC R channel offset */ #define REG_DM_LNL 0x92 /* Dummy line low 8 bits */ #define REG_DM_LNH 0x93 /* Dummy line high 8 bits */ #define REG_LCCFB 0x9d /* Lens Correction B channel */ #define REG_LCCFR 0x9e /* Lens Correction R channel */ #define REG_DBLC_GB 0x9f /* Digital BLC GB chan offset */ #define REG_DBLC_GR 0xa0 /* Digital BLC GR chan offset */ #define REG_AECHM 0xa1 /* Exposure value - bits AEC[15:10] */ #define REG_BD50ST 0xa2 /* Banding filter value for 50Hz */ #define REG_BD60ST 0xa3 /* Banding filter value for 60Hz */ #define REG_NULL 0xff /* Array end token */ #define DEF_CLKRC 0x80 #define OV965X_ID(_msb, _lsb) ((_msb) << 8 | (_lsb)) #define OV9650_ID 0x9650 #define OV9652_ID 0x9652 struct ov965x_ctrls { struct v4l2_ctrl_handler handler; struct { struct v4l2_ctrl *auto_exp; struct v4l2_ctrl *exposure; }; struct { struct v4l2_ctrl *auto_wb; struct v4l2_ctrl *blue_balance; struct v4l2_ctrl *red_balance; }; struct { struct v4l2_ctrl *hflip; struct v4l2_ctrl *vflip; }; struct { struct v4l2_ctrl *auto_gain; struct v4l2_ctrl *gain; }; struct v4l2_ctrl *brightness; struct v4l2_ctrl *saturation; struct v4l2_ctrl *sharpness; struct v4l2_ctrl *light_freq; u8 update; }; struct ov965x_framesize { u16 width; u16 height; u16 max_exp_lines; const u8 *regs; }; struct ov965x_interval { struct v4l2_fract interval; /* Maximum resolution for this interval */ struct v4l2_frmsize_discrete size; u8 clkrc_div; }; enum gpio_id { GPIO_PWDN, GPIO_RST, NUM_GPIOS, }; struct ov965x { struct v4l2_subdev sd; struct media_pad pad; enum v4l2_mbus_type bus_type; struct gpio_desc *gpios[NUM_GPIOS]; /* External master clock frequency */ unsigned long mclk_frequency; struct clk *clk; /* Protects the struct fields below */ struct mutex lock; struct regmap *regmap; /* Exposure row interval in us */ unsigned int exp_row_interval; unsigned short id; const struct ov965x_framesize *frame_size; /* YUYV sequence (pixel format) control register */ u8 tslb_reg; struct v4l2_mbus_framefmt format; struct ov965x_ctrls ctrls; /* Pointer to frame rate control data structure */ const struct ov965x_interval *fiv; int streaming; int power; u8 apply_frame_fmt; }; struct i2c_rv { u8 addr; u8 value; }; static const struct i2c_rv ov965x_init_regs[] = { { REG_COM2, 0x10 }, /* Set soft sleep mode */ { REG_COM5, 0x00 }, /* System clock options */ { REG_COM2, 0x01 }, /* Output drive, soft sleep mode */ { REG_COM10, 0x00 }, /* Slave mode, HREF vs HSYNC, signals negate */ { REG_EDGE, 0xa6 }, /* Edge enhancement treshhold and factor */ { REG_COM16, 0x02 }, /* Color matrix coeff double option */ { REG_COM17, 0x08 }, /* Single frame out, banding filter */ { 0x16, 0x06 }, { REG_CHLF, 0xc0 }, /* Reserved */ { 0x34, 0xbf }, { 0xa8, 0x80 }, { 0x96, 0x04 }, { 0x8e, 0x00 }, { REG_COM12, 0x77 }, /* HREF option, UV average */ { 0x8b, 0x06 }, { 0x35, 0x91 }, { 0x94, 0x88 }, { 0x95, 0x88 }, { REG_COM15, 0xc1 }, /* Output range, RGB 555/565 */ { REG_GRCOM, 0x2f }, /* Analog BLC & regulator */ { REG_COM6, 0x43 }, /* HREF & ADBLC options */ { REG_COM8, 0xe5 }, /* AGC/AEC options */ { REG_COM13, 0x90 }, /* Gamma selection, colour matrix, UV delay */ { REG_HV, 0x80 }, /* Manual banding filter MSB */ { 0x5c, 0x96 }, /* Reserved up to 0xa5 */ { 0x5d, 0x96 }, { 0x5e, 0x10 }, { 0x59, 0xeb }, { 0x5a, 0x9c }, { 0x5b, 0x55 }, { 0x43, 0xf0 }, { 0x44, 0x10 }, { 0x45, 0x55 }, { 0x46, 0x86 }, { 0x47, 0x64 }, { 0x48, 0x86 }, { 0x5f, 0xe0 }, { 0x60, 0x8c }, { 0x61, 0x20 }, { 0xa5, 0xd9 }, { 0xa4, 0x74 }, /* reserved */ { REG_COM23, 0x02 }, /* Color gain analog/_digital_ */ { REG_COM8, 0xe7 }, /* Enable AEC, AWB, AEC */ { REG_COM22, 0x23 }, /* Edge enhancement, denoising */ { 0xa9, 0xb8 }, { 0xaa, 0x92 }, { 0xab, 0x0a }, { REG_DBLC1, 0xdf }, /* Digital BLC */ { REG_DBLC_B, 0x00 }, /* Digital BLC B chan offset */ { REG_DBLC_R, 0x00 }, /* Digital BLC R chan offset */ { REG_DBLC_GB, 0x00 }, /* Digital BLC GB chan offset */ { REG_DBLC_GR, 0x00 }, { REG_COM9, 0x3a }, /* Gain ceiling 16x */ { REG_NULL, 0 } }; #define NUM_FMT_REGS 14 /* * COM7, COM3, COM4, HSTART, HSTOP, HREF, VSTART, VSTOP, VREF, * EXHCH, EXHCL, ADC, OCOM, OFON */ static const u8 frame_size_reg_addr[NUM_FMT_REGS] = { 0x12, 0x0c, 0x0d, 0x17, 0x18, 0x32, 