Contributors: 15
Author Tokens Token Proportion Commits Commit Proportion
Sakari Ailus 14909 97.91% 82 80.39%
Hans Verkuil 73 0.48% 2 1.96%
Laurent Pinchart 66 0.43% 3 2.94%
Pavel Machek 44 0.29% 1 0.98%
Ivaylo Dimitrov 40 0.26% 1 0.98%
Javier Martinez Canillas 26 0.17% 2 1.96%
Boris Brezillon 16 0.11% 1 0.98%
Andy Shevchenko 15 0.10% 1 0.98%
Christophe Jaillet 11 0.07% 1 0.98%
Mauro Carvalho Chehab 10 0.07% 3 2.94%
Colin Ian King 6 0.04% 1 0.98%
Ricardo Ribalda Delgado 6 0.04% 1 0.98%
Thomas Gleixner 2 0.01% 1 0.98%
Sachin Kamat 2 0.01% 1 0.98%
Luca Ceresoli 1 0.01% 1 0.98%
Total 15227 102


// SPDX-License-Identifier: GPL-2.0-only
/*
 * drivers/media/i2c/smiapp/smiapp-core.c
 *
 * Generic driver for SMIA/SMIA++ compliant camera modules
 *
 * Copyright (C) 2010--2012 Nokia Corporation
 * Contact: Sakari Ailus <sakari.ailus@iki.fi>
 *
 * Based on smiapp driver by Vimarsh Zutshi
 * Based on jt8ev1.c by Vimarsh Zutshi
 * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
 */

#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/gpio.h>
#include <linux/gpio/consumer.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <linux/property.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/smiapp.h>
#include <linux/v4l2-mediabus.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-device.h>

#include "smiapp.h"

#define SMIAPP_ALIGN_DIM(dim, flags)	\
	((flags) & V4L2_SEL_FLAG_GE	\
	 ? ALIGN((dim), 2)		\
	 : (dim) & ~1)

/*
 * smiapp_module_idents - supported camera modules
 */
static const struct smiapp_module_ident smiapp_module_idents[] = {
	SMIAPP_IDENT_L(0x01, 0x022b, -1, "vs6555"),
	SMIAPP_IDENT_L(0x01, 0x022e, -1, "vw6558"),
	SMIAPP_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
	SMIAPP_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
	SMIAPP_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
	SMIAPP_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
	SMIAPP_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
	SMIAPP_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
	SMIAPP_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
	SMIAPP_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
	SMIAPP_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
};

/*
 *
 * Dynamic Capability Identification
 *
 */

static int smiapp_read_frame_fmt(struct smiapp_sensor *sensor)
{
	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
	u32 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
	unsigned int i;
	int pixel_count = 0;
	int line_count = 0;
	int rval;

	rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_TYPE,
			   &fmt_model_type);
	if (rval)
		return rval;

	rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_SUBTYPE,
			   &fmt_model_subtype);
	if (rval)
		return rval;

	ncol_desc = (fmt_model_subtype
		     & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_MASK)
		>> SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_SHIFT;
	nrow_desc = fmt_model_subtype
		& SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NROWS_MASK;

	dev_dbg(&client->dev, "format_model_type %s\n",
		fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE
		? "2 byte" :
		fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE
		? "4 byte" : "is simply bad");

	for (i = 0; i < ncol_desc + nrow_desc; i++) {
		u32 desc;
		u32 pixelcode;
		u32 pixels;
		char *which;
		char *what;
		u32 reg;

		if (fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE) {
			reg = SMIAPP_REG_U16_FRAME_FORMAT_DESCRIPTOR_2(i);
			rval = smiapp_read(sensor, reg,	&desc);
			if (rval)
				return rval;

			pixelcode =
				(desc
				 & SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_MASK)
				>> SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_SHIFT;
			pixels = desc & SMIAPP_FRAME_FORMAT_DESC_2_PIXELS_MASK;
		} else if (fmt_model_type
			   == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE) {
			reg = SMIAPP_REG_U32_FRAME_FORMAT_DESCRIPTOR_4(i);
			rval = smiapp_read(sensor, reg, &desc);
			if (rval)
				return rval;

			pixelcode =
				(desc
				 & SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_MASK)
				>> SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_SHIFT;
			pixels = desc & SMIAPP_FRAME_FORMAT_DESC_4_PIXELS_MASK;
		} else {
			dev_dbg(&client->dev,
				"invalid frame format model type %d\n",
				fmt_model_type);
			return -EINVAL;
		}

		if (i < ncol_desc)
			which = "columns";
		else
			which = "rows";

		switch (pixelcode) {
		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED:
			what = "embedded";
			break;
		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DUMMY:
			what = "dummy";
			break;
		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_BLACK:
			what = "black";
			break;
		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DARK:
			what = "dark";
			break;
		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE:
			what = "visible";
			break;
		default:
			what = "invalid";
			break;
		}

		dev_dbg(&client->dev,
			"0x%8.8x %s pixels: %d %s (pixelcode %u)\n", reg,
			what, pixels, which, pixelcode);

		if (i < ncol_desc) {
			if (pixelcode ==
			    SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE)
				sensor->visible_pixel_start = pixel_count;
			pixel_count += pixels;
			continue;
		}

		/* Handle row descriptors */
		switch (pixelcode) {
		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED:
			if (sensor->embedded_end)
				break;
			sensor->embedded_start = line_count;
			sensor->embedded_end = line_count + pixels;
			break;
		case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE:
			sensor->image_start = line_count;
			break;
		}
		line_count += pixels;
	}

	if (sensor->embedded_end > sensor->image_start) {
		dev_dbg(&client->dev,
			"adjusting image start line to %u (was %u)\n",
			sensor->embedded_end, sensor->image_start);
		sensor->image_start = sensor->embedded_end;
	}

	dev_dbg(&client->dev, "embedded data from lines %d to %d\n",
		sensor->embedded_start, sensor->embedded_end);
	dev_dbg(&client->dev, "image data starts at line %d\n",
		sensor->image_start);

	return 0;
}

static int smiapp_pll_configure(struct smiapp_sensor *sensor)
{
	struct smiapp_pll *pll = &sensor->pll;
	int rval;

	rval = smiapp_write(
		sensor, SMIAPP_REG_U16_VT_PIX_CLK_DIV, pll->vt.pix_clk_div);
	if (rval < 0)
		return rval;

	rval = smiapp_write(
		sensor, SMIAPP_REG_U16_VT_SYS_CLK_DIV, pll->vt.sys_clk_div);
	if (rval < 0)
		return rval;

	rval = smiapp_write(
		sensor, SMIAPP_REG_U16_PRE_PLL_CLK_DIV, pll->pre_pll_clk_div);
	if (rval < 0)
		return rval;

	rval = smiapp_write(
		sensor, SMIAPP_REG_U16_PLL_MULTIPLIER, pll->pll_multiplier);
	if (rval < 0)
		return rval;

	/* Lane op clock ratio does not apply here. */
	rval = smiapp_write(
		sensor, SMIAPP_REG_U32_REQUESTED_LINK_BIT_RATE_MBPS,
		DIV_ROUND_UP(pll->op.sys_clk_freq_hz, 1000000 / 256 / 256));
	if (rval < 0 || sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
		return rval;

	rval = smiapp_write(
		sensor, SMIAPP_REG_U16_OP_PIX_CLK_DIV, pll->op.pix_clk_div);
	if (rval < 0)
		return rval;

	return smiapp_write(
		sensor, SMIAPP_REG_U16_OP_SYS_CLK_DIV, pll->op.sys_clk_div);
}

static int smiapp_pll_try(struct smiapp_sensor *sensor,
			  struct smiapp_pll *pll)
{
	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
	struct smiapp_pll_limits lim = {
		.min_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_PRE_PLL_CLK_DIV],
		.max_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_PRE_PLL_CLK_DIV],
		.min_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_IP_FREQ_HZ],
		.max_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_IP_FREQ_HZ],
		.min_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MIN_PLL_MULTIPLIER],
		.max_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MAX_PLL_MULTIPLIER],
		.min_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_OP_FREQ_HZ],
		.max_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_OP_FREQ_HZ],

		.op.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV],
		.op.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV],
		.op.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV],
		.op.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV],
		.op.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_FREQ_HZ],
		.op.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_FREQ_HZ],
		.op.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_FREQ_HZ],
		.op.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_FREQ_HZ],

		.vt.min_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_DIV],
		.vt.max_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_DIV],
		.vt.min_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_DIV],
		.vt.max_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_DIV],
		.vt.min_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_FREQ_HZ],
		.vt.max_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_FREQ_HZ],
		.vt.min_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_FREQ_HZ],
		.vt.max_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_FREQ_HZ],

		.min_line_length_pck_bin = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN],
		.min_line_length_pck = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK],
	};

	return smiapp_pll_calculate(&client->dev, &lim, pll);
}

static int smiapp_pll_update(struct smiapp_sensor *sensor)
{
	struct smiapp_pll *pll = &sensor->pll;
	int rval;

	pll->binning_horizontal = sensor->binning_horizontal;
	pll->binning_vertical = sensor->binning_vertical;
	pll->link_freq =
		sensor->link_freq->qmenu_int[sensor->link_freq->val];
	pll->scale_m = sensor->scale_m;
	pll->bits_per_pixel = sensor->csi_format->compressed;

	rval = smiapp_pll_try(sensor, pll);
	if (rval < 0)
		return rval;

	__v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_parray,
				 pll->pixel_rate_pixel_array);
	__v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_csi, pll->pixel_rate_csi);

	return 0;
}


/*
 *
 * V4L2 Controls handling
 *
 */

static void __smiapp_update_exposure_limits(struct smiapp_sensor *sensor)
{
	struct v4l2_ctrl *ctrl = sensor->exposure;
	int max;

	max = sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
		+ sensor->vblank->val
		- sensor->limits[SMIAPP_LIMIT_COARSE_INTEGRATION_TIME_MAX_MARGIN];

	__v4l2_ctrl_modify_range(ctrl, ctrl->minimum, max, ctrl->step, max);
}

/*
 * Order matters.
 *
 * 1. Bits-per-pixel, descending.
 * 2. Bits-per-pixel compressed, descending.
 * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
 *    orders must be defined.
 */
static const struct smiapp_csi_data_format smiapp_csi_data_formats[] = {
	{ MEDIA_BUS_FMT_SGRBG16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_GRBG, },
	{ MEDIA_BUS_FMT_SRGGB16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_RGGB, },
	{ MEDIA_BUS_FMT_SBGGR16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_BGGR, },
	{ MEDIA_BUS_FMT_SGBRG16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_GBRG, },
	{ MEDIA_BUS_FMT_SGRBG14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_GRBG, },
	{ MEDIA_BUS_FMT_SRGGB14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_RGGB, },
	{ MEDIA_BUS_FMT_SBGGR14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_BGGR, },
	{ MEDIA_BUS_FMT_SGBRG14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_GBRG, },
	{ MEDIA_BUS_FMT_SGRBG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GRBG, },
	{ MEDIA_BUS_FMT_SRGGB12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_RGGB, },
	{ MEDIA_BUS_FMT_SBGGR12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_BGGR, },
	{ MEDIA_BUS_FMT_SGBRG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GBRG, },
	{ MEDIA_BUS_FMT_SGRBG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GRBG, },
	{ MEDIA_BUS_FMT_SRGGB10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_RGGB, },
	{ MEDIA_BUS_FMT_SBGGR10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_BGGR, },
	{ MEDIA_BUS_FMT_SGBRG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GBRG, },
	{ MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GRBG, },
	{ MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_RGGB, },
	{ MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_BGGR, },
	{ MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GBRG, },
	{ MEDIA_BUS_FMT_SGRBG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GRBG, },
	{ MEDIA_BUS_FMT_SRGGB8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_RGGB, },
	{ MEDIA_BUS_FMT_SBGGR8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_BGGR, },
	{ MEDIA_BUS_FMT_SGBRG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GBRG, },
};

static const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };

