Contributors: 7
Author Tokens Token Proportion Commits Commit Proportion
Kieran Bingham 11135 99.88% 3 30.00%
Mauro Carvalho Chehab 4 0.04% 2 20.00%
Arnd Bergmann 2 0.02% 1 10.00%
Boris Brezillon 2 0.02% 1 10.00%
Kuninori Morimoto 2 0.02% 1 10.00%
Nicolas Iooss 2 0.02% 1 10.00%
Gustavo A. R. Silva 1 0.01% 1 10.00%
Total 11148 10


// SPDX-License-Identifier: GPL-2.0+
/*
 * Renesas R-Car Fine Display Processor
 *
 * Video format converter and frame deinterlacer device.
 *
 * Author: Kieran Bingham, <kieran@bingham.xyz>
 * Copyright (c) 2016 Renesas Electronics Corporation.
 *
 * This code is developed and inspired from the vim2m, rcar_jpu,
 * m2m-deinterlace, and vsp1 drivers.
 */

#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/fs.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/timer.h>
#include <media/rcar-fcp.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-event.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-mem2mem.h>
#include <media/videobuf2-dma-contig.h>

static unsigned int debug;
module_param(debug, uint, 0644);
MODULE_PARM_DESC(debug, "activate debug info");

/* Minimum and maximum frame width/height */
#define FDP1_MIN_W		80U
#define FDP1_MIN_H		80U

#define FDP1_MAX_W		3840U
#define FDP1_MAX_H		2160U

#define FDP1_MAX_PLANES		3U
#define FDP1_MAX_STRIDE		8190U

/* Flags that indicate a format can be used for capture/output */
#define FDP1_CAPTURE		BIT(0)
#define FDP1_OUTPUT		BIT(1)

#define DRIVER_NAME		"rcar_fdp1"

/* Number of Job's to have available on the processing queue */
#define FDP1_NUMBER_JOBS 8

#define dprintk(fdp1, fmt, arg...) \
	v4l2_dbg(1, debug, &fdp1->v4l2_dev, "%s: " fmt, __func__, ## arg)

/*
 * FDP1 registers and bits
 */

/* FDP1 start register - Imm */
#define FD1_CTL_CMD			0x0000
#define FD1_CTL_CMD_STRCMD		BIT(0)

/* Sync generator register - Imm */
#define FD1_CTL_SGCMD			0x0004
#define FD1_CTL_SGCMD_SGEN		BIT(0)

/* Register set end register - Imm */
#define FD1_CTL_REGEND			0x0008
#define FD1_CTL_REGEND_REGEND		BIT(0)

/* Channel activation register - Vupdt */
#define FD1_CTL_CHACT			0x000c
#define FD1_CTL_CHACT_SMW		BIT(9)
#define FD1_CTL_CHACT_WR		BIT(8)
#define FD1_CTL_CHACT_SMR		BIT(3)
#define FD1_CTL_CHACT_RD2		BIT(2)
#define FD1_CTL_CHACT_RD1		BIT(1)
#define FD1_CTL_CHACT_RD0		BIT(0)

/* Operation Mode Register - Vupdt */
#define FD1_CTL_OPMODE			0x0010
#define FD1_CTL_OPMODE_PRG		BIT(4)
#define FD1_CTL_OPMODE_VIMD_INTERRUPT	(0 << 0)
#define FD1_CTL_OPMODE_VIMD_BESTEFFORT	(1 << 0)
#define FD1_CTL_OPMODE_VIMD_NOINTERRUPT	(2 << 0)

#define FD1_CTL_VPERIOD			0x0014
#define FD1_CTL_CLKCTRL			0x0018
#define FD1_CTL_CLKCTRL_CSTP_N		BIT(0)

/* Software reset register */
#define FD1_CTL_SRESET			0x001c
#define FD1_CTL_SRESET_SRST		BIT(0)

/* Control status register (V-update-status) */
#define FD1_CTL_STATUS			0x0024
#define FD1_CTL_STATUS_VINT_CNT_MASK	GENMASK(31, 16)
#define FD1_CTL_STATUS_VINT_CNT_SHIFT	16
#define FD1_CTL_STATUS_SGREGSET		BIT(10)
#define FD1_CTL_STATUS_SGVERR		BIT(9)
#define FD1_CTL_STATUS_SGFREND		BIT(8)
#define FD1_CTL_STATUS_BSY		BIT(0)

#define FD1_CTL_VCYCLE_STAT		0x0028

/* Interrupt enable register */
#define FD1_CTL_IRQENB			0x0038
/* Interrupt status register */
#define FD1_CTL_IRQSTA			0x003c
/* Interrupt control register */
#define FD1_CTL_IRQFSET			0x0040

/* Common IRQ Bit settings */
#define FD1_CTL_IRQ_VERE		BIT(16)
#define FD1_CTL_IRQ_VINTE		BIT(4)
#define FD1_CTL_IRQ_FREE		BIT(0)
#define FD1_CTL_IRQ_MASK		(FD1_CTL_IRQ_VERE | \
					 FD1_CTL_IRQ_VINTE | \
					 FD1_CTL_IRQ_FREE)

/* RPF */
#define FD1_RPF_SIZE			0x0060
#define FD1_RPF_SIZE_MASK		GENMASK(12, 0)
#define FD1_RPF_SIZE_H_SHIFT		16
#define FD1_RPF_SIZE_V_SHIFT		0

#define FD1_RPF_FORMAT			0x0064
#define FD1_RPF_FORMAT_CIPM		BIT(16)
#define FD1_RPF_FORMAT_RSPYCS		BIT(13)
#define FD1_RPF_FORMAT_RSPUVS		BIT(12)
#define FD1_RPF_FORMAT_CF		BIT(8)

#define FD1_RPF_PSTRIDE			0x0068
#define FD1_RPF_PSTRIDE_Y_SHIFT		16
#define FD1_RPF_PSTRIDE_C_SHIFT		0

/* RPF0 Source Component Y Address register */
#define FD1_RPF0_ADDR_Y			0x006c

/* RPF1 Current Picture Registers */
#define FD1_RPF1_ADDR_Y			0x0078
#define FD1_RPF1_ADDR_C0		0x007c
#define FD1_RPF1_ADDR_C1		0x0080

/* RPF2 next picture register */
#define FD1_RPF2_ADDR_Y			0x0084

#define FD1_RPF_SMSK_ADDR		0x0090
#define FD1_RPF_SWAP			0x0094

/* WPF */
#define FD1_WPF_FORMAT			0x00c0
#define FD1_WPF_FORMAT_PDV_SHIFT	24
#define FD1_WPF_FORMAT_FCNL		BIT(20)
#define FD1_WPF_FORMAT_WSPYCS		BIT(15)
#define FD1_WPF_FORMAT_WSPUVS		BIT(14)
#define FD1_WPF_FORMAT_WRTM_601_16	(0 << 9)
#define FD1_WPF_FORMAT_WRTM_601_0	(1 << 9)
#define FD1_WPF_FORMAT_WRTM_709_16	(2 << 9)
#define FD1_WPF_FORMAT_CSC		BIT(8)

#define FD1_WPF_RNDCTL			0x00c4
#define FD1_WPF_RNDCTL_CBRM		BIT(28)
#define FD1_WPF_RNDCTL_CLMD_NOCLIP	(0 << 12)
#define FD1_WPF_RNDCTL_CLMD_CLIP_16_235	(1 << 12)
#define FD1_WPF_RNDCTL_CLMD_CLIP_1_254	(2 << 12)

#define FD1_WPF_PSTRIDE			0x00c8
#define FD1_WPF_PSTRIDE_Y_SHIFT		16
#define FD1_WPF_PSTRIDE_C_SHIFT		0

/* WPF Destination picture */
#define FD1_WPF_ADDR_Y			0x00cc
#define FD1_WPF_ADDR_C0			0x00d0
#define FD1_WPF_ADDR_C1			0x00d4
#define FD1_WPF_SWAP			0x00d8
#define FD1_WPF_SWAP_OSWAP_SHIFT	0
#define FD1_WPF_SWAP_SSWAP_SHIFT	4

/* WPF/RPF Common */
#define FD1_RWPF_SWAP_BYTE		BIT(0)
#define FD1_RWPF_SWAP_WORD		BIT(1)
#define FD1_RWPF_SWAP_LWRD		BIT(2)
#define FD1_RWPF_SWAP_LLWD		BIT(3)

/* IPC */
#define FD1_IPC_MODE			0x0100
#define FD1_IPC_MODE_DLI		BIT(8)
#define FD1_IPC_MODE_DIM_ADAPT2D3D	(0 << 0)
#define FD1_IPC_MODE_DIM_FIXED2D	(1 << 0)
#define FD1_IPC_MODE_DIM_FIXED3D	(2 << 0)
#define FD1_IPC_MODE_DIM_PREVFIELD	(3 << 0)
#define FD1_IPC_MODE_DIM_NEXTFIELD	(4 << 0)

#define FD1_IPC_SMSK_THRESH		0x0104
#define FD1_IPC_SMSK_THRESH_CONST	0x00010002

#define FD1_IPC_COMB_DET		0x0108
#define FD1_IPC_COMB_DET_CONST		0x00200040

#define FD1_IPC_MOTDEC			0x010c
#define FD1_IPC_MOTDEC_CONST		0x00008020

/* DLI registers */
#define FD1_IPC_DLI_BLEND		0x0120
#define FD1_IPC_DLI_BLEND_CONST		0x0080ff02

#define FD1_IPC_DLI_HGAIN		0x0124
#define FD1_IPC_DLI_HGAIN_CONST		0x001000ff

#define FD1_IPC_DLI_SPRS		0x0128
#define FD1_IPC_DLI_SPRS_CONST		0x009004ff

#define FD1_IPC_DLI_ANGLE		0x012c
#define FD1_IPC_DLI_ANGLE_CONST		0x0004080c

#define FD1_IPC_DLI_ISOPIX0		0x0130
#define FD1_IPC_DLI_ISOPIX0_CONST	0xff10ff10

#define FD1_IPC_DLI_ISOPIX1		0x0134
#define FD1_IPC_DLI_ISOPIX1_CONST	0x0000ff10

/* Sensor registers */
#define FD1_IPC_SENSOR_TH0		0x0140
#define FD1_IPC_SENSOR_TH0_CONST	0x20208080

#define FD1_IPC_SENSOR_TH1		0x0144
#define FD1_IPC_SENSOR_TH1_CONST	0

#define FD1_IPC_SENSOR_CTL0		0x0170
#define FD1_IPC_SENSOR_CTL0_CONST	0x00002201

#define FD1_IPC_SENSOR_CTL1		0x0174
#define FD1_IPC_SENSOR_CTL1_CONST	0

#define FD1_IPC_SENSOR_CTL2		0x0178
#define FD1_IPC_SENSOR_CTL2_X_SHIFT	16
#define FD1_IPC_SENSOR_CTL2_Y_SHIFT	0