0x19, 0x1a, 0x03, 0x2a, 0x2b, 0x37, 0x38, 0x39, }; static const u8 ov965x_sxga_regs[NUM_FMT_REGS] = { 0x00, 0x00, 0x00, 0x1e, 0xbe, 0xbf, 0x01, 0x81, 0x12, 0x10, 0x34, 0x81, 0x93, 0x51, }; static const u8 ov965x_vga_regs[NUM_FMT_REGS] = { 0x40, 0x04, 0x80, 0x26, 0xc6, 0xed, 0x01, 0x3d, 0x00, 0x10, 0x40, 0x91, 0x12, 0x43, }; /* Determined empirically. */ static const u8 ov965x_qvga_regs[NUM_FMT_REGS] = { 0x10, 0x04, 0x80, 0x25, 0xc5, 0xbf, 0x00, 0x80, 0x12, 0x10, 0x40, 0x91, 0x12, 0x43, }; static const struct ov965x_framesize ov965x_framesizes[] = { { .width = SXGA_WIDTH, .height = SXGA_HEIGHT, .regs = ov965x_sxga_regs, .max_exp_lines = 1048, }, { .width = VGA_WIDTH, .height = VGA_HEIGHT, .regs = ov965x_vga_regs, .max_exp_lines = 498, }, { .width = QVGA_WIDTH, .height = QVGA_HEIGHT, .regs = ov965x_qvga_regs, .max_exp_lines = 248, }, }; struct ov965x_pixfmt { u32 code; u32 colorspace; /* REG_TSLB value, only bits [3:2] may be set. */ u8 tslb_reg; }; static const struct ov965x_pixfmt ov965x_formats[] = { { MEDIA_BUS_FMT_YUYV8_2X8, V4L2_COLORSPACE_JPEG, 0x00}, { MEDIA_BUS_FMT_YVYU8_2X8, V4L2_COLORSPACE_JPEG, 0x04}, { MEDIA_BUS_FMT_UYVY8_2X8, V4L2_COLORSPACE_JPEG, 0x0c}, { MEDIA_BUS_FMT_VYUY8_2X8, V4L2_COLORSPACE_JPEG, 0x08}, }; /* * This table specifies possible frame resolution and interval * combinations. Default CLKRC[5:0] divider values are valid * only for 24 MHz external clock frequency. */ static struct ov965x_interval ov965x_intervals[] = { {{ 100, 625 }, { SXGA_WIDTH, SXGA_HEIGHT }, 0 }, /* 6.25 fps */ {{ 10, 125 }, { VGA_WIDTH, VGA_HEIGHT }, 1 }, /* 12.5 fps */ {{ 10, 125 }, { QVGA_WIDTH, QVGA_HEIGHT }, 3 }, /* 12.5 fps */ {{ 1, 25 }, { VGA_WIDTH, VGA_HEIGHT }, 0 }, /* 25 fps */ {{ 1, 25 }, { QVGA_WIDTH, QVGA_HEIGHT }, 1 }, /* 25 fps */ }; static inline struct v4l2_subdev *ctrl_to_sd(struct v4l2_ctrl *ctrl) { return &container_of(ctrl->handler, struct ov965x, ctrls.handler)->sd; } static inline struct ov965x *to_ov965x(struct v4l2_subdev *sd) { return container_of(sd, struct ov965x, sd); } static int ov965x_read(struct ov965x *ov965x, u8 addr, u8 *val) { int ret; unsigned int buf; ret = regmap_read(ov965x->regmap, addr, &buf); if (!ret) *val = buf; else *val = -1; v4l2_dbg(2, debug, &ov965x->sd, "%s: 0x%02x @ 0x%02x. (%d)\n", __func__, *val, addr, ret); return ret; } static int ov965x_write(struct ov965x *ov965x, u8 addr, u8 val) { int ret; ret = regmap_write(ov965x->regmap, addr, val); v4l2_dbg(2, debug, &ov965x->sd, "%s: 0x%02x @ 0x%02X (%d)\n", __func__, val, addr, ret); return ret; } static int ov965x_write_array(struct ov965x *ov965x, const struct i2c_rv *regs) { int i, ret = 0; for (i = 0; ret == 0 && regs[i].addr != REG_NULL; i++) ret = ov965x_write(ov965x, regs[i].addr, regs[i].value); return ret; } static int ov965x_set_default_gamma_curve(struct ov965x *ov965x) { static const u8 gamma_curve[] = { /* Values taken from OV application note. */ 0x40, 0x30, 0x4b, 0x60, 0x70, 0x70, 0x70, 0x70, 0x60, 0x60, 0x50, 0x48, 0x3a, 0x2e, 0x28, 0x22, 0x04, 0x07, 0x10, 0x28, 0x36, 0x44, 0x52, 0x60, 0x6c, 0x78, 0x8c, 0x9e, 0xbb, 0xd2, 0xe6 }; u8 addr = REG_GSP; unsigned int i; for (i = 0; i < ARRAY_SIZE(gamma_curve); i++) { int ret = ov965x_write(ov965x, addr, gamma_curve[i]); if (ret < 0) return ret; addr++; } return 0; }; static int ov965x_set_color_matrix(struct ov965x *ov965x) { static const u8 mtx[] = { /* MTX1..MTX9, MTXS */ 0x3a, 0x3d, 0x03, 0x12, 0x26, 0x38, 0x40, 0x40, 0x40, 0x0d }; u8 addr = REG_MTX(1); unsigned int i; for (i = 0; i < ARRAY_SIZE(mtx); i++) { int ret = ov965x_write(ov965x, addr, mtx[i]); if (ret < 0) return ret; addr++; } return 0; } static int __ov965x_set_power(struct ov965x *ov965x, int on) { if (on) { int ret = clk_prepare_enable(ov965x->clk); if (ret) return ret; gpiod_set_value_cansleep(ov965x->gpios[GPIO_PWDN], 0); gpiod_set_value_cansleep(ov965x->gpios[GPIO_RST], 0); msleep(25); } else { gpiod_set_value_cansleep(ov965x->gpios[GPIO_RST], 1); gpiod_set_value_cansleep(ov965x->gpios[GPIO_PWDN], 1); clk_disable_unprepare(ov965x->clk); } ov965x->streaming = 0; return 0; } static int ov965x_s_power(struct v4l2_subdev *sd, int on) { struct ov965x *ov965x = to_ov965x(sd); int ret = 0; v4l2_dbg(1, debug, sd, "%s: on: %d\n", __func__, on); mutex_lock(&ov965x->lock); if (ov965x->power == !on) { ret = __ov965x_set_power(ov965x, on); if (!ret && on) { ret = ov965x_write_array(ov965x, ov965x_init_regs); ov965x->apply_frame_fmt = 1; ov965x->ctrls.update = 1; } } if (!ret) ov965x->power += on ? 