#define to_csi_format_idx(fmt) (((unsigned long)(fmt)			\
				 - (unsigned long)smiapp_csi_data_formats) \
				/ sizeof(*smiapp_csi_data_formats))

static u32 smiapp_pixel_order(struct smiapp_sensor *sensor)
{
	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
	int flip = 0;

	if (sensor->hflip) {
		if (sensor->hflip->val)
			flip |= SMIAPP_IMAGE_ORIENTATION_HFLIP;

		if (sensor->vflip->val)
			flip |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
	}

	flip ^= sensor->hvflip_inv_mask;

	dev_dbg(&client->dev, "flip %d\n", flip);
	return sensor->default_pixel_order ^ flip;
}

static void smiapp_update_mbus_formats(struct smiapp_sensor *sensor)
{
	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
	unsigned int csi_format_idx =
		to_csi_format_idx(sensor->csi_format) & ~3;
	unsigned int internal_csi_format_idx =
		to_csi_format_idx(sensor->internal_csi_format) & ~3;
	unsigned int pixel_order = smiapp_pixel_order(sensor);

	sensor->mbus_frame_fmts =
		sensor->default_mbus_frame_fmts << pixel_order;
	sensor->csi_format =
		&smiapp_csi_data_formats[csi_format_idx + pixel_order];
	sensor->internal_csi_format =
		&smiapp_csi_data_formats[internal_csi_format_idx
					 + pixel_order];

	BUG_ON(max(internal_csi_format_idx, csi_format_idx) + pixel_order
	       >= ARRAY_SIZE(smiapp_csi_data_formats));

	dev_dbg(&client->dev, "new pixel order %s\n",
		pixel_order_str[pixel_order]);
}

static const char * const smiapp_test_patterns[] = {
	"Disabled",
	"Solid Colour",
	"Eight Vertical Colour Bars",
	"Colour Bars With Fade to Grey",
	"Pseudorandom Sequence (PN9)",
};

static int smiapp_set_ctrl(struct v4l2_ctrl *ctrl)
{
	struct smiapp_sensor *sensor =
		container_of(ctrl->handler, struct smiapp_subdev, ctrl_handler)
			->sensor;
	u32 orient = 0;
	int exposure;
	int rval;

	switch (ctrl->id) {
	case V4L2_CID_ANALOGUE_GAIN:
		return smiapp_write(
			sensor,
			SMIAPP_REG_U16_ANALOGUE_GAIN_CODE_GLOBAL, ctrl->val);

	case V4L2_CID_EXPOSURE:
		return smiapp_write(
			sensor,
			SMIAPP_REG_U16_COARSE_INTEGRATION_TIME, ctrl->val);

	case V4L2_CID_HFLIP:
	case V4L2_CID_VFLIP:
		if (sensor->streaming)
			return -EBUSY;

		if (sensor->hflip->val)
			orient |= SMIAPP_IMAGE_ORIENTATION_HFLIP;

		if (sensor->vflip->val)
			orient |= SMIAPP_IMAGE_ORIENTATION_VFLIP;

		orient ^= sensor->hvflip_inv_mask;
		rval = smiapp_write(sensor, SMIAPP_REG_U8_IMAGE_ORIENTATION,
				    orient);
		if (rval < 0)
			return rval;

		smiapp_update_mbus_formats(sensor);

		return 0;

	case V4L2_CID_VBLANK:
		exposure = sensor->exposure->val;

		__smiapp_update_exposure_limits(sensor);

		if (exposure > sensor->exposure->maximum) {
			sensor->exposure->val =	sensor->exposure->maximum;
			rval = smiapp_set_ctrl(sensor->exposure);
			if (rval < 0)
				return rval;
		}

		return smiapp_write(
			sensor, SMIAPP_REG_U16_FRAME_LENGTH_LINES,
			sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
			+ ctrl->val);

	case V4L2_CID_HBLANK:
		return smiapp_write(
			sensor, SMIAPP_REG_U16_LINE_LENGTH_PCK,
			sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
			+ ctrl->val);

	case V4L2_CID_LINK_FREQ:
		if (sensor->streaming)
			return -EBUSY;

		return smiapp_pll_update(sensor);

	case V4L2_CID_TEST_PATTERN: {
		unsigned int i;

		for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
			v4l2_ctrl_activate(
				sensor->test_data[i],
				ctrl->val ==
				V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR);

		return smiapp_write(
			sensor, SMIAPP_REG_U16_TEST_PATTERN_MODE, ctrl->val);
	}

	case V4L2_CID_TEST_PATTERN_RED:
		return smiapp_write(
			sensor, SMIAPP_REG_U16_TEST_DATA_RED, ctrl->val);

	case V4L2_CID_TEST_PATTERN_GREENR:
		return smiapp_write(
			sensor, SMIAPP_REG_U16_TEST_DATA_GREENR, ctrl->val);

	case V4L2_CID_TEST_PATTERN_BLUE:
		return smiapp_write(
			sensor, SMIAPP_REG_U16_TEST_DATA_BLUE, ctrl->val);

	case V4L2_CID_TEST_PATTERN_GREENB:
		return smiapp_write(
			sensor, SMIAPP_REG_U16_TEST_DATA_GREENB, ctrl->val);

	case V4L2_CID_PIXEL_RATE:
		/* For v4l2_ctrl_s_ctrl_int64() used internally. */
		return 0;

	default:
		return -EINVAL;
	}
}

static const struct v4l2_ctrl_ops smiapp_ctrl_ops = {
	.s_ctrl = smiapp_set_ctrl,
};

static int smiapp_init_controls(struct smiapp_sensor *sensor)
{
	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
	int rval;

	rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 12);
	if (rval)
		return rval;

	sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;

	sensor->analog_gain = v4l2_ctrl_new_std(
		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
		V4L2_CID_ANALOGUE_GAIN,
		sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN],
		sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MAX],
		max(sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_STEP], 1U),
		sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN]);

	/* Exposure limits will be updated soon, use just something here. */
	sensor->exposure = v4l2_ctrl_new_std(
		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
		V4L2_CID_EXPOSURE, 0, 0, 1, 0);

	sensor->hflip = v4l2_ctrl_new_std(
		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
		V4L2_CID_HFLIP, 0, 1, 1, 0);
	sensor->vflip = v4l2_ctrl_new_std(
		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
		V4L2_CID_VFLIP, 0, 1, 1, 0);

	sensor->vblank = v4l2_ctrl_new_std(
		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
		V4L2_CID_VBLANK, 0, 1, 1, 0);

	if (sensor->vblank)
		sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;

	sensor->hblank = v4l2_ctrl_new_std(
		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
		V4L2_CID_HBLANK, 0, 1, 1, 0);

	if (sensor->hblank)
		sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;

	sensor->pixel_rate_parray = v4l2_ctrl_new_std(
		&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
		V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);

	v4l2_ctrl_new_std_menu_items(&sensor->pixel_array->ctrl_handler,
				     &smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN,
				     ARRAY_SIZE(smiapp_test_patterns) - 1,
				     0, 0, smiapp_test_patterns);

	if (sensor->pixel_array->ctrl_handler.error) {
		dev_err(&client->dev,
			"pixel array controls initialization failed (%d)\n",
			sensor->pixel_array->ctrl_handler.error);
		return sensor->pixel_array->ctrl_handler.error;
	}

	sensor->pixel_array->sd.ctrl_handler =
		&sensor->pixel_array->ctrl_handler;

	v4l2_ctrl_cluster(2, &sensor->hflip);

	rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
	if (rval)
		return rval;

	sensor->src->ctrl_handler.lock = &sensor->mutex;

	sensor->pixel_rate_csi = v4l2_ctrl_new_std(
		&sensor->src->ctrl_handler, &smiapp_ctrl_ops,
		V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);

	if (sensor->src->ctrl_handler.error) {
		dev_err(&client->dev,
			"src controls initialization failed (%d)\n",
			sensor->src->ctrl_handler.error);
		return sensor->src->ctrl_handler.error;
	}

	sensor->src->sd.ctrl_handler = &sensor->src->ctrl_handler;

	return 0;
}

/*
 * For controls that require information on available media bus codes
 * and linke frequencies.
 */
static int smiapp_init_late_controls(struct smiapp_sensor *sensor)
{
	unsigned long *valid_link_freqs = &sensor->valid_link_freqs[
		sensor->csi_format->compressed - sensor->compressed_min_bpp];
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) {
		int max_value = (1 << sensor->csi_format->width) - 1;

		sensor->test_data[i] = v4l2_ctrl_new_std(
				&sensor->pixel_array->ctrl_handler,
				&smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i,
				0, max_value, 1, max_value);
	}

	sensor->link_freq = v4l2_ctrl_new_int_menu(
		&sensor->src->ctrl_handler, &smiapp_ctrl_ops,
		V4L2_CID_LINK_FREQ, __fls(*valid_link_freqs),
		__ffs(*valid_link_freqs), sensor->hwcfg->op_sys_clock);

	return sensor->src->ctrl_handler.error;
}

static void smiapp_free_controls(struct smiapp_sensor *sensor)
{
	unsigned int i;

	for (i = 0; i < sensor->ssds_used; i++)
		v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
}

static int smiapp_get_limits(struct smiapp_sensor *sensor, int const *limit,
			     unsigned int n)
{
	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
	unsigned int i;
	u32 val;
	int rval;

	for (i = 0; i < n; i++) {
		rval = smiapp_read(
			sensor, smiapp_reg_limits[limit[i]].addr, &val);
		if (rval)
			return rval;
		sensor->limits[limit[i]] = val;
		dev_dbg(&client->dev, "0x%8.8x \"%s\" = %u, 0x%x\n",
			smiapp_reg_limits[limit[i]].addr,
			smiapp_reg_limits[limit[i]].what, val, val);
	}

	return 0;
}

static int smiapp_get_all_limits(struct smiapp_sensor *sensor)
{
	unsigned int i;
	int rval;

	for (i = 0; i < SMIAPP_LIMIT_LAST; i++) {
		rval = smiapp_get_limits(sensor, &i, 1);
		if (rval < 0)
			return rval;
	}

	if (sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] == 0)
		smiapp_replace_limit(sensor, SMIAPP_LIMIT_SCALER_N_MIN, 16);

	return 0;
}

static int smiapp_get_limits_binning(struct smiapp_sensor *sensor)
{
	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
	static u32 const limits[] = {
		SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN,
		SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN,
		SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN,
		SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN,
		SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN,
		SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN_BIN,
		SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN_BIN,
	};
	static u32 const limits_replace[] = {
		SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES,
		SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES,
		SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK,
		SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK,
		SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK,
		SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN,
		SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN,
	};
	unsigned int i;
	int rval;

	if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY] ==
	    SMIAPP_BINNING_CAPABILITY_NO) {
		for (i = 0; i < ARRAY_SIZE(limits); i++)
			sensor->limits[limits[i]] =
				sensor->limits[limits_replace[i]];

		return 0;
	}

	rval = smiapp_get_limits(sensor, limits, ARRAY_SIZE(limits));
	if (rval < 0)
		return rval;