#define FD1_IPC_SENSOR_CTL3		0x017c
#define FD1_IPC_SENSOR_CTL3_0_SHIFT	16
#define FD1_IPC_SENSOR_CTL3_1_SHIFT	0

/* Line memory pixel number register */
#define FD1_IPC_LMEM			0x01e0
#define FD1_IPC_LMEM_LINEAR		1024
#define FD1_IPC_LMEM_TILE		960

/* Internal Data (HW Version) */
#define FD1_IP_INTDATA			0x0800
#define FD1_IP_H3_ES1			0x02010101
#define FD1_IP_M3W			0x02010202
#define FD1_IP_H3			0x02010203
#define FD1_IP_M3N			0x02010204
#define FD1_IP_E3			0x02010205

/* LUTs */
#define FD1_LUT_DIF_ADJ			0x1000
#define FD1_LUT_SAD_ADJ			0x1400
#define FD1_LUT_BLD_GAIN		0x1800
#define FD1_LUT_DIF_GAIN		0x1c00
#define FD1_LUT_MDET			0x2000

/**
 * struct fdp1_fmt - The FDP1 internal format data
 * @fourcc: the fourcc code, to match the V4L2 API
 * @bpp: bits per pixel per plane
 * @num_planes: number of planes
 * @hsub: horizontal subsampling factor
 * @vsub: vertical subsampling factor
 * @fmt: 7-bit format code for the fdp1 hardware
 * @swap_yc: the Y and C components are swapped (Y comes before C)
 * @swap_uv: the U and V components are swapped (V comes before U)
 * @swap: swap register control
 * @types: types of queue this format is applicable to
 */
struct fdp1_fmt {
	u32	fourcc;
	u8	bpp[3];
	u8	num_planes;
	u8	hsub;
	u8	vsub;
	u8	fmt;
	bool	swap_yc;
	bool	swap_uv;
	u8	swap;
	u8	types;
};

static const struct fdp1_fmt fdp1_formats[] = {
	/* RGB formats are only supported by the Write Pixel Formatter */

	{ V4L2_PIX_FMT_RGB332, { 8, 0, 0 }, 1, 1, 1, 0x00, false, false,
	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
	  FDP1_CAPTURE },
	{ V4L2_PIX_FMT_XRGB444, { 16, 0, 0 }, 1, 1, 1, 0x01, false, false,
	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
	  FD1_RWPF_SWAP_WORD,
	  FDP1_CAPTURE },
	{ V4L2_PIX_FMT_XRGB555, { 16, 0, 0 }, 1, 1, 1, 0x04, false, false,
	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
	  FD1_RWPF_SWAP_WORD,
	  FDP1_CAPTURE },
	{ V4L2_PIX_FMT_RGB565, { 16, 0, 0 }, 1, 1, 1, 0x06, false, false,
	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
	  FD1_RWPF_SWAP_WORD,
	  FDP1_CAPTURE },
	{ V4L2_PIX_FMT_ABGR32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD,
	  FDP1_CAPTURE },
	{ V4L2_PIX_FMT_XBGR32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD,
	  FDP1_CAPTURE },
	{ V4L2_PIX_FMT_ARGB32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
	  FDP1_CAPTURE },
	{ V4L2_PIX_FMT_XRGB32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
	  FDP1_CAPTURE },
	{ V4L2_PIX_FMT_RGB24, { 24, 0, 0 }, 1, 1, 1, 0x15, false, false,
	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
	  FDP1_CAPTURE },
	{ V4L2_PIX_FMT_BGR24, { 24, 0, 0 }, 1, 1, 1, 0x18, false, false,
	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
	  FDP1_CAPTURE },
	{ V4L2_PIX_FMT_ARGB444, { 16, 0, 0 }, 1, 1, 1, 0x19, false, false,
	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
	  FD1_RWPF_SWAP_WORD,
	  FDP1_CAPTURE },
	{ V4L2_PIX_FMT_ARGB555, { 16, 0, 0 }, 1, 1, 1, 0x1b, false, false,
	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
	  FD1_RWPF_SWAP_WORD,
	  FDP1_CAPTURE },

	/* YUV Formats are supported by Read and Write Pixel Formatters */

	{ V4L2_PIX_FMT_NV16M, { 8, 16, 0 }, 2, 2, 1, 0x41, false, false,
	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
	  FDP1_CAPTURE | FDP1_OUTPUT },
	{ V4L2_PIX_FMT_NV61M, { 8, 16, 0 }, 2, 2, 1, 0x41, false, true,
	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
	  FDP1_CAPTURE | FDP1_OUTPUT },
	{ V4L2_PIX_FMT_NV12M, { 8, 16, 0 }, 2, 2, 2, 0x42, false, false,
	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
	  FDP1_CAPTURE | FDP1_OUTPUT },
	{ V4L2_PIX_FMT_NV21M, { 8, 16, 0 }, 2, 2, 2, 0x42, false, true,
	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
	  FDP1_CAPTURE | FDP1_OUTPUT },
	{ V4L2_PIX_FMT_UYVY, { 16, 0, 0 }, 1, 2, 1, 0x47, false, false,
	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
	  FDP1_CAPTURE | FDP1_OUTPUT },
	{ V4L2_PIX_FMT_VYUY, { 16, 0, 0 }, 1, 2, 1, 0x47, false, true,
	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
	  FDP1_CAPTURE | FDP1_OUTPUT },
	{ V4L2_PIX_FMT_YUYV, { 16, 0, 0 }, 1, 2, 1, 0x47, true, false,
	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
	  FDP1_CAPTURE | FDP1_OUTPUT },
	{ V4L2_PIX_FMT_YVYU, { 16, 0, 0 }, 1, 2, 1, 0x47, true, true,
	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
	  FDP1_CAPTURE | FDP1_OUTPUT },
	{ V4L2_PIX_FMT_YUV444M, { 8, 8, 8 }, 3, 1, 1, 0x4a, false, false,
	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
	  FDP1_CAPTURE | FDP1_OUTPUT },
	{ V4L2_PIX_FMT_YVU444M, { 8, 8, 8 }, 3, 1, 1, 0x4a, false, true,
	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
	  FDP1_CAPTURE | FDP1_OUTPUT },
	{ V4L2_PIX_FMT_YUV422M, { 8, 8, 8 }, 3, 2, 1, 0x4b, false, false,
	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
	  FDP1_CAPTURE | FDP1_OUTPUT },
	{ V4L2_PIX_FMT_YVU422M, { 8, 8, 8 }, 3, 2, 1, 0x4b, false, true,
	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
	  FDP1_CAPTURE | FDP1_OUTPUT },
	{ V4L2_PIX_FMT_YUV420M, { 8, 8, 8 }, 3, 2, 2, 0x4c, false, false,
	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
	  FDP1_CAPTURE | FDP1_OUTPUT },
	{ V4L2_PIX_FMT_YVU420M, { 8, 8, 8 }, 3, 2, 2, 0x4c, false, true,
	  FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
	  FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
	  FDP1_CAPTURE | FDP1_OUTPUT },
};

static int fdp1_fmt_is_rgb(const struct fdp1_fmt *fmt)
{
	return fmt->fmt <= 0x1b; /* Last RGB code */
}

/*
 * FDP1 Lookup tables range from 0...255 only
 *
 * Each table must be less than 256 entries, and all tables
 * are padded out to 256 entries by duplicating the last value.
 */
static const u8 fdp1_diff_adj[] = {
	0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf,
	0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3,
	0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff,
};

static const u8 fdp1_sad_adj[] = {
	0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf,
	0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3,
	0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff,
};

static const u8 fdp1_bld_gain[] = {
	0x80,
};

static const u8 fdp1_dif_gain[] = {
	0x80,
};

static const u8 fdp1_mdet[] = {
	0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
	0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
	0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
	0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
	0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
	0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
	0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
	0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
	0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
	0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
	0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
	0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
	0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
	0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
	0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
	0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
	0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
	0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
	0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
	0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
	0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
	0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
	0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
	0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
	0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
	0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
	0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
	0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
	0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
	0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
	0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
	0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff
};

/* Per-queue, driver-specific private data */
struct fdp1_q_data {
	const struct fdp1_fmt		*fmt;
	struct v4l2_pix_format_mplane	format;

	unsigned int			vsize;
	unsigned int			stride_y;
	unsigned int			stride_c;
};

static const struct fdp1_fmt *fdp1_find_format(u32 pixelformat)
{
	const struct fdp1_fmt *fmt;
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(fdp1_formats); i++) {
		fmt = &fdp1_formats[i];
		if (fmt->fourcc == pixelformat)
			return fmt;
	}

	return NULL;
}

enum fdp1_deint_mode {
	FDP1_PROGRESSIVE = 0, /* Must be zero when !deinterlacing */
	FDP1_ADAPT2D3D,
	FDP1_FIXED2D,
	FDP1_FIXED3D,
	FDP1_PREVFIELD,
	FDP1_NEXTFIELD,
};

#define FDP1_DEINT_MODE_USES_NEXT(mode) \
	(mode == FDP1_ADAPT2D3D || \
	 mode == FDP1_FIXED3D   || \
	 mode == FDP1_NEXTFIELD)

#define FDP1_DEINT_MODE_USES_PREV(mode) \
	(mode == FDP1_ADAPT2D3D || \
	 mode == FDP1_FIXED3D   || \
	 mode == FDP1_PREVFIELD)

/*
 * FDP1 operates on potentially 3 fields, which are tracked
 * from the VB buffers using this context structure.
 * Will always be a field or a full frame, never two fields.
 */
struct fdp1_field_buffer {
	struct vb2_v4l2_buffer		*vb;
	dma_addr_t			addrs[3];

	/* Should be NONE:TOP:BOTTOM only */
	enum v4l2_field			field;

	/* Flag to indicate this is the last field in the vb */
	bool				last_field;

	/* Buffer queue lists */
	struct list_head		list;
};

struct fdp1_buffer {
	struct v4l2_m2m_buffer		m2m_buf;
	struct fdp1_field_buffer	fields[2];
	unsigned int			num_fields;
};

static inline struct fdp1_buffer *to_fdp1_buffer(struct vb2_v4l2_buffer *vb)
{
	return container_of(vb, struct fdp1_buffer, m2m_buf.vb);
}

struct fdp1_job {
	struct fdp1_field_buffer	*previous;
	struct fdp1_field_buffer	*active;
	struct fdp1_field_buffer	*next;
	struct fdp1_field_buffer	*dst;