1 : -1; WARN_ON(ov965x->power < 0); mutex_unlock(&ov965x->lock); return ret; } /* * V4L2 controls */ static void ov965x_update_exposure_ctrl(struct ov965x *ov965x) { struct v4l2_ctrl *ctrl = ov965x->ctrls.exposure; unsigned long fint, trow; int min, max, def; u8 clkrc; mutex_lock(&ov965x->lock); if (WARN_ON(!ctrl || !ov965x->frame_size)) { mutex_unlock(&ov965x->lock); return; } clkrc = DEF_CLKRC + ov965x->fiv->clkrc_div; /* Calculate internal clock frequency */ fint = ov965x->mclk_frequency * ((clkrc >> 7) + 1) / ((2 * ((clkrc & 0x3f) + 1))); /* and the row interval (in us). */ trow = (2 * 1520 * 1000000UL) / fint; max = ov965x->frame_size->max_exp_lines * trow; ov965x->exp_row_interval = trow; mutex_unlock(&ov965x->lock); v4l2_dbg(1, debug, &ov965x->sd, "clkrc: %#x, fi: %lu, tr: %lu, %d\n", clkrc, fint, trow, max); /* Update exposure time range to match current frame format. */ min = (trow + 100) / 100; max = (max - 100) / 100; def = min + (max - min) / 2; if (v4l2_ctrl_modify_range(ctrl, min, max, 1, def)) v4l2_err(&ov965x->sd, "Exposure ctrl range update failed\n"); } static int ov965x_set_banding_filter(struct ov965x *ov965x, int value) { unsigned long mbd, light_freq; int ret; u8 reg; ret = ov965x_read(ov965x, REG_COM8, ®); if (!ret) { if (value == V4L2_CID_POWER_LINE_FREQUENCY_DISABLED) reg &= ~COM8_BFILT; else reg |= COM8_BFILT; ret = ov965x_write(ov965x, REG_COM8, reg); } if (value == V4L2_CID_POWER_LINE_FREQUENCY_DISABLED) return 0; if (WARN_ON(!ov965x->fiv)) return -EINVAL; /* Set minimal exposure time for 50/60 HZ lighting */ if (value == V4L2_CID_POWER_LINE_FREQUENCY_50HZ) light_freq = 50; else light_freq = 60; mbd = (1000UL * ov965x->fiv->interval.denominator * ov965x->frame_size->max_exp_lines) / ov965x->fiv->interval.numerator; mbd = ((mbd / (light_freq * 2)) + 500) / 1000UL; return ov965x_write(ov965x, REG_MBD, mbd); } static int ov965x_set_white_balance(struct ov965x *ov965x, int awb) { int ret; u8 reg; ret = ov965x_read(ov965x, REG_COM8, ®); if (!ret) { reg = awb ? reg | REG_COM8 : reg & ~REG_COM8; ret = ov965x_write(ov965x, REG_COM8, reg); } if (!ret && !awb) { ret = ov965x_write(ov965x, REG_BLUE, ov965x->ctrls.blue_balance->val); if (ret < 0) return ret; ret = ov965x_write(ov965x, REG_RED, ov965x->ctrls.red_balance->val); } return ret; } #define NUM_BR_LEVELS 7 #define NUM_BR_REGS 3 static int ov965x_set_brightness(struct ov965x *ov965x, int val) { static const u8 regs[NUM_BR_LEVELS + 1][NUM_BR_REGS] = { { REG_AEW, REG_AEB, REG_VPT }, { 0x1c, 0x12, 0x50 }, /* -3 */ { 0x3d, 0x30, 0x71 }, /* -2 */ { 0x50, 0x44, 0x92 }, /* -1 */ { 0x70, 0x64, 0xc3 }, /* 0 */ { 0x90, 0x84, 0xd4 }, /* +1 */ { 0xc4, 0xbf, 0xf9 }, /* +2 */ { 0xd8, 0xd0, 0xfa }, /* +3 */ }; int i, ret = 0; val += (NUM_BR_LEVELS / 2 + 1); if (val > NUM_BR_LEVELS) return -EINVAL; for (i = 0; i < NUM_BR_REGS && !ret; i++) ret = ov965x_write(ov965x, regs[0][i], regs[val][i]); return ret; } static int ov965x_set_gain(struct ov965x *ov965x, int auto_gain) { struct ov965x_ctrls *ctrls = &ov965x->ctrls; int ret = 0; u8 reg; /* * For manual mode we need to disable AGC first, so * gain value in REG_VREF, REG_GAIN is not overwritten. */ if (ctrls->auto_gain->is_new) { ret = ov965x_read(ov965x, REG_COM8, ®); if (ret < 0) return ret; if (ctrls->auto_gain->val) reg |= COM8_AGC; else reg &= ~COM8_AGC; ret = ov965x_write(ov965x, REG_COM8, reg); if (ret < 0) return ret; } if (ctrls->gain->is_new && !auto_gain) { unsigned int gain = ctrls->gain->val; unsigned int rgain; int m; /* * Convert gain control value to the sensor's gain * registers (VREF[7:6], GAIN[7:0]) format. */ for (m = 6; m >= 0; m--) if (gain >= (1 << m) * 16) break; rgain = (gain - ((1 << m) * 16)) / (1 << m); rgain |= (((1 << m) - 1) << 4); ret = ov965x_write(ov965x, REG_GAIN, rgain & 0xff); if (ret < 0) return ret; ret = ov965x_read(ov965x, REG_VREF, ®); if (ret < 0) return ret; reg &= ~VREF_GAIN_MASK; reg |= (((rgain >> 8) & 