	/*
	 * Sanity check whether the binning limits are valid. If not,
	 * use the non-binning ones.
	 */
	if (sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN]
	    && sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN]
	    && sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN])
		return 0;

	for (i = 0; i < ARRAY_SIZE(limits); i++) {
		dev_dbg(&client->dev,
			"replace limit 0x%8.8x \"%s\" = %d, 0x%x\n",
			smiapp_reg_limits[limits[i]].addr,
			smiapp_reg_limits[limits[i]].what,
			sensor->limits[limits_replace[i]],
			sensor->limits[limits_replace[i]]);
		sensor->limits[limits[i]] =
			sensor->limits[limits_replace[i]];
	}

	return 0;
}

static int smiapp_get_mbus_formats(struct smiapp_sensor *sensor)
{
	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
	struct smiapp_pll *pll = &sensor->pll;
	u8 compressed_max_bpp = 0;
	unsigned int type, n;
	unsigned int i, pixel_order;
	int rval;

	rval = smiapp_read(
		sensor, SMIAPP_REG_U8_DATA_FORMAT_MODEL_TYPE, &type);
	if (rval)
		return rval;

	dev_dbg(&client->dev, "data_format_model_type %d\n", type);

	rval = smiapp_read(sensor, SMIAPP_REG_U8_PIXEL_ORDER,
			   &pixel_order);
	if (rval)
		return rval;

	if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
		dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order);
		return -EINVAL;
	}

	dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order,
		pixel_order_str[pixel_order]);

	switch (type) {
	case SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL:
		n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
		break;
	case SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED:
		n = SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED_N;
		break;
	default:
		return -EINVAL;
	}

	sensor->default_pixel_order = pixel_order;
	sensor->mbus_frame_fmts = 0;

	for (i = 0; i < n; i++) {
		unsigned int fmt, j;

		rval = smiapp_read(
			sensor,
			SMIAPP_REG_U16_DATA_FORMAT_DESCRIPTOR(i), &fmt);
		if (rval)
			return rval;

		dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n",
			i, fmt >> 8, (u8)fmt);

		for (j = 0; j < ARRAY_SIZE(smiapp_csi_data_formats); j++) {
			const struct smiapp_csi_data_format *f =
				&smiapp_csi_data_formats[j];

			if (f->pixel_order != SMIAPP_PIXEL_ORDER_GRBG)
				continue;

			if (f->width != fmt >> 8 || f->compressed != (u8)fmt)
				continue;

			dev_dbg(&client->dev, "jolly good! %d\n", j);

			sensor->default_mbus_frame_fmts |= 1 << j;
		}
	}

	/* Figure out which BPP values can be used with which formats. */
	pll->binning_horizontal = 1;
	pll->binning_vertical = 1;
	pll->scale_m = sensor->scale_m;

	for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
		sensor->compressed_min_bpp =
			min(smiapp_csi_data_formats[i].compressed,
			    sensor->compressed_min_bpp);
		compressed_max_bpp =
			max(smiapp_csi_data_formats[i].compressed,
			    compressed_max_bpp);
	}

	sensor->valid_link_freqs = devm_kcalloc(
		&client->dev,
		compressed_max_bpp - sensor->compressed_min_bpp + 1,
		sizeof(*sensor->valid_link_freqs), GFP_KERNEL);
	if (!sensor->valid_link_freqs)
		return -ENOMEM;

	for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
		const struct smiapp_csi_data_format *f =
			&smiapp_csi_data_formats[i];
		unsigned long *valid_link_freqs =
			&sensor->valid_link_freqs[
				f->compressed - sensor->compressed_min_bpp];
		unsigned int j;

		if (!(sensor->default_mbus_frame_fmts & 1 << i))
			continue;

		pll->bits_per_pixel = f->compressed;

		for (j = 0; sensor->hwcfg->op_sys_clock[j]; j++) {
			pll->link_freq = sensor->hwcfg->op_sys_clock[j];

			rval = smiapp_pll_try(sensor, pll);
			dev_dbg(&client->dev, "link freq %u Hz, bpp %u %s\n",
				pll->link_freq, pll->bits_per_pixel,
				rval ? "not ok" : "ok");
			if (rval)
				continue;

			set_bit(j, valid_link_freqs);
		}

		if (!*valid_link_freqs) {
			dev_info(&client->dev,
				 "no valid link frequencies for %u bpp\n",
				 f->compressed);
			sensor->default_mbus_frame_fmts &= ~BIT(i);
			continue;
		}

		if (!sensor->csi_format
		    || f->width > sensor->csi_format->width
		    || (f->width == sensor->csi_format->width
			&& f->compressed > sensor->csi_format->compressed)) {
			sensor->csi_format = f;
			sensor->internal_csi_format = f;
		}
	}

	if (!sensor->csi_format) {
		dev_err(&client->dev, "no supported mbus code found\n");
		return -EINVAL;
	}

	smiapp_update_mbus_formats(sensor);

	return 0;
}

static void smiapp_update_blanking(struct smiapp_sensor *sensor)
{
	struct v4l2_ctrl *vblank = sensor->vblank;
	struct v4l2_ctrl *hblank = sensor->hblank;
	int min, max;

	min = max_t(int,
		    sensor->limits[SMIAPP_LIMIT_MIN_FRAME_BLANKING_LINES],
		    sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN] -
		    sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height);
	max = sensor->limits[SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN] -
		sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height;

	__v4l2_ctrl_modify_range(vblank, min, max, vblank->step, min);

	min = max_t(int,
		    sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN] -
		    sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width,
		    sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN]);
	max = sensor->limits[SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN] -
		sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width;

	__v4l2_ctrl_modify_range(hblank, min, max, hblank->step, min);

	__smiapp_update_exposure_limits(sensor);
}

static int smiapp_update_mode(struct smiapp_sensor *sensor)
{
	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
	unsigned int binning_mode;
	int rval;

	/* Binning has to be set up here; it affects limits */
	if (sensor->binning_horizontal == 1 &&
	    sensor->binning_vertical == 1) {
		binning_mode = 0;
	} else {
		u8 binning_type =
			(sensor->binning_horizontal << 4)
			| sensor->binning_vertical;

		rval = smiapp_write(
			sensor, SMIAPP_REG_U8_BINNING_TYPE, binning_type);
		if (rval < 0)
			return rval;

		binning_mode = 1;
	}
	rval = smiapp_write(sensor, SMIAPP_REG_U8_BINNING_MODE, binning_mode);
	if (rval < 0)
		return rval;

	/* Get updated limits due to binning */
	rval = smiapp_get_limits_binning(sensor);
	if (rval < 0)
		return rval;

	rval = smiapp_pll_update(sensor);
	if (rval < 0)
		return rval;

	/* Output from pixel array, including blanking */
	smiapp_update_blanking(sensor);

	dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
	dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);

	dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
		sensor->pll.pixel_rate_pixel_array /
		((sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
		  + sensor->hblank->val) *
		 (sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
		  + sensor->vblank->val) / 100));

	return 0;
}

/*
 *
 * SMIA++ NVM handling
 *
 */
static int smiapp_read_nvm(struct smiapp_sensor *sensor,
			   unsigned char *nvm)
{
	u32 i, s, p, np, v;
	int rval = 0, rval2;

	np = sensor->nvm_size / SMIAPP_NVM_PAGE_SIZE;
	for (p = 0; p < np; p++) {
		rval = smiapp_write(
			sensor,
			SMIAPP_REG_U8_DATA_TRANSFER_IF_1_PAGE_SELECT, p);
		if (rval)
			goto out;

		rval = smiapp_write(sensor,
				    SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL,
				    SMIAPP_DATA_TRANSFER_IF_1_CTRL_EN |
				    SMIAPP_DATA_TRANSFER_IF_1_CTRL_RD_EN);
		if (rval)
			goto out;

		for (i = 1000; i > 0; i--) {
			rval = smiapp_read(
				sensor,
				SMIAPP_REG_U8_DATA_TRANSFER_IF_1_STATUS, &s);

			if (rval)
				goto out;

			if (s & SMIAPP_DATA_TRANSFER_IF_1_STATUS_RD_READY)
				break;

		}
		if (!i) {
			rval = -ETIMEDOUT;
			goto out;
		}

		for (i = 0; i < SMIAPP_NVM_PAGE_SIZE; i++) {
			rval = smiapp_read(
				sensor,
				SMIAPP_REG_U8_DATA_TRANSFER_IF_1_DATA_0 + i,
				&v);
			if (rval)
				goto out;

			*nvm++ = v;
		}
	}

out:
	rval2 = smiapp_write(sensor, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL, 0);
	if (rval < 0)
		return rval;
	else
		return rval2;
}

/*
 *
 * SMIA++ CCI address control
 *
 */
static int smiapp_change_cci_addr(struct smiapp_sensor *sensor)
{
	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
	int rval;
	u32 val;

	client->addr = sensor->hwcfg->i2c_addr_dfl;

	rval = smiapp_write(sensor,
			    SMIAPP_REG_U8_CCI_ADDRESS_CONTROL,
			    sensor->hwcfg->i2c_addr_alt << 1);
	if (rval)
		return rval;

	client->addr = sensor->hwcfg->i2c_addr_alt;

	/* verify addr change went ok */
	rval = smiapp_read(sensor, SMIAPP_REG_U8_CCI_ADDRESS_CONTROL, &val);
	if (rval)
		return rval;

	if (val != sensor->hwcfg->i2c_addr_alt << 1)
		return -ENODEV;

	return 0;
}

/*
 *
 * SMIA++ Mode Control
 *
 */
static int smiapp_setup_flash_strobe(struct smiapp_sensor *sensor)
{
	struct smiapp_flash_strobe_parms *strobe_setup;
	unsigned int ext_freq = sensor->hwcfg->ext_clk;
	u32 tmp;
	u32 strobe_adjustment;
	u32 strobe_width_high_rs;
	int rval;

	strobe_setup = sensor->hwcfg->strobe_setup;

	/*
	 * How to calculate registers related to strobe length. Please
	 * do not change, or if you do at least know what you're
	 * doing. :-)
	 *
	 * Sakari Ailus <sakari.ailus@iki.fi> 2010-10-25
	 *
	 * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
	 *	/ EXTCLK freq [Hz]) * flash_strobe_adjustment
	 *
	 * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
	 * flash_strobe_adjustment E N, [1 - 0xff]
	 *
	 * The formula above is written as below to keep it on one
	 * line:
	 *
	 * l / 10^6 = w / e * a
	 *
	 * Let's mark w * a by x:
	 *
	 * x = w * a
	 *
	 * Thus, we get:
	 *
	 * x = l * e / 10^6
	 *
	 * The strobe width must be at least as long as requested,
	 * thus rounding upwards is needed.
	 *
	 * x = (l * e + 10^6 - 1) / 10^6
	 * -----------------------------
	 *
	 * Maximum possible accuracy is wanted at all times. Thus keep
	 * a as small as possible.
	 *
	 * Calculate a, assuming maximum w, with rounding upwards:
	 *
	 * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
	 * -------------------------------------
	 *
	 * Thus, we also get w, with that a, with rounding upwards:
	 *
	 * w = (x + a - 1) / a
	 * -------------------
	 *
	 * To get limits:
	 *
	 * x E [1, (2^16 - 1) * (2^8 - 1)]
	 *
	 * Substituting maximum x to the original formula (with rounding),
	 * the maximum l is thus
	 *
	 * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
	 *
	 * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
	 * --------------------------------------------------
	 *
	 * flash_strobe_length must be clamped between 1 and
	 * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
	 *
	 * Then,
	 *
	 * flash_strobe_adjustment = ((flash_strobe_length *
	 *	EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
	 *
	 * tFlash_strobe_width_ctrl = ((flash_strobe_length *
	 *	EXTCLK freq + 10^6 - 1) / 10^6 +
	 *	flash_strobe_adjustment - 1) / flash_strobe_adjustment
	 */
	tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
		      1000000 + 1, ext_freq);
	strobe_setup->strobe_width_high_us =
		clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);

	tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
			1000000 - 1), 1000000ULL);
	strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
	strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
				strobe_adjustment;

	rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_MODE_RS,
			    strobe_setup->mode);
	if (rval < 0)
		goto out;

	rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_STROBE_ADJUSTMENT,
			    strobe_adjustment);
	if (rval < 0)
		goto out;

	rval = smiapp_write(
		sensor, SMIAPP_REG_U16_TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
		strobe_width_high_rs);
	if (rval < 0)
		goto out;

	rval = smiapp_write(sensor, SMIAPP_REG_U16_TFLASH_STROBE_DELAY_RS_CTRL,
			    strobe_setup->strobe_delay);
	if (rval < 0)
		goto out;

	rval = smiapp_write(sensor, SMIAPP_REG_U16_FLASH_STROBE_START_POINT,
			    strobe_setup->stobe_start_point);
	if (rval < 0)
		goto out;

	rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_TRIGGER_RS,
			    strobe_setup->trigger);

out:
	sensor->hwcfg->strobe_setup->trigger = 0;

	return rval;
}

/* -----------------------------------------------------------------------------
 * Power management
 */

static int smiapp_power_on(struct device *dev)
{
	struct i2c_client *client = to_i2c_client(dev);
	struct v4l2_subdev *subdev = i2c_get_clientdata(client);
	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
	/*
	 * The sub-device related to the I2C device is always the
	 * source one, i.e. ssds[0].
	 */
	struct smiapp_sensor *sensor =
		container_of(ssd, struct smiapp_sensor, ssds[0]);
	unsigned int sleep;
	int rval;

	rval = regulator_enable(sensor->vana);
	if (rval) {
		dev_err(&client->dev, "failed to enable vana regulator\n");
		return rval;
	}
	usleep_range(1000, 1000);

	rval = clk_prepare_enable(sensor->ext_clk);
	if (rval < 0) {
		dev_dbg(&client->dev, "failed to enable xclk\n");
		goto out_xclk_fail;
	}
	usleep_range(1000, 1000);

	gpiod_set_value(sensor->xshutdown, 1);

	sleep = SMIAPP_RESET_DELAY(sensor->hwcfg->ext_clk);
	usleep_range(sleep, sleep);

	mutex_lock(&sensor->mutex);

	sensor->active = true;