	/* A job can only be on one list at a time */
	struct list_head		list;
};

struct fdp1_dev {
	struct v4l2_device		v4l2_dev;
	struct video_device		vfd;

	struct mutex			dev_mutex;
	spinlock_t			irqlock;
	spinlock_t			device_process_lock;

	void __iomem			*regs;
	unsigned int			irq;
	struct device			*dev;

	/* Job Queues */
	struct fdp1_job			jobs[FDP1_NUMBER_JOBS];
	struct list_head		free_job_list;
	struct list_head		queued_job_list;
	struct list_head		hw_job_list;

	unsigned int			clk_rate;

	struct rcar_fcp_device		*fcp;
	struct v4l2_m2m_dev		*m2m_dev;
};

struct fdp1_ctx {
	struct v4l2_fh			fh;
	struct fdp1_dev			*fdp1;

	struct v4l2_ctrl_handler	hdl;
	unsigned int			sequence;

	/* Processed buffers in this transaction */
	u8				num_processed;

	/* Transaction length (i.e. how many buffers per transaction) */
	u32				translen;

	/* Abort requested by m2m */
	int				aborting;

	/* Deinterlace processing mode */
	enum fdp1_deint_mode		deint_mode;

	/*
	 * Adaptive 2D/3D mode uses a shared mask
	 * This is allocated at streamon, if the ADAPT2D3D mode
	 * is requested
	 */
	unsigned int			smsk_size;
	dma_addr_t			smsk_addr[2];
	void				*smsk_cpu;

	/* Capture pipeline, can specify an alpha value
	 * for supported formats. 0-255 only
	 */
	unsigned char			alpha;

	/* Source and destination queue data */
	struct fdp1_q_data		out_q; /* HW Source */
	struct fdp1_q_data		cap_q; /* HW Destination */

	/*
	 * Field Queues
	 * Interlaced fields are used on 3 occasions, and tracked in this list.
	 *
	 * V4L2 Buffers are tracked inside the fdp1_buffer
	 * and released when the last 'field' completes
	 */
	struct list_head		fields_queue;
	unsigned int			buffers_queued;

	/*
	 * For de-interlacing we need to track our previous buffer
	 * while preparing our job lists.
	 */
	struct fdp1_field_buffer	*previous;
};

static inline struct fdp1_ctx *fh_to_ctx(struct v4l2_fh *fh)
{
	return container_of(fh, struct fdp1_ctx, fh);
}

static struct fdp1_q_data *get_q_data(struct fdp1_ctx *ctx,
					 enum v4l2_buf_type type)
{
	if (V4L2_TYPE_IS_OUTPUT(type))
		return &ctx->out_q;
	else
		return &ctx->cap_q;
}

/*
 * list_remove_job: Take the first item off the specified job list
 *
 * Returns: pointer to a job, or NULL if the list is empty.
 */
static struct fdp1_job *list_remove_job(struct fdp1_dev *fdp1,
					 struct list_head *list)
{
	struct fdp1_job *job;
	unsigned long flags;

	spin_lock_irqsave(&fdp1->irqlock, flags);
	job = list_first_entry_or_null(list, struct fdp1_job, list);
	if (job)
		list_del(&job->list);
	spin_unlock_irqrestore(&fdp1->irqlock, flags);

	return job;
}

/*
 * list_add_job: Add a job to the specified job list
 *
 * Returns: void - always succeeds
 */
static void list_add_job(struct fdp1_dev *fdp1,
			 struct list_head *list,
			 struct fdp1_job *job)
{
	unsigned long flags;

	spin_lock_irqsave(&fdp1->irqlock, flags);
	list_add_tail(&job->list, list);
	spin_unlock_irqrestore(&fdp1->irqlock, flags);
}

static struct fdp1_job *fdp1_job_alloc(struct fdp1_dev *fdp1)
{
	return list_remove_job(fdp1, &fdp1->free_job_list);
}

static void fdp1_job_free(struct fdp1_dev *fdp1, struct fdp1_job *job)
{
	/* Ensure that all residue from previous jobs is gone */
	memset(job, 0, sizeof(struct fdp1_job));

	list_add_job(fdp1, &fdp1->free_job_list, job);
}

static void queue_job(struct fdp1_dev *fdp1, struct fdp1_job *job)
{
	list_add_job(fdp1, &fdp1->queued_job_list, job);
}

static struct fdp1_job *get_queued_job(struct fdp1_dev *fdp1)
{
	return list_remove_job(fdp1, &fdp1->queued_job_list);
}

static void queue_hw_job(struct fdp1_dev *fdp1, struct fdp1_job *job)
{
	list_add_job(fdp1, &fdp1->hw_job_list, job);
}

static struct fdp1_job *get_hw_queued_job(struct fdp1_dev *fdp1)
{
	return list_remove_job(fdp1, &fdp1->hw_job_list);
}

/*
 * Buffer lists handling
 */
static void fdp1_field_complete(struct fdp1_ctx *ctx,
				struct fdp1_field_buffer *fbuf)
{
	/* job->previous may be on the first field */
	if (!fbuf)
		return;

	if (fbuf->last_field)
		v4l2_m2m_buf_done(fbuf->vb, VB2_BUF_STATE_DONE);
}

static void fdp1_queue_field(struct fdp1_ctx *ctx,
			     struct fdp1_field_buffer *fbuf)
{
	unsigned long flags;

	spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
	list_add_tail(&fbuf->list, &ctx->fields_queue);
	spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);

	ctx->buffers_queued++;
}

static struct fdp1_field_buffer *fdp1_dequeue_field(struct fdp1_ctx *ctx)
{
	struct fdp1_field_buffer *fbuf;
	unsigned long flags;

	ctx->buffers_queued--;

	spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
	fbuf = list_first_entry_or_null(&ctx->fields_queue,
					struct fdp1_field_buffer, list);
	if (fbuf)
		list_del(&fbuf->list);
	spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);

	return fbuf;
}

/*
 * Return the next field in the queue - or NULL,
 * without removing the item from the list
 */
static struct fdp1_field_buffer *fdp1_peek_queued_field(struct fdp1_ctx *ctx)
{
	struct fdp1_field_buffer *fbuf;
	unsigned long flags;

	spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
	fbuf = list_first_entry_or_null(&ctx->fields_queue,
					struct fdp1_field_buffer, list);
	spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);

	return fbuf;
}

static u32 fdp1_read(struct fdp1_dev *fdp1, unsigned int reg)
{
	u32 value = ioread32(fdp1->regs + reg);

	if (debug >= 2)
		dprintk(fdp1, "Read 0x%08x from 0x%04x\n", value, reg);

	return value;
}

static void fdp1_write(struct fdp1_dev *fdp1, u32 val, unsigned int reg)
{
	if (debug >= 2)
		dprintk(fdp1, "Write 0x%08x to 0x%04x\n", val, reg);

	iowrite32(val, fdp1->regs + reg);
}

/* IPC registers are to be programmed with constant values */
static void fdp1_set_ipc_dli(struct fdp1_ctx *ctx)
{
	struct fdp1_dev *fdp1 = ctx->fdp1;

	fdp1_write(fdp1, FD1_IPC_SMSK_THRESH_CONST,	FD1_IPC_SMSK_THRESH);
	fdp1_write(fdp1, FD1_IPC_COMB_DET_CONST,	FD1_IPC_COMB_DET);
	fdp1_write(fdp1, FD1_IPC_MOTDEC_CONST,	FD1_IPC_MOTDEC);

	fdp1_write(fdp1, FD1_IPC_DLI_BLEND_CONST,	FD1_IPC_DLI_BLEND);
	fdp1_write(fdp1, FD1_IPC_DLI_HGAIN_CONST,	FD1_IPC_DLI_HGAIN);
	fdp1_write(fdp1, FD1_IPC_DLI_SPRS_CONST,	FD1_IPC_DLI_SPRS);
	fdp1_write(fdp1, FD1_IPC_DLI_ANGLE_CONST,	FD1_IPC_DLI_ANGLE);
	fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX0_CONST,	FD1_IPC_DLI_ISOPIX0);
	fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX1_CONST,	FD1_IPC_DLI_ISOPIX1);
}


static void fdp1_set_ipc_sensor(struct fdp1_ctx *ctx)
{
	struct fdp1_dev *fdp1 = ctx->fdp1;
	struct fdp1_q_data *src_q_data = &ctx->out_q;
	unsigned int x0, x1;
	unsigned int hsize = src_q_data->format.width;
	unsigned int vsize = src_q_data->format.height;

	x0 = hsize / 3;
	x1 = 2 * hsize / 3;

	fdp1_write(fdp1, FD1_IPC_SENSOR_TH0_CONST, FD1_IPC_SENSOR_TH0);
	fdp1_write(fdp1, FD1_IPC_SENSOR_TH1_CONST, FD1_IPC_SENSOR_TH1);
	fdp1_write(fdp1, FD1_IPC_SENSOR_CTL0_CONST, FD1_IPC_SENSOR_CTL0);
	fdp1_write(fdp1, FD1_IPC_SENSOR_CTL1_CONST, FD1_IPC_SENSOR_CTL1);

	fdp1_write(fdp1, ((hsize - 1) << FD1_IPC_SENSOR_CTL2_X_SHIFT) |
			 ((vsize - 1) << FD1_IPC_SENSOR_CTL2_Y_SHIFT),
			 FD1_IPC_SENSOR_CTL2);

	fdp1_write(fdp1, (x0 << FD1_IPC_SENSOR_CTL3_0_SHIFT) |
			 (x1 << FD1_IPC_SENSOR_CTL3_1_SHIFT),
			 FD1_IPC_SENSOR_CTL3);
}

/*
 * fdp1_write_lut: Write a padded LUT to the hw
 *
 * FDP1 uses constant data for de-interlacing processing,
 * with large tables. These hardware tables are all 256 bytes
 * long, however they often contain repeated data at the end.
 *
 * The last byte of the table is written to all remaining entries.
 */
static void fdp1_write_lut(struct fdp1_dev *fdp1, const u8 *lut,
			   unsigned int len, unsigned int base)
{
	unsigned int i;
	u8 pad;

	/* Tables larger than the hw are clipped */
	len = min(len, 256u);

	for (i = 0; i < len; i++)
		fdp1_write(fdp1, lut[i], base + (i*4));