0x3) << 6); ret = ov965x_write(ov965x, REG_VREF, reg); if (ret < 0) return ret; /* Return updated control's value to userspace */ ctrls->gain->val = (1 << m) * (16 + (rgain & 0xf)); } return ret; } static int ov965x_set_sharpness(struct ov965x *ov965x, unsigned int value) { u8 com14, edge; int ret; ret = ov965x_read(ov965x, REG_COM14, &com14); if (ret < 0) return ret; ret = ov965x_read(ov965x, REG_EDGE, &edge); if (ret < 0) return ret; com14 = value ? com14 | COM14_EDGE_EN : com14 & ~COM14_EDGE_EN; value--; if (value > 0x0f) { com14 |= COM14_EEF_X2; value >>= 1; } else { com14 &= ~COM14_EEF_X2; } ret = ov965x_write(ov965x, REG_COM14, com14); if (ret < 0) return ret; edge &= ~EDGE_FACTOR_MASK; edge |= ((u8)value & 0x0f); return ov965x_write(ov965x, REG_EDGE, edge); } static int ov965x_set_exposure(struct ov965x *ov965x, int exp) { struct ov965x_ctrls *ctrls = &ov965x->ctrls; bool auto_exposure = (exp == V4L2_EXPOSURE_AUTO); int ret; u8 reg; if (ctrls->auto_exp->is_new) { ret = ov965x_read(ov965x, REG_COM8, ®); if (ret < 0) return ret; if (auto_exposure) reg |= (COM8_AEC | COM8_AGC); else reg &= ~(COM8_AEC | COM8_AGC); ret = ov965x_write(ov965x, REG_COM8, reg); if (ret < 0) return ret; } if (!auto_exposure && ctrls->exposure->is_new) { unsigned int exposure = (ctrls->exposure->val * 100) / ov965x->exp_row_interval; /* * Manual exposure value * [b15:b0] - AECHM (b15:b10), AECH (b9:b2), COM1 (b1:b0) */ ret = ov965x_write(ov965x, REG_COM1, exposure & 0x3); if (!ret) ret = ov965x_write(ov965x, REG_AECH, (exposure >> 2) & 0xff); if (!ret) ret = ov965x_write(ov965x, REG_AECHM, (exposure >> 10) & 0x3f); /* Update the value to minimize rounding errors */ ctrls->exposure->val = ((exposure * ov965x->exp_row_interval) + 50) / 100; if (ret < 0) return ret; } v4l2_ctrl_activate(ov965x->ctrls.brightness, !exp); return 0; } static int ov965x_set_flip(struct ov965x *ov965x) { u8 mvfp = 0; if (ov965x->ctrls.hflip->val) mvfp |= MVFP_MIRROR; if (ov965x->ctrls.vflip->val) mvfp |= MVFP_FLIP; return ov965x_write(ov965x, REG_MVFP, mvfp); } #define NUM_SAT_LEVELS 5 #define NUM_SAT_REGS 6 static int ov965x_set_saturation(struct ov965x *ov965x, int val) { static const u8 regs[NUM_SAT_LEVELS][NUM_SAT_REGS] = { /* MTX(1)...MTX(6) */ { 0x1d, 0x1f, 0x02, 0x09, 0x13, 0x1c }, /* -2 */ { 0x2e, 0x31, 0x02, 0x0e, 0x1e, 0x2d }, /* -1 */ { 0x3a, 0x3d, 0x03, 0x12, 0x26, 0x38 }, /* 0 */ { 0x46, 0x49, 0x04, 0x16, 0x2e, 0x43 }, /* +1 */ { 0x57, 0x5c, 0x05, 0x1b, 0x39, 0x54 }, /* +2 */ }; u8 addr = REG_MTX(1); int i, ret = 0; val += (NUM_SAT_LEVELS / 2); if (val >= NUM_SAT_LEVELS) return -EINVAL; for (i = 0; i < NUM_SAT_REGS && !ret; i++) ret = ov965x_write(ov965x, addr + i, regs[val][i]); return ret; } static int ov965x_set_test_pattern(struct ov965x *ov965x, int value) { int ret; u8 reg; ret = ov965x_read(ov965x, REG_COM23, ®); if (ret < 0) return ret; reg = value ? reg | COM23_TEST_MODE : reg & ~COM23_TEST_MODE; return ov965x_write(ov965x, REG_COM23, reg); } static int __g_volatile_ctrl(struct ov965x *ov965x, struct v4l2_ctrl *ctrl) { unsigned int exposure, gain, m; u8 reg0, reg1, reg2; int ret; if (!ov965x->power) return 0; switch (ctrl->id) { case V4L2_CID_AUTOGAIN: if (!ctrl->val) return 0; ret = ov965x_read(ov965x, REG_GAIN, ®0); if (ret < 0) return ret; ret = ov965x_read(ov965x, REG_VREF, ®1); if (ret < 0) return ret; gain = ((reg1 >> 6) << 8) | reg0; m = 0x01 << fls(gain >> 4); ov965x->ctrls.gain->val = m * (16 + (gain & 0xf)); break; case V4L2_CID_EXPOSURE_AUTO: if (ctrl->val == V4L2_EXPOSURE_MANUAL) return 0; ret = ov965x_read(ov965x, REG_COM1, ®0); if (ret < 0) return ret; ret = ov965x_read(ov965x, REG_AECH, ®1); if (ret < 0) return ret; ret = ov965x_read(ov965x, REG_AECHM, ®2); if (ret < 0) return ret; exposure = ((reg2 & 0x3f) << 10) | (reg1 << 2) | (reg0 & 0x3); ov965x->ctrls.exposure->val = ((exposure * ov965x->exp_row_interval) + 50) / 100; break; } return 0; } static int ov965x_g_volatile_ctrl(struct v4l2_ctrl *ctrl) { struct v4l2_subdev *sd = ctrl_to_sd(ctrl); struct ov965x *ov965x = to_ov965x(sd); int ret; v4l2_dbg(1, debug, sd, "g_ctrl: %s\n", ctrl->name); mutex_lock(&ov965x->lock); ret = __g_volatile_ctrl(ov965x, ctrl); mutex_unlock(&ov965x->lock); return