	/*
	 * Failures to respond to the address change command have been noticed.
	 * Those failures seem to be caused by the sensor requiring a longer
	 * boot time than advertised. An additional 10ms delay seems to work
	 * around the issue, but the SMIA++ I2C write retry hack makes the delay
	 * unnecessary. The failures need to be investigated to find a proper
	 * fix, and a delay will likely need to be added here if the I2C write
	 * retry hack is reverted before the root cause of the boot time issue
	 * is found.
	 */

	if (sensor->hwcfg->i2c_addr_alt) {
		rval = smiapp_change_cci_addr(sensor);
		if (rval) {
			dev_err(&client->dev, "cci address change error\n");
			goto out_cci_addr_fail;
		}
	}

	rval = smiapp_write(sensor, SMIAPP_REG_U8_SOFTWARE_RESET,
			    SMIAPP_SOFTWARE_RESET);
	if (rval < 0) {
		dev_err(&client->dev, "software reset failed\n");
		goto out_cci_addr_fail;
	}

	if (sensor->hwcfg->i2c_addr_alt) {
		rval = smiapp_change_cci_addr(sensor);
		if (rval) {
			dev_err(&client->dev, "cci address change error\n");
			goto out_cci_addr_fail;
		}
	}

	rval = smiapp_write(sensor, SMIAPP_REG_U16_COMPRESSION_MODE,
			    SMIAPP_COMPRESSION_MODE_SIMPLE_PREDICTOR);
	if (rval) {
		dev_err(&client->dev, "compression mode set failed\n");
		goto out_cci_addr_fail;
	}

	rval = smiapp_write(
		sensor, SMIAPP_REG_U16_EXTCLK_FREQUENCY_MHZ,
		sensor->hwcfg->ext_clk / (1000000 / (1 << 8)));
	if (rval) {
		dev_err(&client->dev, "extclk frequency set failed\n");
		goto out_cci_addr_fail;
	}

	rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_LANE_MODE,
			    sensor->hwcfg->lanes - 1);
	if (rval) {
		dev_err(&client->dev, "csi lane mode set failed\n");
		goto out_cci_addr_fail;
	}

	rval = smiapp_write(sensor, SMIAPP_REG_U8_FAST_STANDBY_CTRL,
			    SMIAPP_FAST_STANDBY_CTRL_IMMEDIATE);
	if (rval) {
		dev_err(&client->dev, "fast standby set failed\n");
		goto out_cci_addr_fail;
	}

	rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_SIGNALLING_MODE,
			    sensor->hwcfg->csi_signalling_mode);
	if (rval) {
		dev_err(&client->dev, "csi signalling mode set failed\n");
		goto out_cci_addr_fail;
	}

	/* DPHY control done by sensor based on requested link rate */
	rval = smiapp_write(sensor, SMIAPP_REG_U8_DPHY_CTRL,
			    SMIAPP_DPHY_CTRL_UI);
	if (rval < 0)
		goto out_cci_addr_fail;

	rval = smiapp_call_quirk(sensor, post_poweron);
	if (rval) {
		dev_err(&client->dev, "post_poweron quirks failed\n");
		goto out_cci_addr_fail;
	}

	/* Are we still initialising...? If not, proceed with control setup. */
	if (sensor->pixel_array) {
		rval = __v4l2_ctrl_handler_setup(
			&sensor->pixel_array->ctrl_handler);
		if (rval)
			goto out_cci_addr_fail;

		rval = __v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
		if (rval)
			goto out_cci_addr_fail;

		rval = smiapp_update_mode(sensor);
		if (rval < 0)
			goto out_cci_addr_fail;
	}

	mutex_unlock(&sensor->mutex);

	return 0;

out_cci_addr_fail:
	mutex_unlock(&sensor->mutex);
	gpiod_set_value(sensor->xshutdown, 0);
	clk_disable_unprepare(sensor->ext_clk);

out_xclk_fail:
	regulator_disable(sensor->vana);

	return rval;
}

static int smiapp_power_off(struct device *dev)
{
	struct i2c_client *client = to_i2c_client(dev);
	struct v4l2_subdev *subdev = i2c_get_clientdata(client);
	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
	struct smiapp_sensor *sensor =
		container_of(ssd, struct smiapp_sensor, ssds[0]);

	mutex_lock(&sensor->mutex);

	/*
	 * Currently power/clock to lens are enable/disabled separately
	 * but they are essentially the same signals. So if the sensor is
	 * powered off while the lens is powered on the sensor does not
	 * really see a power off and next time the cci address change
	 * will fail. So do a soft reset explicitly here.
	 */
	if (sensor->hwcfg->i2c_addr_alt)
		smiapp_write(sensor,
			     SMIAPP_REG_U8_SOFTWARE_RESET,
			     SMIAPP_SOFTWARE_RESET);

	sensor->active = false;

	mutex_unlock(&sensor->mutex);

	gpiod_set_value(sensor->xshutdown, 0);
	clk_disable_unprepare(sensor->ext_clk);
	usleep_range(5000, 5000);
	regulator_disable(sensor->vana);
	sensor->streaming = false;

	return 0;
}

/* -----------------------------------------------------------------------------
 * Video stream management
 */

static int smiapp_start_streaming(struct smiapp_sensor *sensor)
{
	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
	int rval;

	mutex_lock(&sensor->mutex);

	rval = smiapp_write(sensor, SMIAPP_REG_U16_CSI_DATA_FORMAT,
			    (sensor->csi_format->width << 8) |
			    sensor->csi_format->compressed);
	if (rval)
		goto out;

	rval = smiapp_pll_configure(sensor);
	if (rval)
		goto out;

	/* Analog crop start coordinates */
	rval = smiapp_write(sensor, SMIAPP_REG_U16_X_ADDR_START,
			    sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left);
	if (rval < 0)
		goto out;

	rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_ADDR_START,
			    sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top);
	if (rval < 0)
		goto out;

	/* Analog crop end coordinates */
	rval = smiapp_write(
		sensor, SMIAPP_REG_U16_X_ADDR_END,
		sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left
		+ sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width - 1);
	if (rval < 0)
		goto out;

	rval = smiapp_write(
		sensor, SMIAPP_REG_U16_Y_ADDR_END,
		sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top
		+ sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height - 1);
	if (rval < 0)
		goto out;

	/*
	 * Output from pixel array, including blanking, is set using
	 * controls below. No need to set here.
	 */

	/* Digital crop */
	if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
	    == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
		rval = smiapp_write(
			sensor, SMIAPP_REG_U16_DIGITAL_CROP_X_OFFSET,
			sensor->scaler->crop[SMIAPP_PAD_SINK].left);
		if (rval < 0)
			goto out;

		rval = smiapp_write(
			sensor, SMIAPP_REG_U16_DIGITAL_CROP_Y_OFFSET,
			sensor->scaler->crop[SMIAPP_PAD_SINK].top);
		if (rval < 0)
			goto out;

		rval = smiapp_write(
			sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_WIDTH,
			sensor->scaler->crop[SMIAPP_PAD_SINK].width);
		if (rval < 0)
			goto out;

		rval = smiapp_write(
			sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_HEIGHT,
			sensor->scaler->crop[SMIAPP_PAD_SINK].height);
		if (rval < 0)
			goto out;
	}

	/* Scaling */
	if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
	    != SMIAPP_SCALING_CAPABILITY_NONE) {
		rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALING_MODE,
				    sensor->scaling_mode);
		if (rval < 0)
			goto out;

		rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALE_M,
				    sensor->scale_m);
		if (rval < 0)
			goto out;
	}

	/* Output size from sensor */
	rval = smiapp_write(sensor, SMIAPP_REG_U16_X_OUTPUT_SIZE,
			    sensor->src->crop[SMIAPP_PAD_SRC].width);
	if (rval < 0)
		goto out;
	rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_OUTPUT_SIZE,
			    sensor->src->crop[SMIAPP_PAD_SRC].height);
	if (rval < 0)
		goto out;

	if ((sensor->limits[SMIAPP_LIMIT_FLASH_MODE_CAPABILITY] &
	     (SMIAPP_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
	      SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE)) &&
	    sensor->hwcfg->strobe_setup != NULL &&
	    sensor->hwcfg->strobe_setup->trigger != 0) {
		rval = smiapp_setup_flash_strobe(sensor);
		if (rval)
			goto out;
	}

	rval = smiapp_call_quirk(sensor, pre_streamon);
	if (rval) {
		dev_err(&client->dev, "pre_streamon quirks failed\n");
		goto out;
	}

	rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
			    SMIAPP_MODE_SELECT_STREAMING);

out:
	mutex_unlock(&sensor->mutex);

	return rval;
}

static int smiapp_stop_streaming(struct smiapp_sensor *sensor)
{
	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
	int rval;

	mutex_lock(&sensor->mutex);
	rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
			    SMIAPP_MODE_SELECT_SOFTWARE_STANDBY);
	if (rval)
		goto out;

	rval = smiapp_call_quirk(sensor, post_streamoff);
	if (rval)
		dev_err(&client->dev, "post_streamoff quirks failed\n");

out:
	mutex_unlock(&sensor->mutex);
	return rval;
}

/* -----------------------------------------------------------------------------
 * V4L2 subdev video operations
 */

static int smiapp_set_stream(struct v4l2_subdev *subdev, int enable)
{
	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
	int rval;

	if (sensor->streaming == enable)
		return 0;

	if (enable) {
		rval = pm_runtime_get_sync(&client->dev);
		if (rval < 0) {
			if (rval != -EBUSY && rval != -EAGAIN)
				pm_runtime_set_active(&client->dev);
			pm_runtime_put(&client->dev);
			return rval;
		}

		sensor->streaming = true;

		rval = smiapp_start_streaming(sensor);
		if (rval < 0)
			sensor->streaming = false;
	} else {
		rval = smiapp_stop_streaming(sensor);
		sensor->streaming = false;
		pm_runtime_mark_last_busy(&client->dev);
		pm_runtime_put_autosuspend(&client->dev);
	}

	return rval;
}

static int smiapp_enum_mbus_code(struct v4l2_subdev *subdev,
				 struct v4l2_subdev_pad_config *cfg,
				 struct v4l2_subdev_mbus_code_enum *code)
{
	struct i2c_client *client = v4l2_get_subdevdata(subdev);
	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
	unsigned int i;
	int idx = -1;
	int rval = -EINVAL;

	mutex_lock(&sensor->mutex);

	dev_err(&client->dev, "subdev %s, pad %d, index %d\n",
		subdev->name, code->pad, code->index);

	if (subdev != &sensor->src->sd || code->pad != SMIAPP_PAD_SRC) {
		if (code->index)
			goto out;

		code->code = sensor->internal_csi_format->code;
		rval = 0;
		goto out;
	}

	for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
		if (sensor->mbus_frame_fmts & (1 << i))
			idx++;

		if (idx == code->index) {
			code->code = smiapp_csi_data_formats[i].code;
			dev_err(&client->dev, "found index %d, i %d, code %x\n",
				code->index, i, code->code);
			rval = 0;
			break;
		}
	}

out:
	mutex_unlock(&sensor->mutex);

	return rval;
}

static u32 __smiapp_get_mbus_code(struct v4l2_subdev *subdev,
				  unsigned int pad)
{
	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);

	if (subdev == &sensor->src->sd && pad == SMIAPP_PAD_SRC)
		return sensor->csi_format->code;
	else
		return sensor->internal_csi_format->code;
}

static int __smiapp_get_format(struct v4l2_subdev *subdev,
			       struct v4l2_subdev_pad_config *cfg,
			       struct v4l2_subdev_format *fmt)
{
	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);

	if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
		fmt->format = *v4l2_subdev_get_try_format(subdev, cfg,
							  fmt->pad);
	} else {
		struct v4l2_rect *r;

		if (fmt->pad == ssd->source_pad)
			r = &ssd->crop[ssd->source_pad];
		else
			r = &ssd->sink_fmt;

		fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
		fmt->format.width = r->width;
		fmt->format.height = r->height;
		fmt->format.field = V4L2_FIELD_NONE;
	}

	return 0;
}

static int smiapp_get_format(struct v4l2_subdev *subdev,
			     struct v4l2_subdev_pad_config *cfg,
			     struct v4l2_subdev_format *fmt)
{
	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
	int rval;

	mutex_lock(&sensor->mutex);
	rval = __smiapp_get_format(subdev, cfg, fmt);
	mutex_unlock(&sensor->mutex);

	return rval;
}

static void smiapp_get_crop_compose(struct v4l2_subdev *subdev,
				    struct v4l2_subdev_pad_config *cfg,
				    struct v4l2_rect **crops,
				    struct v4l2_rect **comps, int which)
{
	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
	unsigned int i;

	if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
		if (crops)
			for (i = 0; i < subdev->entity.num_pads; i++)
				crops[i] = &ssd->crop[i];
		if (comps)
			*comps = &ssd->compose;
	} else {
		if (crops) {
			for (i = 0; i < subdev->entity.num_pads; i++) {
				crops[i] = v4l2_subdev_get_try_crop(subdev, cfg, i);
				BUG_ON(!crops[i]);
			}
		}
		if (comps) {
			*comps = v4l2_subdev_get_try_compose(subdev, cfg,
							     SMIAPP_PAD_SINK);
			BUG_ON(!*comps);
		}
	}
}