	/* Tables are padded with the last entry */
	pad = lut[i-1];

	for (; i < 256; i++)
		fdp1_write(fdp1, pad, base + (i*4));
}

static void fdp1_set_lut(struct fdp1_dev *fdp1)
{
	fdp1_write_lut(fdp1, fdp1_diff_adj, ARRAY_SIZE(fdp1_diff_adj),
			FD1_LUT_DIF_ADJ);
	fdp1_write_lut(fdp1, fdp1_sad_adj,  ARRAY_SIZE(fdp1_sad_adj),
			FD1_LUT_SAD_ADJ);
	fdp1_write_lut(fdp1, fdp1_bld_gain, ARRAY_SIZE(fdp1_bld_gain),
			FD1_LUT_BLD_GAIN);
	fdp1_write_lut(fdp1, fdp1_dif_gain, ARRAY_SIZE(fdp1_dif_gain),
			FD1_LUT_DIF_GAIN);
	fdp1_write_lut(fdp1, fdp1_mdet, ARRAY_SIZE(fdp1_mdet),
			FD1_LUT_MDET);
}

static void fdp1_configure_rpf(struct fdp1_ctx *ctx,
			       struct fdp1_job *job)
{
	struct fdp1_dev *fdp1 = ctx->fdp1;
	u32 picture_size;
	u32 pstride;
	u32 format;
	u32 smsk_addr;

	struct fdp1_q_data *q_data = &ctx->out_q;

	/* Picture size is common to Source and Destination frames */
	picture_size = (q_data->format.width << FD1_RPF_SIZE_H_SHIFT)
		     | (q_data->vsize << FD1_RPF_SIZE_V_SHIFT);

	/* Strides */
	pstride = q_data->stride_y << FD1_RPF_PSTRIDE_Y_SHIFT;
	if (q_data->format.num_planes > 1)
		pstride |= q_data->stride_c << FD1_RPF_PSTRIDE_C_SHIFT;

	/* Format control */
	format = q_data->fmt->fmt;
	if (q_data->fmt->swap_yc)
		format |= FD1_RPF_FORMAT_RSPYCS;

	if (q_data->fmt->swap_uv)
		format |= FD1_RPF_FORMAT_RSPUVS;

	if (job->active->field == V4L2_FIELD_BOTTOM) {
		format |= FD1_RPF_FORMAT_CF; /* Set for Bottom field */
		smsk_addr = ctx->smsk_addr[0];
	} else {
		smsk_addr = ctx->smsk_addr[1];
	}

	/* Deint mode is non-zero when deinterlacing */
	if (ctx->deint_mode)
		format |= FD1_RPF_FORMAT_CIPM;

	fdp1_write(fdp1, format, FD1_RPF_FORMAT);
	fdp1_write(fdp1, q_data->fmt->swap, FD1_RPF_SWAP);
	fdp1_write(fdp1, picture_size, FD1_RPF_SIZE);
	fdp1_write(fdp1, pstride, FD1_RPF_PSTRIDE);
	fdp1_write(fdp1, smsk_addr, FD1_RPF_SMSK_ADDR);

	/* Previous Field Channel (CH0) */
	if (job->previous)
		fdp1_write(fdp1, job->previous->addrs[0], FD1_RPF0_ADDR_Y);

	/* Current Field Channel (CH1) */
	fdp1_write(fdp1, job->active->addrs[0], FD1_RPF1_ADDR_Y);
	fdp1_write(fdp1, job->active->addrs[1], FD1_RPF1_ADDR_C0);
	fdp1_write(fdp1, job->active->addrs[2], FD1_RPF1_ADDR_C1);

	/* Next Field  Channel (CH2) */
	if (job->next)
		fdp1_write(fdp1, job->next->addrs[0], FD1_RPF2_ADDR_Y);
}

static void fdp1_configure_wpf(struct fdp1_ctx *ctx,
			       struct fdp1_job *job)
{
	struct fdp1_dev *fdp1 = ctx->fdp1;
	struct fdp1_q_data *src_q_data = &ctx->out_q;
	struct fdp1_q_data *q_data = &ctx->cap_q;
	u32 pstride;
	u32 format;
	u32 swap;
	u32 rndctl;

	pstride = q_data->format.plane_fmt[0].bytesperline
		<< FD1_WPF_PSTRIDE_Y_SHIFT;

	if (q_data->format.num_planes > 1)
		pstride |= q_data->format.plane_fmt[1].bytesperline
			<< FD1_WPF_PSTRIDE_C_SHIFT;

	format = q_data->fmt->fmt; /* Output Format Code */

	if (q_data->fmt->swap_yc)
		format |= FD1_WPF_FORMAT_WSPYCS;

	if (q_data->fmt->swap_uv)
		format |= FD1_WPF_FORMAT_WSPUVS;

	if (fdp1_fmt_is_rgb(q_data->fmt)) {
		/* Enable Colour Space conversion */
		format |= FD1_WPF_FORMAT_CSC;

		/* Set WRTM */
		if (src_q_data->format.ycbcr_enc == V4L2_YCBCR_ENC_709)
			format |= FD1_WPF_FORMAT_WRTM_709_16;
		else if (src_q_data->format.quantization ==
				V4L2_QUANTIZATION_FULL_RANGE)
			format |= FD1_WPF_FORMAT_WRTM_601_0;
		else
			format |= FD1_WPF_FORMAT_WRTM_601_16;
	}

	/* Set an alpha value into the Pad Value */
	format |= ctx->alpha << FD1_WPF_FORMAT_PDV_SHIFT;

	/* Determine picture rounding and clipping */
	rndctl = FD1_WPF_RNDCTL_CBRM; /* Rounding Off */
	rndctl |= FD1_WPF_RNDCTL_CLMD_NOCLIP;

	/* WPF Swap needs both ISWAP and OSWAP setting */
	swap = q_data->fmt->swap << FD1_WPF_SWAP_OSWAP_SHIFT;
	swap |= src_q_data->fmt->swap << FD1_WPF_SWAP_SSWAP_SHIFT;

	fdp1_write(fdp1, format, FD1_WPF_FORMAT);
	fdp1_write(fdp1, rndctl, FD1_WPF_RNDCTL);
	fdp1_write(fdp1, swap, FD1_WPF_SWAP);
	fdp1_write(fdp1, pstride, FD1_WPF_PSTRIDE);

	fdp1_write(fdp1, job->dst->addrs[0], FD1_WPF_ADDR_Y);
	fdp1_write(fdp1, job->dst->addrs[1], FD1_WPF_ADDR_C0);
	fdp1_write(fdp1, job->dst->addrs[2], FD1_WPF_ADDR_C1);
}

static void fdp1_configure_deint_mode(struct fdp1_ctx *ctx,
				      struct fdp1_job *job)
{
	struct fdp1_dev *fdp1 = ctx->fdp1;
	u32 opmode = FD1_CTL_OPMODE_VIMD_NOINTERRUPT;
	u32 ipcmode = FD1_IPC_MODE_DLI; /* Always set */
	u32 channels = FD1_CTL_CHACT_WR | FD1_CTL_CHACT_RD1; /* Always on */

	/* De-interlacing Mode */
	switch (ctx->deint_mode) {
	default:
	case FDP1_PROGRESSIVE:
		dprintk(fdp1, "Progressive Mode\n");
		opmode |= FD1_CTL_OPMODE_PRG;
		ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
		break;
	case FDP1_ADAPT2D3D:
		dprintk(fdp1, "Adapt2D3D Mode\n");
		if (ctx->sequence == 0 || ctx->aborting)
			ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
		else
			ipcmode |= FD1_IPC_MODE_DIM_ADAPT2D3D;

		if (ctx->sequence > 1) {
			channels |= FD1_CTL_CHACT_SMW;
			channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2;
		}

		if (ctx->sequence > 2)
			channels |= FD1_CTL_CHACT_SMR;

		break;
	case FDP1_FIXED3D:
		dprintk(fdp1, "Fixed 3D Mode\n");
		ipcmode |= FD1_IPC_MODE_DIM_FIXED3D;
		/* Except for first and last frame, enable all channels */
		if (!(ctx->sequence == 0 || ctx->aborting))
			channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2;
		break;
	case FDP1_FIXED2D:
		dprintk(fdp1, "Fixed 2D Mode\n");
		ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
		/* No extra channels enabled */
		break;
	case FDP1_PREVFIELD:
		dprintk(fdp1, "Previous Field Mode\n");
		ipcmode |= FD1_IPC_MODE_DIM_PREVFIELD;
		channels |= FD1_CTL_CHACT_RD0; /* Previous */
		break;
	case FDP1_NEXTFIELD:
		dprintk(fdp1, "Next Field Mode\n");
		ipcmode |= FD1_IPC_MODE_DIM_NEXTFIELD;
		channels |= FD1_CTL_CHACT_RD2; /* Next */
		break;
	}

	fdp1_write(fdp1, channels,	FD1_CTL_CHACT);
	fdp1_write(fdp1, opmode,	FD1_CTL_OPMODE);
	fdp1_write(fdp1, ipcmode,	FD1_IPC_MODE);
}

/*
 * fdp1_device_process() - Run the hardware
 *
 * Configure and start the hardware to generate a single frame
 * of output given our input parameters.
 */
static int fdp1_device_process(struct fdp1_ctx *ctx)

{
	struct fdp1_dev *fdp1 = ctx->fdp1;
	struct fdp1_job *job;
	unsigned long flags;

	spin_lock_irqsave(&fdp1->device_process_lock, flags);

	/* Get a job to process */
	job = get_queued_job(fdp1);
	if (!job) {
		/*
		 * VINT can call us to see if we can queue another job.
		 * If we have no work to do, we simply return.
		 */
		spin_unlock_irqrestore(&fdp1->device_process_lock, flags);
		return 0;
	}

	/* First Frame only? ... */
	fdp1_write(fdp1, FD1_CTL_CLKCTRL_CSTP_N, FD1_CTL_CLKCTRL);

	/* Set the mode, and configuration */
	fdp1_configure_deint_mode(ctx, job);

	/* DLI Static Configuration */
	fdp1_set_ipc_dli(ctx);

	/* Sensor Configuration */
	fdp1_set_ipc_sensor(ctx);

	/* Setup the source picture */
	fdp1_configure_rpf(ctx, job);

	/* Setup the destination picture */
	fdp1_configure_wpf(ctx, job);

	/* Line Memory Pixel Number Register for linear access */
	fdp1_write(fdp1, FD1_IPC_LMEM_LINEAR, FD1_IPC_LMEM);

	/* Enable Interrupts */
	fdp1_write(fdp1, FD1_CTL_IRQ_MASK, FD1_CTL_IRQENB);

	/* Finally, the Immediate Registers */

	/* This job is now in the HW queue */
	queue_hw_job(fdp1, job);

	/* Start the command */
	fdp1_write(fdp1, FD1_CTL_CMD_STRCMD, FD1_CTL_CMD);

	/* Registers will update to HW at next VINT */
	fdp1_write(fdp1, FD1_CTL_REGEND_REGEND, FD1_CTL_REGEND);