ret; } static int ov965x_s_ctrl(struct v4l2_ctrl *ctrl) { struct v4l2_subdev *sd = ctrl_to_sd(ctrl); struct ov965x *ov965x = to_ov965x(sd); int ret = -EINVAL; v4l2_dbg(1, debug, sd, "s_ctrl: %s, value: %d. power: %d\n", ctrl->name, ctrl->val, ov965x->power); mutex_lock(&ov965x->lock); /* * If the device is not powered up now postpone applying control's * value to the hardware, until it is ready to accept commands. */ if (ov965x->power == 0) { mutex_unlock(&ov965x->lock); return 0; } switch (ctrl->id) { case V4L2_CID_AUTO_WHITE_BALANCE: ret = ov965x_set_white_balance(ov965x, ctrl->val); break; case V4L2_CID_BRIGHTNESS: ret = ov965x_set_brightness(ov965x, ctrl->val); break; case V4L2_CID_EXPOSURE_AUTO: ret = ov965x_set_exposure(ov965x, ctrl->val); break; case V4L2_CID_AUTOGAIN: ret = ov965x_set_gain(ov965x, ctrl->val); break; case V4L2_CID_HFLIP: ret = ov965x_set_flip(ov965x); break; case V4L2_CID_POWER_LINE_FREQUENCY: ret = ov965x_set_banding_filter(ov965x, ctrl->val); break; case V4L2_CID_SATURATION: ret = ov965x_set_saturation(ov965x, ctrl->val); break; case V4L2_CID_SHARPNESS: ret = ov965x_set_sharpness(ov965x, ctrl->val); break; case V4L2_CID_TEST_PATTERN: ret = ov965x_set_test_pattern(ov965x, ctrl->val); break; } mutex_unlock(&ov965x->lock); return ret; } static const struct v4l2_ctrl_ops ov965x_ctrl_ops = { .g_volatile_ctrl = ov965x_g_volatile_ctrl, .s_ctrl = ov965x_s_ctrl, }; static const char * const test_pattern_menu[] = { "Disabled", "Color bars", }; static int ov965x_initialize_controls(struct ov965x *ov965x) { const struct v4l2_ctrl_ops *ops = &ov965x_ctrl_ops; struct ov965x_ctrls *ctrls = &ov965x->ctrls; struct v4l2_ctrl_handler *hdl = &ctrls->handler; int ret; ret = v4l2_ctrl_handler_init(hdl, 16); if (ret < 0) return ret; /* Auto/manual white balance */ ctrls->auto_wb = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_AUTO_WHITE_BALANCE, 0, 1, 1, 1); ctrls->blue_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BLUE_BALANCE, 0, 0xff, 1, 0x80); ctrls->red_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_RED_BALANCE, 0, 0xff, 1, 0x80); /* Auto/manual exposure */ ctrls->auto_exp = v4l2_ctrl_new_std_menu(hdl, ops, V4L2_CID_EXPOSURE_AUTO, V4L2_EXPOSURE_MANUAL, 0, V4L2_EXPOSURE_AUTO); /* Exposure time, in 100 us units. min/max is updated dynamically. */ ctrls->exposure = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_EXPOSURE_ABSOLUTE, 2, 1500, 1, 500); /* Auto/manual gain */ ctrls->auto_gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_AUTOGAIN, 0, 1, 1, 1); ctrls->gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_GAIN, 16, 64 * (16 + 15), 1, 64 * 16); ctrls->saturation = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_SATURATION, -2, 2, 1, 0); ctrls->brightness = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BRIGHTNESS, -3, 3, 1, 0); ctrls->sharpness = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_SHARPNESS, 0, 32, 1, 6); ctrls->hflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HFLIP, 0, 1, 1, 0); ctrls->vflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VFLIP, 0, 1, 1, 0); ctrls->light_freq = v4l2_ctrl_new_std_menu(hdl, ops, V4L2_CID_POWER_LINE_FREQUENCY, V4L2_CID_POWER_LINE_FREQUENCY_60HZ, ~0x7, V4L2_CID_POWER_LINE_FREQUENCY_50HZ); v4l2_ctrl_new_std_menu_items(hdl, ops, V4L2_CID_TEST_PATTERN, ARRAY_SIZE(test_pattern_menu) - 1, 0, 0, test_pattern_menu); if (hdl->error) { ret = hdl->error; v4l2_ctrl_handler_free(hdl); return ret; } ctrls->gain->flags |= V4L2_CTRL_FLAG_VOLATILE; ctrls->exposure->flags |= V4L2_CTRL_FLAG_VOLATILE; v4l2_ctrl_auto_cluster(3, &ctrls->auto_wb, 0, false); v4l2_ctrl_auto_cluster(2, &ctrls->auto_gain, 0, true); v4l2_ctrl_auto_cluster(2, &ctrls->auto_exp, 1, true); v4l2_ctrl_cluster(2, &ctrls->hflip); ov965x->sd.ctrl_handler = hdl; return 0; } /* * V4L2 subdev video and pad level operations */ static void ov965x_get_default_format(struct v4l2_mbus_framefmt *mf) { mf->width = ov965x_framesizes[0].width; mf->height = ov965x_framesizes[0].height; mf->colorspace = ov965x_formats[0].colorspace; mf->code = ov965x_formats[0].code; mf->field = V4L2_FIELD_NONE; } static int ov965x_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_mbus_code_enum *code) { if (code->index >= ARRAY_SIZE(ov965x_formats)) return -EINVAL; code->code = ov965x_formats[code->index].code; return 0; } static int ov965x_enum_frame_sizes(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_frame_size_enum *fse) { int i = ARRAY_SIZE(ov965x_formats); if (fse->index >= ARRAY_SIZE(ov965x_framesizes)) return -EINVAL; while (--i) if (fse->code == ov965x_formats[i].code) break; fse->code = ov965x_formats[i].code; fse->min_width = ov965x_framesizes[fse->index].width; fse->max_width = fse->min_width; fse->max_height = ov965x_framesizes[fse->index].height; fse->min_height = fse->max_height; return 0; } static int ov965x_g_frame_interval(struct v4l2_subdev *sd, struct v4l2_subdev_frame_interval *fi) { struct ov965x *ov965x = to_ov965x(sd); mutex_lock(&ov965x->lock); fi->interval = ov965x->fiv->interval; mutex_unlock(&ov965x->lock); return 0; } static int __ov965x_set_frame_interval(struct ov965x *ov965x, struct v4l2_subdev_frame_interval *fi) { struct v4l2_mbus_framefmt *mbus_fmt = &ov965x->format; const struct ov965x_interval *fiv = &ov965x_intervals[0]; u64 req_int, err, min_err = ~0ULL; unsigned int i; if (fi->interval.denominator == 0) return -EINVAL; req_int = (u64)fi->interval.numerator * 10000; do_div(req_int, fi->interval.denominator); for (i = 0; i < ARRAY_SIZE(ov965x_intervals); i++) { const struct ov965x_interval *iv = &ov965x_intervals[i]; if (mbus_fmt->width != iv->size.width || mbus_fmt->height != iv->size.height) continue; err = abs((u64)(iv->interval.numerator * 10000) / iv->interval.denominator - req_int); if (err < min_err) { fiv = iv; min_err = err; } } ov965x->fiv = fiv; v4l2_dbg(1, debug, &ov965x->sd, "Changed frame interval to %u us\n", fiv->interval.numerator * 1000000 / fiv->interval.denominator); return 0; } static int ov965x_s_frame_interval(struct v4l2_subdev *sd, struct v4l2_subdev_frame_interval *fi) { struct ov965x *ov965x = to_ov965x(sd); int ret; v4l2_dbg(1, debug, sd, "Setting %d/%d frame interval\n", fi->interval.numerator, fi->interval.denominator); mutex_lock(&ov965x->lock); ret = __ov965x_set_frame_interval(ov965x, fi); ov965x->apply_frame_fmt = 1; mutex_unlock(&ov965x->lock); return ret; } static int ov965x_get_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_format *fmt) { struct ov965x *ov965x = to_ov965x(sd); struct v4l2_mbus_framefmt *mf; if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) { mf = v4l2_subdev_get_try_format(sd, cfg, 0); fmt->format = *mf; return 0; } mutex_lock(&ov965x->lock); fmt->format = ov965x->format; mutex_unlock(&ov965x->lock); return 0; } static void __ov965x_try_frame_size(struct v4l2_mbus_framefmt *mf, const struct ov965x_framesize **size) { const struct ov965x_framesize *fsize = &ov965x_framesizes[0], *match = NULL; int i = ARRAY_SIZE(ov965x_framesizes); unsigned int min_err = UINT_MAX; while (i--) { int err = abs(fsize->width - mf->width) + abs(fsize->height - mf->height); if (err < min_err) { min_err = err; match = fsize; } fsize++; } if (!match) match = &ov965x_framesizes[0]; mf->width = match->width; mf->height = match->height; if (size) *size = match; } static int ov965x_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_format *fmt) { unsigned int index = ARRAY_SIZE(ov965x_formats); struct v4l2_mbus_framefmt *mf = &fmt->format; struct ov965x *ov965x = to_ov965x(sd); const struct ov965x_framesize *size = NULL; int ret = 0; __ov965x_try_frame_size(mf, &size); while (--index) if (ov965x_formats[index].code == mf->code) break; mf->colorspace = V4L2_COLORSPACE_JPEG; mf->code = ov965x_formats[index].code; mf->field = V4L2_FIELD_NONE; mutex_lock(&ov965x->lock); if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) { if (cfg) { mf = v4l2_subdev_get_try_format(sd, cfg, fmt->pad); *mf = fmt->format; } } else { if (ov965x->streaming) { ret = -EBUSY; } else { ov965x->frame_size = size; ov965x->format = fmt->format; ov965x->tslb_reg = ov965x_formats[index].tslb_reg; ov965x->apply_frame_fmt = 1; } } if (!ret && fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE) { struct v4l2_subdev_frame_interval fiv = { .interval = { 0, 1 } }; /* Reset to minimum possible frame interval */ __ov965x_set_frame_interval(ov965x, &fiv); } mutex_unlock(&ov965x->lock); if (!ret) ov965x_update_exposure_ctrl(ov965x); return ret; } static int ov965x_set_frame_size(struct ov965x *ov965x) { int i, ret = 0; for (i = 0; ret == 0 && i < NUM_FMT_REGS; i++) ret = ov965x_write(ov965x, frame_size_reg_addr[i], ov965x->frame_size->regs[i]); return ret; } static int __ov965x_set_params(struct ov965x *ov965x) { struct ov965x_ctrls *ctrls = &ov965x->ctrls; int ret = 0; u8 reg; if (ov965x->apply_frame_fmt) { reg = DEF_CLKRC + ov965x->fiv->clkrc_div; ret = ov965x_write(ov965x, REG_CLKRC, reg); if (ret < 0) return ret; ret = ov965x_set_frame_size(ov965x); if (ret < 0) return ret; ret = ov965x_read(ov965x, REG_TSLB, ®); if (ret < 0) return ret; reg &= ~TSLB_YUYV_MASK; reg |= ov965x->tslb_reg; ret = ov965x_write(ov965x, REG_TSLB, reg); if (ret < 0) return ret; } ret = ov965x_set_default_gamma_curve(ov965x); if (ret < 0) return ret; ret = ov965x_set_color_matrix(ov965x); if (ret < 0) return ret; /* * Select manual banding filter, the filter will * be enabled further if required. */ ret = ov965x_read(ov965x, REG_COM11, ®); if (!ret) reg |= COM11_BANDING; ret = ov965x_write(ov965x, REG_COM11, reg); if (ret < 0) return ret; /* * Banding filter (REG_MBD value) needs to match selected * resolution and frame rate, so it's always updated here. */ return ov965x_set_banding_filter(ov965x, ctrls->light_freq->val); } static int ov965x_s_stream(struct v4l2_subdev *sd, int on) { struct ov965x *ov965x = to_ov965x(sd); struct ov965x_ctrls *ctrls = &ov965x->ctrls; int ret = 0; v4l2_dbg(1, debug, sd, "%s: on: %d\n", __func__, on); mutex_lock(&ov965x->lock); if (ov965x->streaming == !on) { if (on) ret = __ov965x_set_params(ov965x); if (!ret && ctrls->update) { /* * ov965x_s_ctrl callback takes the mutex * so it needs to be released here. */ mutex_unlock(&ov965x->lock); ret = v4l2_ctrl_handler_setup(&ctrls->handler); mutex_lock(&ov965x->lock); if (!ret) ctrls->update = 0; } if (!ret) ret = ov965x_write(ov965x, REG_COM2, on ? 0x01 : 0x11); } if (!ret) ov965x->streaming += on ? 1 : -1; WARN_ON(ov965x->streaming < 0); mutex_unlock(&ov965x->lock); return ret; } /* * V4L2 subdev internal operations */ static int ov965x_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh) { struct v4l2_mbus_framefmt *mf = v4l2_subdev_get_try_format(sd, fh->pad, 0); ov965x_get_default_format(mf); return 0; } static const struct v4l2_subdev_pad_ops ov965x_pad_ops = { .enum_mbus_code = ov965x_enum_mbus_code, .enum_frame_size = ov965x_enum_frame_sizes, .get_fmt = ov965x_get_fmt, .set_fmt = ov965x_set_fmt, }; static const struct v4l2_subdev_video_ops ov965x_video_ops = { .s_stream = ov965x_s_stream, .g_frame_interval = ov965x_g_frame_interval, .s_frame_interval = ov965x_s_frame_interval, }; static const struct v4l2_subdev_internal_ops ov965x_sd_internal_ops = { .open = ov965x_open, }; static const struct v4l2_subdev_core_ops ov965x_core_ops = { .s_power = ov965x_s_power, .log_status = v4l2_ctrl_subdev_log_status, .subscribe_event = v4l2_ctrl_subdev_subscribe_event, .unsubscribe_event = v4l2_event_subdev_unsubscribe, }; static const struct v4l2_subdev_ops ov965x_subdev_ops = { .core = &ov965x_core_ops, .pad = &ov965x_pad_ops, .video = &ov965x_video_ops, }; /* * Reset and power down GPIOs configuration */ static int ov965x_configure_gpios_pdata(struct ov965x *ov965x, const struct ov9650_platform_data *pdata) { int ret, i; int gpios[NUM_GPIOS]; struct device *dev = regmap_get_device(ov965x->regmap); gpios[GPIO_PWDN] = pdata->gpio_pwdn; gpios[GPIO_RST] = pdata->gpio_reset; for (i = 0; i < ARRAY_SIZE(ov965x->gpios); i++) { int gpio = gpios[i]; if (!gpio_is_valid(gpio)) continue; ret = devm_gpio_request_one(dev, gpio, GPIOF_OUT_INIT_HIGH, "OV965X"); if (ret < 0) return ret; v4l2_dbg(1, debug, &ov965x->sd, "set gpio %d to 1\n", gpio); gpio_set_value_cansleep(gpio, 1); gpio_export(gpio, 0); ov965x->gpios[i] = gpio_to_desc(gpio); } return 0; } static int ov965x_configure_gpios(struct ov965x *ov965x) { struct device *dev = regmap_get_device(ov965x->regmap); ov965x->gpios[GPIO_PWDN] = devm_gpiod_get_optional(dev, "powerdown", GPIOD_OUT_HIGH); if (IS_ERR(ov965x->gpios[GPIO_PWDN])) { dev_info(dev, "can't get %s GPIO\n", "powerdown"); return