/* Changes require propagation only on sink pad. */
static void smiapp_propagate(struct v4l2_subdev *subdev,
			     struct v4l2_subdev_pad_config *cfg, int which,
			     int target)
{
	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
	struct v4l2_rect *comp, *crops[SMIAPP_PADS];

	smiapp_get_crop_compose(subdev, cfg, crops, &comp, which);

	switch (target) {
	case V4L2_SEL_TGT_CROP:
		comp->width = crops[SMIAPP_PAD_SINK]->width;
		comp->height = crops[SMIAPP_PAD_SINK]->height;
		if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
			if (ssd == sensor->scaler) {
				sensor->scale_m =
					sensor->limits[
						SMIAPP_LIMIT_SCALER_N_MIN];
				sensor->scaling_mode =
					SMIAPP_SCALING_MODE_NONE;
			} else if (ssd == sensor->binner) {
				sensor->binning_horizontal = 1;
				sensor->binning_vertical = 1;
			}
		}
		/* Fall through */
	case V4L2_SEL_TGT_COMPOSE:
		*crops[SMIAPP_PAD_SRC] = *comp;
		break;
	default:
		BUG();
	}
}

static const struct smiapp_csi_data_format
*smiapp_validate_csi_data_format(struct smiapp_sensor *sensor, u32 code)
{
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
		if (sensor->mbus_frame_fmts & (1 << i)
		    && smiapp_csi_data_formats[i].code == code)
			return &smiapp_csi_data_formats[i];
	}

	return sensor->csi_format;
}

static int smiapp_set_format_source(struct v4l2_subdev *subdev,
				    struct v4l2_subdev_pad_config *cfg,
				    struct v4l2_subdev_format *fmt)
{
	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
	const struct smiapp_csi_data_format *csi_format,
		*old_csi_format = sensor->csi_format;
	unsigned long *valid_link_freqs;
	u32 code = fmt->format.code;
	unsigned int i;
	int rval;

	rval = __smiapp_get_format(subdev, cfg, fmt);
	if (rval)
		return rval;

	/*
	 * Media bus code is changeable on src subdev's source pad. On
	 * other source pads we just get format here.
	 */
	if (subdev != &sensor->src->sd)
		return 0;

	csi_format = smiapp_validate_csi_data_format(sensor, code);

	fmt->format.code = csi_format->code;

	if (fmt->which != V4L2_SUBDEV_FORMAT_ACTIVE)
		return 0;

	sensor->csi_format = csi_format;

	if (csi_format->width != old_csi_format->width)
		for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
			__v4l2_ctrl_modify_range(
				sensor->test_data[i], 0,
				(1 << csi_format->width) - 1, 1, 0);

	if (csi_format->compressed == old_csi_format->compressed)
		return 0;

	valid_link_freqs =
		&sensor->valid_link_freqs[sensor->csi_format->compressed
					  - sensor->compressed_min_bpp];

	__v4l2_ctrl_modify_range(
		sensor->link_freq, 0,
		__fls(*valid_link_freqs), ~*valid_link_freqs,
		__ffs(*valid_link_freqs));

	return smiapp_pll_update(sensor);
}

static int smiapp_set_format(struct v4l2_subdev *subdev,
			     struct v4l2_subdev_pad_config *cfg,
			     struct v4l2_subdev_format *fmt)
{
	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
	struct v4l2_rect *crops[SMIAPP_PADS];

	mutex_lock(&sensor->mutex);

	if (fmt->pad == ssd->source_pad) {
		int rval;

		rval = smiapp_set_format_source(subdev, cfg, fmt);

		mutex_unlock(&sensor->mutex);

		return rval;
	}

	/* Sink pad. Width and height are changeable here. */
	fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
	fmt->format.width &= ~1;
	fmt->format.height &= ~1;
	fmt->format.field = V4L2_FIELD_NONE;

	fmt->format.width =
		clamp(fmt->format.width,
		      sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
		      sensor->limits[SMIAPP_LIMIT_MAX_X_OUTPUT_SIZE]);
	fmt->format.height =
		clamp(fmt->format.height,
		      sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
		      sensor->limits[SMIAPP_LIMIT_MAX_Y_OUTPUT_SIZE]);

	smiapp_get_crop_compose(subdev, cfg, crops, NULL, fmt->which);

	crops[ssd->sink_pad]->left = 0;
	crops[ssd->sink_pad]->top = 0;
	crops[ssd->sink_pad]->width = fmt->format.width;
	crops[ssd->sink_pad]->height = fmt->format.height;
	if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
		ssd->sink_fmt = *crops[ssd->sink_pad];
	smiapp_propagate(subdev, cfg, fmt->which,
			 V4L2_SEL_TGT_CROP);

	mutex_unlock(&sensor->mutex);

	return 0;
}

/*
 * Calculate goodness of scaled image size compared to expected image
 * size and flags provided.
 */
#define SCALING_GOODNESS		100000
#define SCALING_GOODNESS_EXTREME	100000000
static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
			    int h, int ask_h, u32 flags)
{
	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
	struct i2c_client *client = v4l2_get_subdevdata(subdev);
	int val = 0;

	w &= ~1;
	ask_w &= ~1;
	h &= ~1;
	ask_h &= ~1;

	if (flags & V4L2_SEL_FLAG_GE) {
		if (w < ask_w)
			val -= SCALING_GOODNESS;
		if (h < ask_h)
			val -= SCALING_GOODNESS;
	}

	if (flags & V4L2_SEL_FLAG_LE) {
		if (w > ask_w)
			val -= SCALING_GOODNESS;
		if (h > ask_h)
			val -= SCALING_GOODNESS;
	}

	val -= abs(w - ask_w);
	val -= abs(h - ask_h);

	if (w < sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE])
		val -= SCALING_GOODNESS_EXTREME;

	dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
		w, ask_w, h, ask_h, val);

	return val;
}

static void smiapp_set_compose_binner(struct v4l2_subdev *subdev,
				      struct v4l2_subdev_pad_config *cfg,
				      struct v4l2_subdev_selection *sel,
				      struct v4l2_rect **crops,
				      struct v4l2_rect *comp)
{
	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
	unsigned int i;
	unsigned int binh = 1, binv = 1;
	int best = scaling_goodness(
		subdev,
		crops[SMIAPP_PAD_SINK]->width, sel->r.width,
		crops[SMIAPP_PAD_SINK]->height, sel->r.height, sel->flags);

	for (i = 0; i < sensor->nbinning_subtypes; i++) {
		int this = scaling_goodness(
			subdev,
			crops[SMIAPP_PAD_SINK]->width
			/ sensor->binning_subtypes[i].horizontal,
			sel->r.width,
			crops[SMIAPP_PAD_SINK]->height
			/ sensor->binning_subtypes[i].vertical,
			sel->r.height, sel->flags);

		if (this > best) {
			binh = sensor->binning_subtypes[i].horizontal;
			binv = sensor->binning_subtypes[i].vertical;
			best = this;
		}
	}
	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
		sensor->binning_vertical = binv;
		sensor->binning_horizontal = binh;
	}

	sel->r.width = (crops[SMIAPP_PAD_SINK]->width / binh) & ~1;
	sel->r.height = (crops[SMIAPP_PAD_SINK]->height / binv) & ~1;
}

/*
 * Calculate best scaling ratio and mode for given output resolution.
 *
 * Try all of these: horizontal ratio, vertical ratio and smallest
 * size possible (horizontally).
 *
 * Also try whether horizontal scaler or full scaler gives a better
 * result.
 */
static void smiapp_set_compose_scaler(struct v4l2_subdev *subdev,
				      struct v4l2_subdev_pad_config *cfg,
				      struct v4l2_subdev_selection *sel,
				      struct v4l2_rect **crops,
				      struct v4l2_rect *comp)
{
	struct i2c_client *client = v4l2_get_subdevdata(subdev);
	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
	u32 min, max, a, b, max_m;
	u32 scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
	int mode = SMIAPP_SCALING_MODE_HORIZONTAL;
	u32 try[4];
	u32 ntry = 0;
	unsigned int i;
	int best = INT_MIN;

	sel->r.width = min_t(unsigned int, sel->r.width,
			     crops[SMIAPP_PAD_SINK]->width);
	sel->r.height = min_t(unsigned int, sel->r.height,
			      crops[SMIAPP_PAD_SINK]->height);

	a = crops[SMIAPP_PAD_SINK]->width
		* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.width;
	b = crops[SMIAPP_PAD_SINK]->height
		* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.height;
	max_m = crops[SMIAPP_PAD_SINK]->width
		* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]
		/ sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE];

	a = clamp(a, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
		  sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
	b = clamp(b, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
		  sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);
	max_m = clamp(max_m, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN],
		      sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX]);

	dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m);

	min = min(max_m, min(a, b));
	max = min(max_m, max(a, b));

	try[ntry] = min;
	ntry++;
	if (min != max) {
		try[ntry] = max;
		ntry++;
	}
	if (max != max_m) {
		try[ntry] = min + 1;
		ntry++;
		if (min != max) {
			try[ntry] = max + 1;
			ntry++;
		}
	}

	for (i = 0; i < ntry; i++) {
		int this = scaling_goodness(
			subdev,
			crops[SMIAPP_PAD_SINK]->width
			/ try[i]
			* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
			sel->r.width,
			crops[SMIAPP_PAD_SINK]->height,
			sel->r.height,
			sel->flags);

		dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i);

		if (this > best) {
			scale_m = try[i];
			mode = SMIAPP_SCALING_MODE_HORIZONTAL;
			best = this;
		}

		if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
		    == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
			continue;

		this = scaling_goodness(
			subdev, crops[SMIAPP_PAD_SINK]->width
			/ try[i]
			* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
			sel->r.width,
			crops[SMIAPP_PAD_SINK]->height
			/ try[i]
			* sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN],
			sel->r.height,
			sel->flags);

		if (this > best) {
			scale_m = try[i];
			mode = SMIAPP_SCALING_MODE_BOTH;
			best = this;
		}
	}

	sel->r.width =
		(crops[SMIAPP_PAD_SINK]->width
		 / scale_m
		 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]) & ~1;
	if (mode == SMIAPP_SCALING_MODE_BOTH)
		sel->r.height =
			(crops[SMIAPP_PAD_SINK]->height
			 / scale_m
			 * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN])
			& ~1;
	else
		sel->r.height = crops[SMIAPP_PAD_SINK]->height;