	/* Enable VINT Generator */
	fdp1_write(fdp1, FD1_CTL_SGCMD_SGEN, FD1_CTL_SGCMD);

	spin_unlock_irqrestore(&fdp1->device_process_lock, flags);

	return 0;
}

/*
 * mem2mem callbacks
 */

/*
 * job_ready() - check whether an instance is ready to be scheduled to run
 */
static int fdp1_m2m_job_ready(void *priv)
{
	struct fdp1_ctx *ctx = priv;
	struct fdp1_q_data *src_q_data = &ctx->out_q;
	int srcbufs = 1;
	int dstbufs = 1;

	dprintk(ctx->fdp1, "+ Src: %d : Dst: %d\n",
		v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx),
		v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx));

	/* One output buffer is required for each field */
	if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field))
		dstbufs = 2;

	if (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) < srcbufs
	    || v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx) < dstbufs) {
		dprintk(ctx->fdp1, "Not enough buffers available\n");
		return 0;
	}

	return 1;
}

static void fdp1_m2m_job_abort(void *priv)
{
	struct fdp1_ctx *ctx = priv;

	dprintk(ctx->fdp1, "+\n");

	/* Will cancel the transaction in the next interrupt handler */
	ctx->aborting = 1;

	/* Immediate abort sequence */
	fdp1_write(ctx->fdp1, 0, FD1_CTL_SGCMD);
	fdp1_write(ctx->fdp1, FD1_CTL_SRESET_SRST, FD1_CTL_SRESET);
}

/*
 * fdp1_prepare_job: Prepare and queue a new job for a single action of work
 *
 * Prepare the next field, (or frame in progressive) and an output
 * buffer for the hardware to perform a single operation.
 */
static struct fdp1_job *fdp1_prepare_job(struct fdp1_ctx *ctx)
{
	struct vb2_v4l2_buffer *vbuf;
	struct fdp1_buffer *fbuf;
	struct fdp1_dev *fdp1 = ctx->fdp1;
	struct fdp1_job *job;
	unsigned int buffers_required = 1;

	dprintk(fdp1, "+\n");

	if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode))
		buffers_required = 2;

	if (ctx->buffers_queued < buffers_required)
		return NULL;

	job = fdp1_job_alloc(fdp1);
	if (!job) {
		dprintk(fdp1, "No free jobs currently available\n");
		return NULL;
	}

	job->active = fdp1_dequeue_field(ctx);
	if (!job->active) {
		/* Buffer check should prevent this ever happening */
		dprintk(fdp1, "No input buffers currently available\n");

		fdp1_job_free(fdp1, job);
		return NULL;
	}

	dprintk(fdp1, "+ Buffer en-route...\n");

	/* Source buffers have been prepared on our buffer_queue
	 * Prepare our Output buffer
	 */
	vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
	fbuf = to_fdp1_buffer(vbuf);
	job->dst = &fbuf->fields[0];

	job->active->vb->sequence = ctx->sequence;
	job->dst->vb->sequence = ctx->sequence;
	ctx->sequence++;

	if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode)) {
		job->previous = ctx->previous;

		/* Active buffer becomes the next job's previous buffer */
		ctx->previous = job->active;
	}

	if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode)) {
		/* Must be called after 'active' is dequeued */
		job->next = fdp1_peek_queued_field(ctx);
	}

	/* Transfer timestamps and flags from src->dst */

	job->dst->vb->vb2_buf.timestamp = job->active->vb->vb2_buf.timestamp;

	job->dst->vb->flags = job->active->vb->flags &
				V4L2_BUF_FLAG_TSTAMP_SRC_MASK;

	/* Ideally, the frame-end function will just 'check' to see
	 * if there are more jobs instead
	 */
	ctx->translen++;

	/* Finally, Put this job on the processing queue */
	queue_job(fdp1, job);

	dprintk(fdp1, "Job Queued translen = %d\n", ctx->translen);

	return job;
}

/* fdp1_m2m_device_run() - prepares and starts the device for an M2M task
 *
 * A single input buffer is taken and serialised into our fdp1_buffer
 * queue. The queue is then processed to create as many jobs as possible
 * from our available input.
 */
static void fdp1_m2m_device_run(void *priv)
{
	struct fdp1_ctx *ctx = priv;
	struct fdp1_dev *fdp1 = ctx->fdp1;
	struct vb2_v4l2_buffer *src_vb;
	struct fdp1_buffer *buf;
	unsigned int i;

	dprintk(fdp1, "+\n");

	ctx->translen = 0;

	/* Get our incoming buffer of either one or two fields, or one frame */
	src_vb = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
	buf = to_fdp1_buffer(src_vb);

	for (i = 0; i < buf->num_fields; i++) {
		struct fdp1_field_buffer *fbuf = &buf->fields[i];

		fdp1_queue_field(ctx, fbuf);
		dprintk(fdp1, "Queued Buffer [%d] last_field:%d\n",
			i, fbuf->last_field);
	}

	/* Queue as many jobs as our data provides for */
	while (fdp1_prepare_job(ctx))
		;

	if (ctx->translen == 0) {
		dprintk(fdp1, "No jobs were processed. M2M action complete\n");
		v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx);
		return;
	}

	/* Kick the job processing action */
	fdp1_device_process(ctx);
}

/*
 * device_frame_end:
 *
 * Handles the M2M level after a buffer completion event.
 */
static void device_frame_end(struct fdp1_dev *fdp1,
			     enum vb2_buffer_state state)
{
	struct fdp1_ctx *ctx;
	unsigned long flags;
	struct fdp1_job *job = get_hw_queued_job(fdp1);

	dprintk(fdp1, "+\n");

	ctx = v4l2_m2m_get_curr_priv(fdp1->m2m_dev);

	if (ctx == NULL) {
		v4l2_err(&fdp1->v4l2_dev,
			"Instance released before the end of transaction\n");
		return;
	}

	ctx->num_processed++;

	/*
	 * fdp1_field_complete will call buf_done only when the last vb2_buffer
	 * reference is complete
	 */
	if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode))
		fdp1_field_complete(ctx, job->previous);
	else
		fdp1_field_complete(ctx, job->active);

	spin_lock_irqsave(&fdp1->irqlock, flags);
	v4l2_m2m_buf_done(job->dst->vb, state);
	job->dst = NULL;
	spin_unlock_irqrestore(&fdp1->irqlock, flags);

	/* Move this job back to the free job list */
	fdp1_job_free(fdp1, job);

	dprintk(fdp1, "curr_ctx->num_processed %d curr_ctx->translen %d\n",
		ctx->num_processed, ctx->translen);

	if (ctx->num_processed == ctx->translen ||
			ctx->aborting) {
		dprintk(ctx->fdp1, "Finishing transaction\n");
		ctx->num_processed = 0;
		v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx);
	} else {
		/*
		 * For pipelined performance support, this would
		 * be called from a VINT handler
		 */
		fdp1_device_process(ctx);
	}
}

/*
 * video ioctls
 */
static int fdp1_vidioc_querycap(struct file *file, void *priv,
			   struct v4l2_capability *cap)
{
	strscpy(cap->driver, DRIVER_NAME, sizeof(cap->driver));
	strscpy(cap->card, DRIVER_NAME, sizeof(cap->card));
	snprintf(cap->bus_info, sizeof(cap->bus_info),
		 "platform:%s", DRIVER_NAME);
	return 0;
}

static int fdp1_enum_fmt(struct v4l2_fmtdesc *f, u32 type)
{
	unsigned int i, num;

	num = 0;

	for (i = 0; i < ARRAY_SIZE(fdp1_formats); ++i) {
		if (fdp1_formats[i].types & type) {
			if (num == f->index)
				break;
			++num;
		}
	}

	/* Format not found */
	if (i >= ARRAY_SIZE(fdp1_formats))
		return -EINVAL;

	/* Format found */
	f->pixelformat = fdp1_formats[i].fourcc;

	return 0;
}

static int fdp1_enum_fmt_vid_cap(struct file *file, void *priv,
				 struct v4l2_fmtdesc *f)
{
	return fdp1_enum_fmt(f, FDP1_CAPTURE);
}

static int fdp1_enum_fmt_vid_out(struct file *file, void *priv,
				   struct v4l2_fmtdesc *f)
{
	return fdp1_enum_fmt(f, FDP1_OUTPUT);
}

static int fdp1_g_fmt(struct file *file, void *priv, struct v4l2_format *f)
{
	struct fdp1_q_data *q_data;
	struct fdp1_ctx *ctx = fh_to_ctx(priv);

	if (!v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type))
		return -EINVAL;

	q_data = get_q_data(ctx, f->type);
	f->fmt.pix_mp = q_data->format;

	return 0;
}

static void fdp1_compute_stride(struct v4l2_pix_format_mplane *pix,
				const struct fdp1_fmt *fmt)
{
	unsigned int i;

	/* Compute and clamp the stride and image size. */
	for (i = 0; i < min_t(unsigned int, fmt->num_planes, 2U); ++i) {
		unsigned int hsub = i > 0 ? fmt->hsub : 1;
		unsigned int vsub = i > 0 ? fmt->vsub : 1;
		 /* From VSP : TODO: Confirm alignment limits for FDP1 */
		unsigned int align = 128;
		unsigned int bpl;

		bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline,
			      pix->width / hsub * fmt->bpp[i] / 8,
			      round_down(FDP1_MAX_STRIDE, align));

		pix->plane_fmt[i].bytesperline = round_up(bpl, align);
		pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline
					    * pix->height / vsub;

		memset(pix->plane_fmt[i].reserved, 0,
		       sizeof(pix->plane_fmt[i].reserved));
	}

	if (fmt->num_planes == 3) {
		/* The two chroma planes must have the same stride. */
		pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline;
		pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage;

		memset(pix->plane_fmt[2].reserved, 0,
		       sizeof(pix->plane_fmt[2].reserved));
	}
}

static void fdp1_try_fmt_output(struct fdp1_ctx *ctx,
				const struct fdp1_fmt **fmtinfo,
				struct v4l2_pix_format_mplane *pix)
{
	const struct fdp1_fmt *fmt;
	unsigned int width;
	unsigned int height;

	/* Validate the pixel format to ensure the output queue supports it. */
	fmt = fdp1_find_format(pix->pixelformat);
	if (!fmt || !(fmt->types & FDP1_OUTPUT))
		fmt = fdp1_find_format(V4L2_PIX_FMT_YUYV);

	if (fmtinfo)
		*fmtinfo = fmt;

	pix->pixelformat = fmt->fourcc;
	pix->num_planes = fmt->num_planes;