PTR_ERR(ov965x->gpios[GPIO_PWDN]); } ov965x->gpios[GPIO_RST] = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(ov965x->gpios[GPIO_RST])) { dev_info(dev, "can't get %s GPIO\n", "reset"); return PTR_ERR(ov965x->gpios[GPIO_RST]); } return 0; } static int ov965x_detect_sensor(struct v4l2_subdev *sd) { struct ov965x *ov965x = to_ov965x(sd); u8 pid, ver; int ret; mutex_lock(&ov965x->lock); ret = __ov965x_set_power(ov965x, 1); if (ret) goto out; msleep(25); /* Check sensor revision */ ret = ov965x_read(ov965x, REG_PID, &pid); if (!ret) ret = ov965x_read(ov965x, REG_VER, &ver); __ov965x_set_power(ov965x, 0); if (!ret) { ov965x->id = OV965X_ID(pid, ver); if (ov965x->id == OV9650_ID || ov965x->id == OV9652_ID) { v4l2_info(sd, "Found OV%04X sensor\n", ov965x->id); } else { v4l2_err(sd, "Sensor detection failed (%04X, %d)\n", ov965x->id, ret); ret = -ENODEV; } } out: mutex_unlock(&ov965x->lock); return ret; } static int ov965x_probe(struct i2c_client *client, const struct i2c_device_id *id) { const struct ov9650_platform_data *pdata = client->dev.platform_data; struct v4l2_subdev *sd; struct ov965x *ov965x; int ret; static const struct regmap_config ov965x_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = 0xab, }; ov965x = devm_kzalloc(&client->dev, sizeof(*ov965x), GFP_KERNEL); if (!ov965x) return -ENOMEM; ov965x->regmap = devm_regmap_init_sccb(client, &ov965x_regmap_config); if (IS_ERR(ov965x->regmap)) { dev_err(&client->dev, "Failed to allocate register map\n"); return PTR_ERR(ov965x->regmap); } if (pdata) { if (pdata->mclk_frequency == 0) { dev_err(&client->dev, "MCLK frequency not specified\n"); return -EINVAL; } ov965x->mclk_frequency = pdata->mclk_frequency; ret = ov965x_configure_gpios_pdata(ov965x, pdata); if (ret < 0) return ret; } else if (dev_fwnode(&client->dev)) { ov965x->clk = devm_clk_get(&client->dev, NULL); if (IS_ERR(ov965x->clk)) return PTR_ERR(ov965x->clk); ov965x->mclk_frequency = clk_get_rate(ov965x->clk); ret = ov965x_configure_gpios(ov965x); if (ret < 0) return ret; } else { dev_err(&client->dev, "Neither platform data nor device property specified\n"); return -EINVAL; } mutex_init(&ov965x->lock); sd = &ov965x->sd; v4l2_i2c_subdev_init(sd, client, &ov965x_subdev_ops); strscpy(sd->name, DRIVER_NAME, sizeof(sd->name)); sd->internal_ops = &ov965x_sd_internal_ops; sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS; ov965x->pad.flags = MEDIA_PAD_FL_SOURCE; sd->entity.function = MEDIA_ENT_F_CAM_SENSOR; ret = media_entity_pads_init(&sd->entity, 1, &ov965x->pad); if (ret < 0) goto err_mutex; ret = ov965x_initialize_controls(ov965x); if (ret < 0) goto err_me; ov965x_get_default_format(&ov965x->format); ov965x->frame_size = &ov965x_framesizes[0]; ov965x->fiv = &ov965x_intervals[0]; ret = ov965x_detect_sensor(sd); if (ret < 0) goto err_ctrls; /* Update exposure time min/max to match frame format */ ov965x_update_exposure_ctrl(ov965x); ret = v4l2_async_register_subdev(sd); if (ret < 0) goto err_ctrls; return 0; err_ctrls: v4l2_ctrl_handler_free(sd->ctrl_handler); err_me: media_entity_cleanup(&sd->entity); err_mutex: mutex_destroy(&ov965x->lock); return ret; } static int ov965x_remove(struct i2c_client *client) { struct v4l2_subdev *sd = i2c_get_clientdata(client); struct ov965x *ov965x = to_ov965x(sd); v4l2_async_unregister_subdev(sd); v4l2_ctrl_handler_free(sd->ctrl_handler); media_entity_cleanup(&sd->entity); mutex_destroy(&ov965x->lock); return 0; } static const struct i2c_device_id ov965x_id[] = { { "OV9650", 0 }, { "OV9652", 0 }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(i2c, ov965x_id); #if IS_ENABLED(CONFIG_OF) static const struct of_device_id ov965x_of_match[] = { { .compatible = "ovti,ov9650", }, { .compatible = "ovti,ov9652", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, ov965x_of_match); #endif static struct i2c_driver ov965x_i2c_driver = { .driver = { .name = DRIVER_NAME, .of_match_table = of_match_ptr(ov965x_of_match), }, .probe = ov965x_probe, .remove = ov965x_remove, .id_table = ov965x_id, }; module_i2c_driver(ov965x_i2c_driver); MODULE_AUTHOR("Sylwester Nawrocki <sylvester.nawrocki@gmail.com>"); MODULE_DESCRIPTION("OV9650/OV9652 CMOS Image Sensor driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1