	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
		sensor->scale_m = scale_m;
		sensor->scaling_mode = mode;
	}
}
/* We're only called on source pads. This function sets scaling. */
static int smiapp_set_compose(struct v4l2_subdev *subdev,
			      struct v4l2_subdev_pad_config *cfg,
			      struct v4l2_subdev_selection *sel)
{
	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
	struct v4l2_rect *comp, *crops[SMIAPP_PADS];

	smiapp_get_crop_compose(subdev, cfg, crops, &comp, sel->which);

	sel->r.top = 0;
	sel->r.left = 0;

	if (ssd == sensor->binner)
		smiapp_set_compose_binner(subdev, cfg, sel, crops, comp);
	else
		smiapp_set_compose_scaler(subdev, cfg, sel, crops, comp);

	*comp = sel->r;
	smiapp_propagate(subdev, cfg, sel->which, V4L2_SEL_TGT_COMPOSE);

	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
		return smiapp_update_mode(sensor);

	return 0;
}

static int __smiapp_sel_supported(struct v4l2_subdev *subdev,
				  struct v4l2_subdev_selection *sel)
{
	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);

	/* We only implement crop in three places. */
	switch (sel->target) {
	case V4L2_SEL_TGT_CROP:
	case V4L2_SEL_TGT_CROP_BOUNDS:
		if (ssd == sensor->pixel_array
		    && sel->pad == SMIAPP_PA_PAD_SRC)
			return 0;
		if (ssd == sensor->src
		    && sel->pad == SMIAPP_PAD_SRC)
			return 0;
		if (ssd == sensor->scaler
		    && sel->pad == SMIAPP_PAD_SINK
		    && sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
		    == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
			return 0;
		return -EINVAL;
	case V4L2_SEL_TGT_NATIVE_SIZE:
		if (ssd == sensor->pixel_array
		    && sel->pad == SMIAPP_PA_PAD_SRC)
			return 0;
		return -EINVAL;
	case V4L2_SEL_TGT_COMPOSE:
	case V4L2_SEL_TGT_COMPOSE_BOUNDS:
		if (sel->pad == ssd->source_pad)
			return -EINVAL;
		if (ssd == sensor->binner)
			return 0;
		if (ssd == sensor->scaler
		    && sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
		    != SMIAPP_SCALING_CAPABILITY_NONE)
			return 0;
		/* Fall through */
	default:
		return -EINVAL;
	}
}

static int smiapp_set_crop(struct v4l2_subdev *subdev,
			   struct v4l2_subdev_pad_config *cfg,
			   struct v4l2_subdev_selection *sel)
{
	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
	struct v4l2_rect *src_size, *crops[SMIAPP_PADS];
	struct v4l2_rect _r;

	smiapp_get_crop_compose(subdev, cfg, crops, NULL, sel->which);

	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
		if (sel->pad == ssd->sink_pad)
			src_size = &ssd->sink_fmt;
		else
			src_size = &ssd->compose;
	} else {
		if (sel->pad == ssd->sink_pad) {
			_r.left = 0;
			_r.top = 0;
			_r.width = v4l2_subdev_get_try_format(subdev, cfg, sel->pad)
				->width;
			_r.height = v4l2_subdev_get_try_format(subdev, cfg, sel->pad)
				->height;
			src_size = &_r;
		} else {
			src_size = v4l2_subdev_get_try_compose(
				subdev, cfg, ssd->sink_pad);
		}
	}

	if (ssd == sensor->src && sel->pad == SMIAPP_PAD_SRC) {
		sel->r.left = 0;
		sel->r.top = 0;
	}

	sel->r.width = min(sel->r.width, src_size->width);
	sel->r.height = min(sel->r.height, src_size->height);

	sel->r.left = min_t(int, sel->r.left, src_size->width - sel->r.width);
	sel->r.top = min_t(int, sel->r.top, src_size->height - sel->r.height);

	*crops[sel->pad] = sel->r;

	if (ssd != sensor->pixel_array && sel->pad == SMIAPP_PAD_SINK)
		smiapp_propagate(subdev, cfg, sel->which,
				 V4L2_SEL_TGT_CROP);

	return 0;
}

static void smiapp_get_native_size(struct smiapp_subdev *ssd,
				    struct v4l2_rect *r)
{
	r->top = 0;
	r->left = 0;
	r->width = ssd->sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1;
	r->height = ssd->sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1;
}

static int __smiapp_get_selection(struct v4l2_subdev *subdev,
				  struct v4l2_subdev_pad_config *cfg,
				  struct v4l2_subdev_selection *sel)
{
	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
	struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
	struct v4l2_rect *comp, *crops[SMIAPP_PADS];
	struct v4l2_rect sink_fmt;
	int ret;

	ret = __smiapp_sel_supported(subdev, sel);
	if (ret)
		return ret;

	smiapp_get_crop_compose(subdev, cfg, crops, &comp, sel->which);

	if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
		sink_fmt = ssd->sink_fmt;
	} else {
		struct v4l2_mbus_framefmt *fmt =
			v4l2_subdev_get_try_format(subdev, cfg, ssd->sink_pad);

		sink_fmt.left = 0;
		sink_fmt.top = 0;
		sink_fmt.width = fmt->width;
		sink_fmt.height = fmt->height;
	}

	switch (sel->target) {
	case V4L2_SEL_TGT_CROP_BOUNDS:
	case V4L2_SEL_TGT_NATIVE_SIZE:
		if (ssd == sensor->pixel_array)
			smiapp_get_native_size(ssd, &sel->r);
		else if (sel->pad == ssd->sink_pad)
			sel->r = sink_fmt;
		else
			sel->r = *comp;
		break;
	case V4L2_SEL_TGT_CROP:
	case V4L2_SEL_TGT_COMPOSE_BOUNDS:
		sel->r = *crops[sel->pad];
		break;
	case V4L2_SEL_TGT_COMPOSE:
		sel->r = *comp;
		break;
	}

	return 0;
}

static int smiapp_get_selection(struct v4l2_subdev *subdev,
				struct v4l2_subdev_pad_config *cfg,
				struct v4l2_subdev_selection *sel)
{
	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
	int rval;

	mutex_lock(&sensor->mutex);
	rval = __smiapp_get_selection(subdev, cfg, sel);
	mutex_unlock(&sensor->mutex);

	return rval;
}
static int smiapp_set_selection(struct v4l2_subdev *subdev,
				struct v4l2_subdev_pad_config *cfg,
				struct v4l2_subdev_selection *sel)
{
	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
	int ret;

	ret = __smiapp_sel_supported(subdev, sel);
	if (ret)
		return ret;

	mutex_lock(&sensor->mutex);

	sel->r.left = max(0, sel->r.left & ~1);
	sel->r.top = max(0, sel->r.top & ~1);
	sel->r.width = SMIAPP_ALIGN_DIM(sel->r.width, sel->flags);
	sel->r.height =	SMIAPP_ALIGN_DIM(sel->r.height, sel->flags);

	sel->r.width = max_t(unsigned int,
			     sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE],
			     sel->r.width);
	sel->r.height = max_t(unsigned int,
			      sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE],
			      sel->r.height);

	switch (sel->target) {
	case V4L2_SEL_TGT_CROP:
		ret = smiapp_set_crop(subdev, cfg, sel);
		break;
	case V4L2_SEL_TGT_COMPOSE:
		ret = smiapp_set_compose(subdev, cfg, sel);
		break;
	default:
		ret = -EINVAL;
	}

	mutex_unlock(&sensor->mutex);
	return ret;
}

static int smiapp_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
{
	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);

	*frames = sensor->frame_skip;
	return 0;
}

static int smiapp_get_skip_top_lines(struct v4l2_subdev *subdev, u32 *lines)
{
	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);

	*lines = sensor->image_start;

	return 0;
}

/* -----------------------------------------------------------------------------
 * sysfs attributes
 */

static ssize_t
smiapp_sysfs_nvm_read(struct device *dev, struct device_attribute *attr,
		      char *buf)
{
	struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
	struct i2c_client *client = v4l2_get_subdevdata(subdev);
	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
	unsigned int nbytes;

	if (!sensor->dev_init_done)
		return -EBUSY;

	if (!sensor->nvm_size) {
		int rval;

		/* NVM not read yet - read it now */
		sensor->nvm_size = sensor->hwcfg->nvm_size;

		rval = pm_runtime_get_sync(&client->dev);
		if (rval < 0) {
			if (rval != -EBUSY && rval != -EAGAIN)
				pm_runtime_set_active(&client->dev);
			pm_runtime_put(&client->dev);
			return -ENODEV;
		}

		if (smiapp_read_nvm(sensor, sensor->nvm)) {
			dev_err(&client->dev, "nvm read failed\n");
			return -ENODEV;
		}

		pm_runtime_mark_last_busy(&client->dev);
		pm_runtime_put_autosuspend(&client->dev);
	}
	/*
	 * NVM is still way below a PAGE_SIZE, so we can safely
	 * assume this for now.
	 */
	nbytes = min_t(unsigned int, sensor->nvm_size, PAGE_SIZE);
	memcpy(buf, sensor->nvm, nbytes);

	return nbytes;
}
static DEVICE_ATTR(nvm, S_IRUGO, smiapp_sysfs_nvm_read, NULL);

static ssize_t
smiapp_sysfs_ident_read(struct device *dev, struct device_attribute *attr,
			char *buf)
{
	struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
	struct smiapp_module_info *minfo = &sensor->minfo;

	return snprintf(buf, PAGE_SIZE, "%2.2x%4.4x%2.2x\n",
			minfo->manufacturer_id, minfo->model_id,
			minfo->revision_number_major) + 1;
}

static DEVICE_ATTR(ident, S_IRUGO, smiapp_sysfs_ident_read, NULL);

/* -----------------------------------------------------------------------------
 * V4L2 subdev core operations
 */

static int smiapp_identify_module(struct smiapp_sensor *sensor)
{
	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
	struct smiapp_module_info *minfo = &sensor->minfo;
	unsigned int i;
	int rval = 0;

	minfo->name = SMIAPP_NAME;

	/* Module info */
	rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MANUFACTURER_ID,
				 &minfo->manufacturer_id);
	if (!rval)
		rval = smiapp_read_8only(sensor, SMIAPP_REG_U16_MODEL_ID,
					 &minfo->model_id);
	if (!rval)
		rval = smiapp_read_8only(sensor,
					 SMIAPP_REG_U8_REVISION_NUMBER_MAJOR,
					 &minfo->revision_number_major);
	if (!rval)
		rval = smiapp_read_8only(sensor,
					 SMIAPP_REG_U8_REVISION_NUMBER_MINOR,
					 &minfo->revision_number_minor);
	if (!rval)
		rval = smiapp_read_8only(sensor,
					 SMIAPP_REG_U8_MODULE_DATE_YEAR,
					 &minfo->module_year);
	if (!rval)
		rval = smiapp_read_8only(sensor,
					 SMIAPP_REG_U8_MODULE_DATE_MONTH,
					 &minfo->module_month);
	if (!rval)
		rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MODULE_DATE_DAY,
					 &minfo->module_day);

	/* Sensor info */
	if (!rval)
		rval = smiapp_read_8only(sensor,
					 SMIAPP_REG_U8_SENSOR_MANUFACTURER_ID,
					 &minfo->sensor_manufacturer_id);
	if (!rval)
		rval = smiapp_read_8only(sensor,
					 SMIAPP_REG_U16_SENSOR_MODEL_ID,
					 &minfo->sensor_model_id);
	if (!rval)
		rval = smiapp_read_8only(sensor,
					 SMIAPP_REG_U8_SENSOR_REVISION_NUMBER,
					 &minfo->sensor_revision_number);
	if (!rval)
		rval = smiapp_read_8only(sensor,
					 SMIAPP_REG_U8_SENSOR_FIRMWARE_VERSION,
					 &minfo->sensor_firmware_version);