	/*
	 * Progressive video and all interlaced field orders are acceptable.
	 * Default to V4L2_FIELD_INTERLACED.
	 */
	if (pix->field != V4L2_FIELD_NONE &&
	    pix->field != V4L2_FIELD_ALTERNATE &&
	    !V4L2_FIELD_HAS_BOTH(pix->field))
		pix->field = V4L2_FIELD_INTERLACED;

	/*
	 * The deinterlacer doesn't care about the colorspace, accept all values
	 * and default to V4L2_COLORSPACE_SMPTE170M. The YUV to RGB conversion
	 * at the output of the deinterlacer supports a subset of encodings and
	 * quantization methods and will only be available when the colorspace
	 * allows it.
	 */
	if (pix->colorspace == V4L2_COLORSPACE_DEFAULT)
		pix->colorspace = V4L2_COLORSPACE_SMPTE170M;

	/*
	 * Align the width and height for YUV 4:2:2 and 4:2:0 formats and clamp
	 * them to the supported frame size range. The height boundary are
	 * related to the full frame, divide them by two when the format passes
	 * fields in separate buffers.
	 */
	width = round_down(pix->width, fmt->hsub);
	pix->width = clamp(width, FDP1_MIN_W, FDP1_MAX_W);

	height = round_down(pix->height, fmt->vsub);
	if (pix->field == V4L2_FIELD_ALTERNATE)
		pix->height = clamp(height, FDP1_MIN_H / 2, FDP1_MAX_H / 2);
	else
		pix->height = clamp(height, FDP1_MIN_H, FDP1_MAX_H);

	fdp1_compute_stride(pix, fmt);
}

static void fdp1_try_fmt_capture(struct fdp1_ctx *ctx,
				 const struct fdp1_fmt **fmtinfo,
				 struct v4l2_pix_format_mplane *pix)
{
	struct fdp1_q_data *src_data = &ctx->out_q;
	enum v4l2_colorspace colorspace;
	enum v4l2_ycbcr_encoding ycbcr_enc;
	enum v4l2_quantization quantization;
	const struct fdp1_fmt *fmt;
	bool allow_rgb;

	/*
	 * Validate the pixel format. We can only accept RGB output formats if
	 * the input encoding and quantization are compatible with the format
	 * conversions supported by the hardware. The supported combinations are
	 *
	 * V4L2_YCBCR_ENC_601 + V4L2_QUANTIZATION_LIM_RANGE
	 * V4L2_YCBCR_ENC_601 + V4L2_QUANTIZATION_FULL_RANGE
	 * V4L2_YCBCR_ENC_709 + V4L2_QUANTIZATION_LIM_RANGE
	 */
	colorspace = src_data->format.colorspace;

	ycbcr_enc = src_data->format.ycbcr_enc;
	if (ycbcr_enc == V4L2_YCBCR_ENC_DEFAULT)
		ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(colorspace);

	quantization = src_data->format.quantization;
	if (quantization == V4L2_QUANTIZATION_DEFAULT)
		quantization = V4L2_MAP_QUANTIZATION_DEFAULT(false, colorspace,
							     ycbcr_enc);

	allow_rgb = ycbcr_enc == V4L2_YCBCR_ENC_601 ||
		    (ycbcr_enc == V4L2_YCBCR_ENC_709 &&
		     quantization == V4L2_QUANTIZATION_LIM_RANGE);

	fmt = fdp1_find_format(pix->pixelformat);
	if (!fmt || (!allow_rgb && fdp1_fmt_is_rgb(fmt)))
		fmt = fdp1_find_format(V4L2_PIX_FMT_YUYV);

	if (fmtinfo)
		*fmtinfo = fmt;

	pix->pixelformat = fmt->fourcc;
	pix->num_planes = fmt->num_planes;
	pix->field = V4L2_FIELD_NONE;

	/*
	 * The colorspace on the capture queue is copied from the output queue
	 * as the hardware can't change the colorspace. It can convert YCbCr to
	 * RGB though, in which case the encoding and quantization are set to
	 * default values as anything else wouldn't make sense.
	 */
	pix->colorspace = src_data->format.colorspace;
	pix->xfer_func = src_data->format.xfer_func;

	if (fdp1_fmt_is_rgb(fmt)) {
		pix->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
		pix->quantization = V4L2_QUANTIZATION_DEFAULT;
	} else {
		pix->ycbcr_enc = src_data->format.ycbcr_enc;
		pix->quantization = src_data->format.quantization;
	}

	/*
	 * The frame width is identical to the output queue, and the height is
	 * either doubled or identical depending on whether the output queue
	 * field order contains one or two fields per frame.
	 */
	pix->width = src_data->format.width;
	if (src_data->format.field == V4L2_FIELD_ALTERNATE)
		pix->height = 2 * src_data->format.height;
	else
		pix->height = src_data->format.height;

	fdp1_compute_stride(pix, fmt);
}

static int fdp1_try_fmt(struct file *file, void *priv, struct v4l2_format *f)
{
	struct fdp1_ctx *ctx = fh_to_ctx(priv);

	if (f->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE)
		fdp1_try_fmt_output(ctx, NULL, &f->fmt.pix_mp);
	else
		fdp1_try_fmt_capture(ctx, NULL, &f->fmt.pix_mp);

	dprintk(ctx->fdp1, "Try %s format: %4.4s (0x%08x) %ux%u field %u\n",
		V4L2_TYPE_IS_OUTPUT(f->type) ? "output" : "capture",
		(char *)&f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.pixelformat,
		f->fmt.pix_mp.width, f->fmt.pix_mp.height, f->fmt.pix_mp.field);

	return 0;
}

static void fdp1_set_format(struct fdp1_ctx *ctx,
			    struct v4l2_pix_format_mplane *pix,
			    enum v4l2_buf_type type)
{
	struct fdp1_q_data *q_data = get_q_data(ctx, type);
	const struct fdp1_fmt *fmtinfo;

	if (type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE)
		fdp1_try_fmt_output(ctx, &fmtinfo, pix);
	else
		fdp1_try_fmt_capture(ctx, &fmtinfo, pix);

	q_data->fmt = fmtinfo;
	q_data->format = *pix;

	q_data->vsize = pix->height;
	if (pix->field != V4L2_FIELD_NONE)
		q_data->vsize /= 2;

	q_data->stride_y = pix->plane_fmt[0].bytesperline;
	q_data->stride_c = pix->plane_fmt[1].bytesperline;

	/* Adjust strides for interleaved buffers */
	if (pix->field == V4L2_FIELD_INTERLACED ||
	    pix->field == V4L2_FIELD_INTERLACED_TB ||
	    pix->field == V4L2_FIELD_INTERLACED_BT) {
		q_data->stride_y *= 2;
		q_data->stride_c *= 2;
	}

	/* Propagate the format from the output node to the capture node. */
	if (type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) {
		struct fdp1_q_data *dst_data = &ctx->cap_q;

		/*
		 * Copy the format, clear the per-plane bytes per line and image
		 * size, override the field and double the height if needed.
		 */
		dst_data->format = q_data->format;
		memset(dst_data->format.plane_fmt, 0,
		       sizeof(dst_data->format.plane_fmt));

		dst_data->format.field = V4L2_FIELD_NONE;
		if (pix->field == V4L2_FIELD_ALTERNATE)
			dst_data->format.height *= 2;

		fdp1_try_fmt_capture(ctx, &dst_data->fmt, &dst_data->format);

		dst_data->vsize = dst_data->format.height;
		dst_data->stride_y = dst_data->format.plane_fmt[0].bytesperline;
		dst_data->stride_c = dst_data->format.plane_fmt[1].bytesperline;
	}
}

static int fdp1_s_fmt(struct file *file, void *priv, struct v4l2_format *f)
{
	struct fdp1_ctx *ctx = fh_to_ctx(priv);
	struct v4l2_m2m_ctx *m2m_ctx = ctx->fh.m2m_ctx;
	struct vb2_queue *vq = v4l2_m2m_get_vq(m2m_ctx, f->type);

	if (vb2_is_busy(vq)) {
		v4l2_err(&ctx->fdp1->v4l2_dev, "%s queue busy\n", __func__);
		return -EBUSY;
	}

	fdp1_set_format(ctx, &f->fmt.pix_mp, f->type);

	dprintk(ctx->fdp1, "Set %s format: %4.4s (0x%08x) %ux%u field %u\n",
		V4L2_TYPE_IS_OUTPUT(f->type) ? "output" : "capture",
		(char *)&f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.pixelformat,
		f->fmt.pix_mp.width, f->fmt.pix_mp.height, f->fmt.pix_mp.field);

	return 0;
}

static int fdp1_g_ctrl(struct v4l2_ctrl *ctrl)
{
	struct fdp1_ctx *ctx =
		container_of(ctrl->handler, struct fdp1_ctx, hdl);
	struct fdp1_q_data *src_q_data = &ctx->out_q;

	switch (ctrl->id) {
	case V4L2_CID_MIN_BUFFERS_FOR_CAPTURE:
		if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field))
			ctrl->val = 2;
		else
			ctrl->val = 1;
		return 0;
	}

	return 1;
}

static int fdp1_s_ctrl(struct v4l2_ctrl *ctrl)
{
	struct fdp1_ctx *ctx =
		container_of(ctrl->handler, struct fdp1_ctx, hdl);

	switch (ctrl->id) {
	case V4L2_CID_ALPHA_COMPONENT:
		ctx->alpha = ctrl->val;
		break;

	case V4L2_CID_DEINTERLACING_MODE:
		ctx->deint_mode = ctrl->val;
		break;
	}

	return 0;
}

static const struct v4l2_ctrl_ops fdp1_ctrl_ops = {
	.s_ctrl = fdp1_s_ctrl,
	.g_volatile_ctrl = fdp1_g_ctrl,
};

static const char * const fdp1_ctrl_deint_menu[] = {
	"Progressive",
	"Adaptive 2D/3D",
	"Fixed 2D",
	"Fixed 3D",
	"Previous field",
	"Next field",
	NULL
};

static const struct v4l2_ioctl_ops fdp1_ioctl_ops = {
	.vidioc_querycap	= fdp1_vidioc_querycap,

	.vidioc_enum_fmt_vid_cap	= fdp1_enum_fmt_vid_cap,
	.vidioc_enum_fmt_vid_out	= fdp1_enum_fmt_vid_out,
	.vidioc_g_fmt_vid_cap_mplane	= fdp1_g_fmt,
	.vidioc_g_fmt_vid_out_mplane	= fdp1_g_fmt,
	.vidioc_try_fmt_vid_cap_mplane	= fdp1_try_fmt,
	.vidioc_try_fmt_vid_out_mplane	= fdp1_try_fmt,
	.vidioc_s_fmt_vid_cap_mplane	= fdp1_s_fmt,
	.vidioc_s_fmt_vid_out_mplane	= fdp1_s_fmt,

	.vidioc_reqbufs		= v4l2_m2m_ioctl_reqbufs,
	.vidioc_querybuf	= v4l2_m2m_ioctl_querybuf,
	.vidioc_qbuf		= v4l2_m2m_ioctl_qbuf,
	.vidioc_dqbuf		= v4l2_m2m_ioctl_dqbuf,
	.vidioc_prepare_buf	= v4l2_m2m_ioctl_prepare_buf,
	.vidioc_create_bufs	= v4l2_m2m_ioctl_create_bufs,
	.vidioc_expbuf		= v4l2_m2m_ioctl_expbuf,

	.vidioc_streamon	= v4l2_m2m_ioctl_streamon,
	.vidioc_streamoff	= v4l2_m2m_ioctl_streamoff,

	.vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
	.vidioc_unsubscribe_event = v4l2_event_unsubscribe,
};

/*
 * Queue operations
 */

static int fdp1_queue_setup(struct vb2_queue *vq,
				unsigned int *nbuffers, unsigned int *nplanes,
				unsigned int sizes[],
				struct device *alloc_ctxs[])
{
	struct fdp1_ctx *ctx = vb2_get_drv_priv(vq);
	struct fdp1_q_data *q_data;
	unsigned int i;

	q_data = get_q_data(ctx, vq->type);

	if (*nplanes) {
		if (*nplanes > FDP1_MAX_PLANES)
			return -EINVAL;

		return 0;
	}

	*nplanes = q_data->format.num_planes;

	for (i = 0; i < *nplanes; i++)
		sizes[i] = q_data->format.plane_fmt[i].sizeimage;

	return 0;
}

static void fdp1_buf_prepare_field(struct fdp1_q_data *q_data,
				   struct vb2_v4l2_buffer *vbuf,
				   unsigned int field_num)
{
	struct fdp1_buffer *buf = to_fdp1_buffer(vbuf);
	struct fdp1_field_buffer *fbuf = &buf->fields[field_num];
	unsigned int num_fields;
	unsigned int i;

	num_fields = V4L2_FIELD_HAS_BOTH(vbuf->field) ? 2 : 1;

	fbuf->vb = vbuf;
	fbuf->last_field = (field_num + 1) == num_fields;

	for (i = 0; i < vbuf->vb2_buf.num_planes; ++i)
		fbuf->addrs[i] = vb2_dma_contig_plane_dma_addr(&vbuf->vb2_buf, i);

	switch (vbuf->field) {
	case V4L2_FIELD_INTERLACED:
		/*
		 * Interlaced means bottom-top for 60Hz TV standards (NTSC) and
		 * top-bottom for 50Hz. As TV standards are not applicable to
		 * the mem-to-mem API, use the height as a heuristic.
		 */
		fbuf->field = (q_data->format.height < 576) == field_num
			    ? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM;
		break;
	case V4L2_FIELD_INTERLACED_TB:
	case V4L2_FIELD_SEQ_TB:
		fbuf->field = field_num ? V4L2_FIELD_BOTTOM : V4L2_FIELD_TOP;
		break;
	case V4L2_FIELD_INTERLACED_BT:
	case V4L2_FIELD_SEQ_BT:
		fbuf->field = field_num ? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM;
		break;
	default:
		fbuf->field = vbuf->field;
		break;
	}

	/* Buffer is completed */
	if (!field_num)
		return;

	/* Adjust buffer addresses for second field */
	switch (vbuf->field) {
	case V4L2_FIELD_INTERLACED:
	case V4L2_FIELD_INTERLACED_TB:
	case V4L2_FIELD_INTERLACED_BT:
		for (i = 0; i < vbuf->vb2_buf.num_planes; i++)
			fbuf->addrs[i] +=
				(i == 0 ? q_data->stride_y : q_data->stride_c);
		break;
	case V4L2_FIELD_SEQ_TB:
	case V4L2_FIELD_SEQ_BT:
		for (i = 0; i < vbuf->vb2_buf.num_planes; i++)
			fbuf->addrs[i] += q_data->vsize *
				(i == 0 ? q_data->stride_y : q_data->stride_c);
		break;
	}
}

static int fdp1_buf_prepare(struct vb2_buffer *vb)
{
	struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
	struct fdp1_q_data *q_data = get_q_data(ctx, vb->vb2_queue->type);
	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
	struct fdp1_buffer *buf = to_fdp1_buffer(vbuf);
	unsigned int i;

	if (V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type)) {
		bool field_valid = true;

		/* Validate the buffer field. */
		switch (q_data->format.field) {
		case V4L2_FIELD_NONE:
			if (vbuf->field != V4L2_FIELD_NONE)
				field_valid = false;
			break;

		case V4L2_FIELD_ALTERNATE:
			if (vbuf->field != V4L2_FIELD_TOP &&
			    vbuf->field != V4L2_FIELD_BOTTOM)
				field_valid = false;
			break;

		case V4L2_FIELD_INTERLACED:
		case V4L2_FIELD_SEQ_TB:
		case V4L2_FIELD_SEQ_BT:
		case V4L2_FIELD_INTERLACED_TB:
		case V4L2_FIELD_INTERLACED_BT:
			if (vbuf->field != q_data->format.field)
				field_valid = false;
			break;
		}

		if (!field_valid) {
			dprintk(ctx->fdp1,
				"buffer field %u invalid for format field %u\n",
				vbuf->field, q_data->format.field);
			return -EINVAL;
		}
	} else {
		vbuf->field = V4L2_FIELD_NONE;
	}

	/* Validate the planes sizes. */
	for (i = 0; i < q_data->format.num_planes; i++) {
		unsigned long size = q_data->format.plane_fmt[i].sizeimage;

		if (vb2_plane_size(vb, i) < size) {
			dprintk(ctx->fdp1,
				"data will not fit into plane [%u/%u] (%lu < %lu)\n",
				i, q_data->format.num_planes,
				vb2_plane_size(vb, i), size);
			return -EINVAL;
		}

		/* We have known size formats all around */
		vb2_set_plane_payload(vb, i, size);
	}

	buf->num_fields = V4L2_FIELD_HAS_BOTH(vbuf->field) ? 2 : 1;
	for (i = 0; i < buf->num_fields; ++i)
		fdp1_buf_prepare_field(q_data, vbuf, i);

	return 0;
}

static void fdp1_buf_queue(struct vb2_buffer *vb)
{
	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
	struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);

	v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf);
}

static int fdp1_start_streaming(struct vb2_queue *q, unsigned int count)
{
	struct fdp1_ctx *ctx = vb2_get_drv_priv(q);
	struct fdp1_q_data *q_data = get_q_data(ctx, q->type);

	if (V4L2_TYPE_IS_OUTPUT(q->type)) {
		/*
		 * Force our deint_mode when we are progressive,
		 * ignoring any setting on the device from the user,
		 * Otherwise, lock in the requested de-interlace mode.
		 */
		if (q_data->format.field == V4L2_FIELD_NONE)
			ctx->deint_mode = FDP1_PROGRESSIVE;

		if (ctx->deint_mode == FDP1_ADAPT2D3D) {
			u32 stride;
			dma_addr_t smsk_base;
			const u32 bpp = 2; /* bytes per pixel */

			stride = round_up(q_data->format.width, 8);

			ctx->smsk_size = bpp * stride * q_data->vsize;

			ctx->smsk_cpu = dma_alloc_coherent(ctx->fdp1->dev,
				ctx->smsk_size, &smsk_base, GFP_KERNEL);

			if (ctx->smsk_cpu == NULL) {
				dprintk(ctx->fdp1, "Failed to alloc smsk\n");
				return -ENOMEM;
			}

			ctx->smsk_addr[0] = smsk_base;
			ctx->smsk_addr[1] = smsk_base + (ctx->smsk_size/2);
		}
	}

	return 0;
}

static void fdp1_stop_streaming(struct vb2_queue *q)
{
	struct fdp1_ctx *ctx = vb2_get_drv_priv(q);
	struct vb2_v4l2_buffer *vbuf;
	unsigned long flags;

	while (1) {
		if (V4L2_TYPE_IS_OUTPUT(q->type))
			vbuf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
		else
			vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
		if (vbuf == NULL)
			break;
		spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
		v4l2_m2m_buf_done(vbuf, VB2_BUF_STATE_ERROR);
		spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
	}

	/* Empty Output queues */
	if (V4L2_TYPE_IS_OUTPUT(q->type)) {
		/* Empty our internal queues */
		struct fdp1_field_buffer *fbuf;

		/* Free any queued buffers */
		fbuf = fdp1_dequeue_field(ctx);
		while (fbuf != NULL) {
			fdp1_field_complete(ctx, fbuf);
			fbuf = fdp1_dequeue_field(ctx);
		}

		/* Free smsk_data */
		if (ctx->smsk_cpu) {
			dma_free_coherent(ctx->fdp1->dev, ctx->smsk_size,
					  ctx->smsk_cpu, ctx->smsk_addr[0]);
			ctx->smsk_addr[0] = ctx->smsk_addr[1] = 0;
			ctx->smsk_cpu = NULL;
		}

		WARN(!list_empty(&ctx->fields_queue),
		     "Buffer queue not empty");
	} else {
		/* Empty Capture queues (Jobs) */
		struct fdp1_job *job;

		job = get_queued_job(ctx->fdp1);
		while (job) {
			if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode))
				fdp1_field_complete(ctx, job->previous);
			else
				fdp1_field_complete(ctx, job->active);

			v4l2_m2m_buf_done(job->dst->vb, VB2_BUF_STATE_ERROR);
			job->dst = NULL;

			job = get_queued_job(ctx->fdp1);
		}

		/* Free any held buffer in the ctx */
		fdp1_field_complete(ctx, ctx->previous);

		WARN(!list_empty(&ctx->fdp1->queued_job_list),
		     "Queued Job List not empty");