	/* SMIA */
	if (!rval)
		rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION,
					 &minfo->smia_version);
	if (!rval)
		rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
					 &minfo->smiapp_version);

	if (rval) {
		dev_err(&client->dev, "sensor detection failed\n");
		return -ENODEV;
	}

	dev_dbg(&client->dev, "module 0x%2.2x-0x%4.4x\n",
		minfo->manufacturer_id, minfo->model_id);

	dev_dbg(&client->dev,
		"module revision 0x%2.2x-0x%2.2x date %2.2d-%2.2d-%2.2d\n",
		minfo->revision_number_major, minfo->revision_number_minor,
		minfo->module_year, minfo->module_month, minfo->module_day);

	dev_dbg(&client->dev, "sensor 0x%2.2x-0x%4.4x\n",
		minfo->sensor_manufacturer_id, minfo->sensor_model_id);

	dev_dbg(&client->dev,
		"sensor revision 0x%2.2x firmware version 0x%2.2x\n",
		minfo->sensor_revision_number, minfo->sensor_firmware_version);

	dev_dbg(&client->dev, "smia version %2.2d smiapp version %2.2d\n",
		minfo->smia_version, minfo->smiapp_version);

	/*
	 * Some modules have bad data in the lvalues below. Hope the
	 * rvalues have better stuff. The lvalues are module
	 * parameters whereas the rvalues are sensor parameters.
	 */
	if (!minfo->manufacturer_id && !minfo->model_id) {
		minfo->manufacturer_id = minfo->sensor_manufacturer_id;
		minfo->model_id = minfo->sensor_model_id;
		minfo->revision_number_major = minfo->sensor_revision_number;
	}

	for (i = 0; i < ARRAY_SIZE(smiapp_module_idents); i++) {
		if (smiapp_module_idents[i].manufacturer_id
		    != minfo->manufacturer_id)
			continue;
		if (smiapp_module_idents[i].model_id != minfo->model_id)
			continue;
		if (smiapp_module_idents[i].flags
		    & SMIAPP_MODULE_IDENT_FLAG_REV_LE) {
			if (smiapp_module_idents[i].revision_number_major
			    < minfo->revision_number_major)
				continue;
		} else {
			if (smiapp_module_idents[i].revision_number_major
			    != minfo->revision_number_major)
				continue;
		}

		minfo->name = smiapp_module_idents[i].name;
		minfo->quirk = smiapp_module_idents[i].quirk;
		break;
	}

	if (i >= ARRAY_SIZE(smiapp_module_idents))
		dev_warn(&client->dev,
			 "no quirks for this module; let's hope it's fully compliant\n");

	dev_dbg(&client->dev, "the sensor is called %s, ident %2.2x%4.4x%2.2x\n",
		minfo->name, minfo->manufacturer_id, minfo->model_id,
		minfo->revision_number_major);

	return 0;
}

static const struct v4l2_subdev_ops smiapp_ops;
static const struct v4l2_subdev_internal_ops smiapp_internal_ops;
static const struct media_entity_operations smiapp_entity_ops;

static int smiapp_register_subdev(struct smiapp_sensor *sensor,
				  struct smiapp_subdev *ssd,
				  struct smiapp_subdev *sink_ssd,
				  u16 source_pad, u16 sink_pad, u32 link_flags)
{
	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
	int rval;

	if (!sink_ssd)
		return 0;

	rval = media_entity_pads_init(&ssd->sd.entity,
				      ssd->npads, ssd->pads);
	if (rval) {
		dev_err(&client->dev,
			"media_entity_pads_init failed\n");
		return rval;
	}

	rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev,
					   &ssd->sd);
	if (rval) {
		dev_err(&client->dev,
			"v4l2_device_register_subdev failed\n");
		return rval;
	}

	rval = media_create_pad_link(&ssd->sd.entity, source_pad,
				     &sink_ssd->sd.entity, sink_pad,
				     link_flags);
	if (rval) {
		dev_err(&client->dev,
			"media_create_pad_link failed\n");
		v4l2_device_unregister_subdev(&ssd->sd);
		return rval;
	}

	return 0;
}

static void smiapp_unregistered(struct v4l2_subdev *subdev)
{
	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
	unsigned int i;

	for (i = 1; i < sensor->ssds_used; i++)
		v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
}

static int smiapp_registered(struct v4l2_subdev *subdev)
{
	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
	int rval;

	if (sensor->scaler) {
		rval = smiapp_register_subdev(
			sensor, sensor->binner, sensor->scaler,
			SMIAPP_PAD_SRC, SMIAPP_PAD_SINK,
			MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
		if (rval < 0)
			return rval;
	}

	rval = smiapp_register_subdev(
		sensor, sensor->pixel_array, sensor->binner,
		SMIAPP_PA_PAD_SRC, SMIAPP_PAD_SINK,
		MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
	if (rval)
		goto out_err;

	return 0;

out_err:
	smiapp_unregistered(subdev);

	return rval;
}

static void smiapp_cleanup(struct smiapp_sensor *sensor)
{
	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);

	device_remove_file(&client->dev, &dev_attr_nvm);
	device_remove_file(&client->dev, &dev_attr_ident);

	smiapp_free_controls(sensor);
}

static void smiapp_create_subdev(struct smiapp_sensor *sensor,
				 struct smiapp_subdev *ssd, const char *name,
				 unsigned short num_pads)
{
	struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);

	if (!ssd)
		return;

	if (ssd != sensor->src)
		v4l2_subdev_init(&ssd->sd, &smiapp_ops);

	ssd->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
	ssd->sensor = sensor;

	ssd->npads = num_pads;
	ssd->source_pad = num_pads - 1;

	v4l2_i2c_subdev_set_name(&ssd->sd, client, sensor->minfo.name, name);

	smiapp_get_native_size(ssd, &ssd->sink_fmt);

	ssd->compose.width = ssd->sink_fmt.width;
	ssd->compose.height = ssd->sink_fmt.height;
	ssd->crop[ssd->source_pad] = ssd->compose;
	ssd->pads[ssd->source_pad].flags = MEDIA_PAD_FL_SOURCE;
	if (ssd != sensor->pixel_array) {
		ssd->crop[ssd->sink_pad] = ssd->compose;
		ssd->pads[ssd->sink_pad].flags = MEDIA_PAD_FL_SINK;
	}

	ssd->sd.entity.ops = &smiapp_entity_ops;

	if (ssd == sensor->src)
		return;

	ssd->sd.internal_ops = &smiapp_internal_ops;
	ssd->sd.owner = THIS_MODULE;
	ssd->sd.dev = &client->dev;
	v4l2_set_subdevdata(&ssd->sd, client);
}

static int smiapp_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
{
	struct smiapp_subdev *ssd = to_smiapp_subdev(sd);
	struct smiapp_sensor *sensor = ssd->sensor;
	unsigned int i;

	mutex_lock(&sensor->mutex);

	for (i = 0; i < ssd->npads; i++) {
		struct v4l2_mbus_framefmt *try_fmt =
			v4l2_subdev_get_try_format(sd, fh->pad, i);
		struct v4l2_rect *try_crop =
			v4l2_subdev_get_try_crop(sd, fh->pad, i);
		struct v4l2_rect *try_comp;

		smiapp_get_native_size(ssd, try_crop);

		try_fmt->width = try_crop->width;
		try_fmt->height = try_crop->height;
		try_fmt->code = sensor->internal_csi_format->code;
		try_fmt->field = V4L2_FIELD_NONE;

		if (ssd != sensor->pixel_array)
			continue;

		try_comp = v4l2_subdev_get_try_compose(sd, fh->pad, i);
		*try_comp = *try_crop;
	}

	mutex_unlock(&sensor->mutex);

	return 0;
}

static const struct v4l2_subdev_video_ops smiapp_video_ops = {
	.s_stream = smiapp_set_stream,
};

static const struct v4l2_subdev_pad_ops smiapp_pad_ops = {
	.enum_mbus_code = smiapp_enum_mbus_code,
	.get_fmt = smiapp_get_format,
	.set_fmt = smiapp_set_format,
	.get_selection = smiapp_get_selection,
	.set_selection = smiapp_set_selection,
};

static const struct v4l2_subdev_sensor_ops smiapp_sensor_ops = {
	.g_skip_frames = smiapp_get_skip_frames,
	.g_skip_top_lines = smiapp_get_skip_top_lines,
};

static const struct v4l2_subdev_ops smiapp_ops = {
	.video = &smiapp_video_ops,
	.pad = &smiapp_pad_ops,
	.sensor = &smiapp_sensor_ops,
};

static const struct media_entity_operations smiapp_entity_ops = {
	.link_validate = v4l2_subdev_link_validate,
};

static const struct v4l2_subdev_internal_ops smiapp_internal_src_ops = {
	.registered = smiapp_registered,
	.unregistered = smiapp_unregistered,
	.open = smiapp_open,
};

static const struct v4l2_subdev_internal_ops smiapp_internal_ops = {
	.open = smiapp_open,
};

/* -----------------------------------------------------------------------------
 * I2C Driver
 */

static int __maybe_unused smiapp_suspend(struct device *dev)
{
	struct i2c_client *client = to_i2c_client(dev);
	struct v4l2_subdev *subdev = i2c_get_clientdata(client);
	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
	bool streaming = sensor->streaming;
	int rval;

	rval = pm_runtime_get_sync(dev);
	if (rval < 0) {
		if (rval != -EBUSY && rval != -EAGAIN)
			pm_runtime_set_active(&client->dev);
		pm_runtime_put(dev);
		return -EAGAIN;
	}

	if (sensor->streaming)
		smiapp_stop_streaming(sensor);

	/* save state for resume */
	sensor->streaming = streaming;

	return 0;
}

static int __maybe_unused smiapp_resume(struct device *dev)
{
	struct i2c_client *client = to_i2c_client(dev);
	struct v4l2_subdev *subdev = i2c_get_clientdata(client);
	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
	int rval = 0;

	pm_runtime_put(dev);

	if (sensor->streaming)
		rval = smiapp_start_streaming(sensor);

	return rval;
}

static struct smiapp_hwconfig *smiapp_get_hwconfig(struct device *dev)
{
	struct smiapp_hwconfig *hwcfg;
	struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = 0 };
	struct fwnode_handle *ep;
	struct fwnode_handle *fwnode = dev_fwnode(dev);
	u32 rotation;
	int i;
	int rval;

	if (!fwnode)
		return dev->platform_data;

	ep = fwnode_graph_get_next_endpoint(fwnode, NULL);
	if (!ep)
		return NULL;

	bus_cfg.bus_type = V4L2_MBUS_CSI2_DPHY;
	rval = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg);
	if (rval == -ENXIO) {
		bus_cfg = (struct v4l2_fwnode_endpoint)
			{ .bus_type = V4L2_MBUS_CCP2 };
		rval = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg);
	}
	if (rval)
		goto out_err;

	hwcfg = devm_kzalloc(dev, sizeof(*hwcfg), GFP_KERNEL);
	if (!hwcfg)
		goto out_err;

	switch (bus_cfg.bus_type) {
	case V4L2_MBUS_CSI2_DPHY:
		hwcfg->csi_signalling_mode = SMIAPP_CSI_SIGNALLING_MODE_CSI2;
		hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
		break;
	case V4L2_MBUS_CCP2:
		hwcfg->csi_signalling_mode = (bus_cfg.bus.mipi_csi1.strobe) ?
		SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_STROBE :
		SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_CLOCK;
		hwcfg->lanes = 1;
		break;
	default:
		dev_err(dev, "unsupported bus %u\n", bus_cfg.bus_type);
		goto out_err;
	}

	dev_dbg(dev, "lanes %u\n", hwcfg->lanes);

	rval = fwnode_property_read_u32(fwnode, "rotation", &rotation);
	if (!rval) {
		switch (rotation) {
		case 180:
			hwcfg->module_board_orient =
				SMIAPP_MODULE_BOARD_ORIENT_180;
			/* Fall through */
		case 0:
			break;
		default:
			dev_err(dev, "invalid rotation %u\n", rotation);
			goto out_err;
		}
	}

	/* NVM size is not mandatory */
	fwnode_property_read_u32(fwnode, "nokia,nvm-size", &hwcfg->nvm_size);

	rval = fwnode_property_read_u32(dev_fwnode(dev), "clock-frequency",
					&hwcfg->ext_clk);
	if (rval)
		dev_info(dev, "can't get clock-frequency\n");

	dev_dbg(dev, "nvm %d, clk %d, mode %d\n",
		hwcfg->nvm_size, hwcfg->ext_clk, hwcfg->csi_signalling_mode);

	if (!bus_cfg.nr_of_link_frequencies) {
		dev_warn(dev, "no link frequencies defined\n");
		goto out_err;
	}

	hwcfg->op_sys_clock = devm_kcalloc(
		dev, bus_cfg.nr_of_link_frequencies + 1 /* guardian */,
		sizeof(*hwcfg->op_sys_clock), GFP_KERNEL);
	if (!hwcfg->op_sys_clock)
		goto out_err;

	for (i = 0; i < bus_cfg.nr_of_link_frequencies; i++) {
		hwcfg->op_sys_clock[i] = bus_cfg.link_frequencies[i];
		dev_dbg(dev, "freq %d: %lld\n", i, hwcfg->op_sys_clock[i]);
	}

	v4l2_fwnode_endpoint_free(&bus_cfg);
	fwnode_handle_put(ep);
	return hwcfg;

out_err:
	v4l2_fwnode_endpoint_free(&bus_cfg);
	fwnode_handle_put(ep);
	return NULL;
}

static int smiapp_probe(struct i2c_client *client,
			const struct i2c_device_id *devid)
{
	struct smiapp_sensor *sensor;
	struct smiapp_hwconfig *hwcfg = smiapp_get_hwconfig(&client->dev);
	unsigned int i;
	int rval;

	if (hwcfg == NULL)
		return -ENODEV;

	sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
	if (sensor == NULL)
		return -ENOMEM;

	sensor->hwcfg = hwcfg;
	mutex_init(&sensor->mutex);
	sensor->src = &sensor->ssds[sensor->ssds_used];

	v4l2_i2c_subdev_init(&sensor->src->sd, client, &smiapp_ops);
	sensor->src->sd.internal_ops = &smiapp_internal_src_ops;

	sensor->vana = devm_regulator_get(&client->dev, "vana");
	if (IS_ERR(sensor->vana)) {
		dev_err(&client->dev, "could not get regulator for vana\n");
		return PTR_ERR(sensor->vana);
	}

	sensor->ext_clk = devm_clk_get(&client->dev, NULL);
	if (PTR_ERR(sensor->ext_clk) == -ENOENT) {
		dev_info(&client->dev, "no clock defined, continuing...\n");
		sensor->ext_clk = NULL;
	} else if (IS_ERR(sensor->ext_clk)) {
		dev_err(&client->dev, "could not get clock (%ld)\n",
			PTR_ERR(sensor->ext_clk));
		return -EPROBE_DEFER;
	}

	if (sensor->ext_clk) {
		if (sensor->hwcfg->ext_clk) {
			unsigned long rate;

			rval = clk_set_rate(sensor->ext_clk,
					    sensor->hwcfg->ext_clk);
			if (rval < 0) {
				dev_err(&client->dev,
					"unable to set clock freq to %u\n",
					sensor->hwcfg->ext_clk);
				return rval;
			}

			rate = clk_get_rate(sensor->ext_clk);
			if (rate != sensor->hwcfg->ext_clk) {
				dev_err(&client->dev,
					"can't set clock freq, asked for %u but got %lu\n",
					sensor->hwcfg->ext_clk, rate);
				return rval;
			}
		} else {
			sensor->hwcfg->ext_clk = clk_get_rate(sensor->ext_clk);
			dev_dbg(&client->dev, "obtained clock freq %u\n",
				sensor->hwcfg->ext_clk);
		}
	} else if (sensor->hwcfg->ext_clk) {
		dev_dbg(&client->dev, "assuming clock freq %u\n",
			sensor->hwcfg->ext_clk);
	} else {
		dev_err(&client->dev, "unable to obtain clock freq\n");
		return -EINVAL;
	}

	sensor->xshutdown = devm_gpiod_get_optional(&client->dev, "xshutdown",
						    GPIOD_OUT_LOW);
	if (IS_ERR(sensor->xshutdown))
		return PTR_ERR(sensor->xshutdown);

	rval = smiapp_power_on(&client->dev);
	if (rval < 0)
		return rval;

	rval = smiapp_identify_module(sensor);
	if (rval) {
		rval = -ENODEV;
		goto out_power_off;
	}

	rval = smiapp_get_all_limits(sensor);
	if (rval) {
		rval = -ENODEV;
		goto out_power_off;
	}

	rval = smiapp_read_frame_fmt(sensor);
	if (rval) {
		rval = -ENODEV;
		goto out_power_off;
	}

	/*
	 * Handle Sensor Module orientation on the board.
	 *
	 * The application of H-FLIP and V-FLIP on the sensor is modified by
	 * the sensor orientation on the board.
	 *
	 * For SMIAPP_BOARD_SENSOR_ORIENT_180 the default behaviour is to set
	 * both H-FLIP and V-FLIP for normal operation which also implies
	 * that a set/unset operation for user space HFLIP and VFLIP v4l2
	 * controls will need to be internally inverted.
	 *
	 * Rotation also changes the bayer pattern.
	 */
	if (sensor->hwcfg->module_board_orient ==
	    SMIAPP_MODULE_BOARD_ORIENT_180)
		sensor->hvflip_inv_mask = SMIAPP_IMAGE_ORIENTATION_HFLIP |
					  SMIAPP_IMAGE_ORIENTATION_VFLIP;

	rval = smiapp_call_quirk(sensor, limits);
	if (rval) {
		dev_err(&client->dev, "limits quirks failed\n");
		goto out_power_off;
	}

	if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY]) {
		u32 val;

		rval = smiapp_read(sensor,
				   SMIAPP_REG_U8_BINNING_SUBTYPES, &val);
		if (rval < 0) {
			rval = -ENODEV;
			goto out_power_off;
		}
		sensor->nbinning_subtypes = min_t(u8, val,
						  SMIAPP_BINNING_SUBTYPES);

		for (i = 0; i < sensor->nbinning_subtypes; i++) {
			rval = smiapp_read(
				sensor, SMIAPP_REG_U8_BINNING_TYPE_n(i), &val);
			if (rval < 0) {
				rval = -ENODEV;
				goto out_power_off;
			}
			sensor->binning_subtypes[i] =
				*(struct smiapp_binning_subtype *)&val;

			dev_dbg(&client->dev, "binning %xx%x\n",
				sensor->binning_subtypes[i].horizontal,
				sensor->binning_subtypes[i].vertical);
		}
	}
	sensor->binning_horizontal = 1;
	sensor->binning_vertical = 1;

	if (device_create_file(&client->dev, &dev_attr_ident) != 0) {
		dev_err(&client->dev, "sysfs ident entry creation failed\n");
		rval = -ENOENT;
		goto out_power_off;
	}
	/* SMIA++ NVM initialization - it will be read from the sensor
	 * when it is first requested by userspace.
	 */
	if (sensor->minfo.smiapp_version && sensor->hwcfg->nvm_size) {
		sensor->nvm = devm_kzalloc(&client->dev,
				sensor->hwcfg->nvm_size, GFP_KERNEL);
		if (sensor->nvm == NULL) {
			rval = -ENOMEM;
			goto out_cleanup;
		}

		if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
			dev_err(&client->dev, "sysfs nvm entry failed\n");
			rval = -EBUSY;
			goto out_cleanup;
		}
	}

	/* We consider this as profile 0 sensor if any of these are zero. */
	if (!sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV] ||
	    !sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV] ||
	    !sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV] ||
	    !sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV]) {
		sensor->minfo.smiapp_profile = SMIAPP_PROFILE_0;
	} else if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
		   != SMIAPP_SCALING_CAPABILITY_NONE) {
		if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY]
		    == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
			sensor->minfo.smiapp_profile = SMIAPP_PROFILE_1;
		else
			sensor->minfo.smiapp_profile = SMIAPP_PROFILE_2;
		sensor->scaler = &sensor->ssds[sensor->ssds_used];
		sensor->ssds_used++;
	} else if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY]
		   == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
		sensor->scaler = &sensor->ssds[sensor->ssds_used];
		sensor->ssds_used++;
	}
	sensor->binner = &sensor->ssds[sensor->ssds_used];
	sensor->ssds_used++;
	sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
	sensor->ssds_used++;

	sensor->scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];

	/* prepare PLL configuration input values */
	sensor->pll.bus_type = SMIAPP_PLL_BUS_TYPE_CSI2;
	sensor->pll.csi2.lanes = sensor->hwcfg->lanes;
	sensor->pll.ext_clk_freq_hz = sensor->hwcfg->ext_clk;
	sensor->pll.scale_n = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN];
	/* Profile 0 sensors have no separate OP clock branch. */
	if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
		sensor->pll.flags |= SMIAPP_PLL_FLAG_NO_OP_CLOCKS;

	smiapp_create_subdev(sensor, sensor->scaler, " scaler", 2);
	smiapp_create_subdev(sensor, sensor->binner, " binner", 2);
	smiapp_create_subdev(sensor, sensor->pixel_array, " pixel_array", 1);

	dev_dbg(&client->dev, "profile %d\n", sensor->minfo.smiapp_profile);

	sensor->pixel_array->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;

	rval = smiapp_init_controls(sensor);
	if (rval < 0)
		goto out_cleanup;

	rval = smiapp_call_quirk(sensor, init);
	if (rval)
		goto out_cleanup;

	rval = smiapp_get_mbus_formats(sensor);
	if (rval) {
		rval = -ENODEV;
		goto out_cleanup;
	}

	rval = smiapp_init_late_controls(sensor);
	if (rval) {
		rval = -ENODEV;
		goto out_cleanup;
	}

	mutex_lock(&sensor->mutex);
	rval = smiapp_update_mode(sensor);
	mutex_unlock(&sensor->mutex);
	if (rval) {
		dev_err(&client->dev, "update mode failed\n");
		goto out_cleanup;
	}

	sensor->streaming = false;
	sensor->dev_init_done = true;

	rval = media_entity_pads_init(&sensor->src->sd.entity, 2,
				 sensor->src->pads);
	if (rval < 0)
		goto out_media_entity_cleanup;

	rval = v4l2_async_register_subdev_sensor_common(&sensor->src->sd);
	if (rval < 0)
		goto out_media_entity_cleanup;

	pm_runtime_set_active(&client->dev);
	pm_runtime_get_noresume(&client->dev);
	pm_runtime_enable(&client->dev);
	pm_runtime_set_autosuspend_delay(&client->dev, 1000);
	pm_runtime_use_autosuspend(&client->dev);
	pm_runtime_put_autosuspend(&client->dev);

	return 0;

out_media_entity_cleanup:
	media_entity_cleanup(&sensor->src->sd.entity);

out_cleanup:
	smiapp_cleanup(sensor);

out_power_off:
	smiapp_power_off(&client->dev);

	return rval;
}

static int smiapp_remove(struct i2c_client *client)
{
	struct v4l2_subdev *subdev = i2c_get_clientdata(client);
	struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
	unsigned int i;

	v4l2_async_unregister_subdev(subdev);

	pm_runtime_disable(&client->dev);
	if (!pm_runtime_status_suspended(&client->dev))
		smiapp_power_off(&client->dev);
	pm_runtime_set_suspended(&client->dev);

	for (i = 0; i < sensor->ssds_used; i++) {
		v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
		media_entity_cleanup(&sensor->ssds[i].sd.entity);
	}
	smiapp_cleanup(sensor);

	return 0;
}

static const struct of_device_id smiapp_of_table[] = {
	{ .compatible = "nokia,smia" },
	{ },
};
MODULE_DEVICE_TABLE(of, smiapp_of_table);

static const struct i2c_device_id smiapp_id_table[] = {
	{ SMIAPP_NAME, 0 },
	{ },
};
MODULE_DEVICE_TABLE(i2c, smiapp_id_table);

static const struct dev_pm_ops smiapp_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(smiapp_suspend, smiapp_resume)
	SET_RUNTIME_PM_OPS(smiapp_power_off, smiapp_power_on, NULL)
};

static struct i2c_driver smiapp_i2c_driver = {
	.driver	= {
		.of_match_table = smiapp_of_table,
		.name = SMIAPP_NAME,
		.pm = &smiapp_pm_ops,
	},
	.probe	= smiapp_probe,
	.remove	= smiapp_remove,
	.id_table = smiapp_id_table,
};

module_i2c_driver(smiapp_i2c_driver);

MODULE_AUTHOR("Sakari Ailus <sakari.ailus@iki.fi>");
MODULE_DESCRIPTION("Generic SMIA/SMIA++ camera module driver");
MODULE_LICENSE("GPL v2");