		WARN(!list_empty(&ctx->fdp1->hw_job_list),
		     "HW Job list not empty");
	}
}

static const struct vb2_ops fdp1_qops = {
	.queue_setup	 = fdp1_queue_setup,
	.buf_prepare	 = fdp1_buf_prepare,
	.buf_queue	 = fdp1_buf_queue,
	.start_streaming = fdp1_start_streaming,
	.stop_streaming  = fdp1_stop_streaming,
	.wait_prepare	 = vb2_ops_wait_prepare,
	.wait_finish	 = vb2_ops_wait_finish,
};

static int queue_init(void *priv, struct vb2_queue *src_vq,
		      struct vb2_queue *dst_vq)
{
	struct fdp1_ctx *ctx = priv;
	int ret;

	src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
	src_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
	src_vq->drv_priv = ctx;
	src_vq->buf_struct_size = sizeof(struct fdp1_buffer);
	src_vq->ops = &fdp1_qops;
	src_vq->mem_ops = &vb2_dma_contig_memops;
	src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
	src_vq->lock = &ctx->fdp1->dev_mutex;
	src_vq->dev = ctx->fdp1->dev;

	ret = vb2_queue_init(src_vq);
	if (ret)
		return ret;

	dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
	dst_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
	dst_vq->drv_priv = ctx;
	dst_vq->buf_struct_size = sizeof(struct fdp1_buffer);
	dst_vq->ops = &fdp1_qops;
	dst_vq->mem_ops = &vb2_dma_contig_memops;
	dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
	dst_vq->lock = &ctx->fdp1->dev_mutex;
	dst_vq->dev = ctx->fdp1->dev;

	return vb2_queue_init(dst_vq);
}

/*
 * File operations
 */
static int fdp1_open(struct file *file)
{
	struct fdp1_dev *fdp1 = video_drvdata(file);
	struct v4l2_pix_format_mplane format;
	struct fdp1_ctx *ctx = NULL;
	struct v4l2_ctrl *ctrl;
	int ret = 0;

	if (mutex_lock_interruptible(&fdp1->dev_mutex))
		return -ERESTARTSYS;

	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
	if (!ctx) {
		ret = -ENOMEM;
		goto done;
	}

	v4l2_fh_init(&ctx->fh, video_devdata(file));
	file->private_data = &ctx->fh;
	ctx->fdp1 = fdp1;

	/* Initialise Queues */
	INIT_LIST_HEAD(&ctx->fields_queue);

	ctx->translen = 1;
	ctx->sequence = 0;

	/* Initialise controls */

	v4l2_ctrl_handler_init(&ctx->hdl, 3);
	v4l2_ctrl_new_std_menu_items(&ctx->hdl, &fdp1_ctrl_ops,
				     V4L2_CID_DEINTERLACING_MODE,
				     FDP1_NEXTFIELD, BIT(0), FDP1_FIXED3D,
				     fdp1_ctrl_deint_menu);

	ctrl = v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops,
				 V4L2_CID_MIN_BUFFERS_FOR_CAPTURE, 1, 2, 1, 1);
	if (ctrl)
		ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;

	v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops,
			  V4L2_CID_ALPHA_COMPONENT, 0, 255, 1, 255);

	if (ctx->hdl.error) {
		ret = ctx->hdl.error;
		v4l2_ctrl_handler_free(&ctx->hdl);
		goto done;
	}

	ctx->fh.ctrl_handler = &ctx->hdl;
	v4l2_ctrl_handler_setup(&ctx->hdl);

	/* Configure default parameters. */
	memset(&format, 0, sizeof(format));
	fdp1_set_format(ctx, &format, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);

	ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(fdp1->m2m_dev, ctx, &queue_init);

	if (IS_ERR(ctx->fh.m2m_ctx)) {
		ret = PTR_ERR(ctx->fh.m2m_ctx);

		v4l2_ctrl_handler_free(&ctx->hdl);
		kfree(ctx);
		goto done;
	}

	/* Perform any power management required */
	pm_runtime_get_sync(fdp1->dev);

	v4l2_fh_add(&ctx->fh);

	dprintk(fdp1, "Created instance: %p, m2m_ctx: %p\n",
		ctx, ctx->fh.m2m_ctx);

done:
	mutex_unlock(&fdp1->dev_mutex);
	return ret;
}

static int fdp1_release(struct file *file)
{
	struct fdp1_dev *fdp1 = video_drvdata(file);
	struct fdp1_ctx *ctx = fh_to_ctx(file->private_data);

	dprintk(fdp1, "Releasing instance %p\n", ctx);

	v4l2_fh_del(&ctx->fh);
	v4l2_fh_exit(&ctx->fh);
	v4l2_ctrl_handler_free(&ctx->hdl);
	mutex_lock(&fdp1->dev_mutex);
	v4l2_m2m_ctx_release(ctx->fh.m2m_ctx);
	mutex_unlock(&fdp1->dev_mutex);
	kfree(ctx);

	pm_runtime_put(fdp1->dev);

	return 0;
}

static const struct v4l2_file_operations fdp1_fops = {
	.owner		= THIS_MODULE,
	.open		= fdp1_open,
	.release	= fdp1_release,
	.poll		= v4l2_m2m_fop_poll,
	.unlocked_ioctl	= video_ioctl2,
	.mmap		= v4l2_m2m_fop_mmap,
};

static const struct video_device fdp1_videodev = {
	.name		= DRIVER_NAME,
	.vfl_dir	= VFL_DIR_M2M,
	.fops		= &fdp1_fops,
	.device_caps	= V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING,
	.ioctl_ops	= &fdp1_ioctl_ops,
	.minor		= -1,
	.release	= video_device_release_empty,
};

static const struct v4l2_m2m_ops m2m_ops = {
	.device_run	= fdp1_m2m_device_run,
	.job_ready	= fdp1_m2m_job_ready,
	.job_abort	= fdp1_m2m_job_abort,
};

static irqreturn_t fdp1_irq_handler(int irq, void *dev_id)
{
	struct fdp1_dev *fdp1 = dev_id;
	u32 int_status;
	u32 ctl_status;
	u32 vint_cnt;
	u32 cycles;

	int_status = fdp1_read(fdp1, FD1_CTL_IRQSTA);
	cycles = fdp1_read(fdp1, FD1_CTL_VCYCLE_STAT);
	ctl_status = fdp1_read(fdp1, FD1_CTL_STATUS);
	vint_cnt = (ctl_status & FD1_CTL_STATUS_VINT_CNT_MASK) >>
			FD1_CTL_STATUS_VINT_CNT_SHIFT;

	/* Clear interrupts */
	fdp1_write(fdp1, ~(int_status) & FD1_CTL_IRQ_MASK, FD1_CTL_IRQSTA);

	if (debug >= 2) {
		dprintk(fdp1, "IRQ: 0x%x %s%s%s\n", int_status,
			int_status & FD1_CTL_IRQ_VERE ? "[Error]" : "[!E]",
			int_status & FD1_CTL_IRQ_VINTE ? "[VSync]" : "[!V]",
			int_status & FD1_CTL_IRQ_FREE ? "[FrameEnd]" : "[!F]");

		dprintk(fdp1, "CycleStatus = %d (%dms)\n",
			cycles, cycles/(fdp1->clk_rate/1000));

		dprintk(fdp1,
			"Control Status = 0x%08x : VINT_CNT = %d %s:%s:%s:%s\n",
			ctl_status, vint_cnt,
			ctl_status & FD1_CTL_STATUS_SGREGSET ? "RegSet" : "",
			ctl_status & FD1_CTL_STATUS_SGVERR ? "Vsync Error" : "",
			ctl_status & FD1_CTL_STATUS_SGFREND ? "FrameEnd" : "",
			ctl_status & FD1_CTL_STATUS_BSY ? "Busy" : "");
		dprintk(fdp1, "***********************************\n");
	}

	/* Spurious interrupt */
	if (!(FD1_CTL_IRQ_MASK & int_status))
		return IRQ_NONE;

	/* Work completed, release the frame */
	if (FD1_CTL_IRQ_VERE & int_status)
		device_frame_end(fdp1, VB2_BUF_STATE_ERROR);
	else if (FD1_CTL_IRQ_FREE & int_status)
		device_frame_end(fdp1, VB2_BUF_STATE_DONE);

	return IRQ_HANDLED;
}

static int fdp1_probe(struct platform_device *pdev)
{
	struct fdp1_dev *fdp1;
	struct video_device *vfd;
	struct device_node *fcp_node;
	struct resource *res;
	struct clk *clk;
	unsigned int i;

	int ret;
	int hw_version;

	fdp1 = devm_kzalloc(&pdev->dev, sizeof(*fdp1), GFP_KERNEL);
	if (!fdp1)
		return -ENOMEM;

	INIT_LIST_HEAD(&fdp1->free_job_list);
	INIT_LIST_HEAD(&fdp1->queued_job_list);
	INIT_LIST_HEAD(&fdp1->hw_job_list);

	/* Initialise the jobs on the free list */
	for (i = 0; i < ARRAY_SIZE(fdp1->jobs); i++)
		list_add(&fdp1->jobs[i].list, &fdp1->free_job_list);

	mutex_init(&fdp1->dev_mutex);

	spin_lock_init(&fdp1->irqlock);
	spin_lock_init(&fdp1->device_process_lock);
	fdp1->dev = &pdev->dev;
	platform_set_drvdata(pdev, fdp1);

	/* Memory-mapped registers */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	fdp1->regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(fdp1->regs))
		return PTR_ERR(fdp1->regs);

	/* Interrupt service routine registration */
	fdp1->irq = ret = platform_get_irq(pdev, 0);
	if (ret < 0) {
		dev_err(&pdev->dev, "cannot find IRQ\n");
		return ret;
	}

	ret = devm_request_irq(&pdev->dev, fdp1->irq, fdp1_irq_handler, 0,
			       dev_name(&pdev->dev), fdp1);
	if (ret) {
		dev_err(&pdev->dev, "cannot claim IRQ %d\n", fdp1->irq);
		return ret;
	}

	/* FCP */
	fcp_node = of_parse_phandle(pdev->dev.of_node, "renesas,fcp", 0);
	if (fcp_node) {
		fdp1->fcp = rcar_fcp_get(fcp_node);
		of_node_put(fcp_node);
		if (IS_ERR(fdp1->fcp)) {
			dev_err(&pdev->dev, "FCP not found (%ld)\n",
				PTR_ERR(fdp1->fcp));
			return PTR_ERR(fdp1->fcp);
		}
	}

	/* Determine our clock rate */
	clk = clk_get(&pdev->dev, NULL);
	if (IS_ERR(clk))
		return PTR_ERR(clk);

	fdp1->clk_rate = clk_get_rate(clk);
	clk_put(clk);

	/* V4L2 device registration */
	ret = v4l2_device_register(&pdev->dev, &fdp1->v4l2_dev);
	if (ret) {
		v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n");
		return ret;
	}

	/* M2M registration */
	fdp1->m2m_dev = v4l2_m2m_init(&m2m_ops);
	if (IS_ERR(fdp1->m2m_dev)) {
		v4l2_err(&fdp1->v4l2_dev, "Failed to init mem2mem device\n");
		ret = PTR_ERR(fdp1->m2m_dev);
		goto unreg_dev;
	}

	/* Video registration */
	fdp1->vfd = fdp1_videodev;
	vfd = &fdp1->vfd;
	vfd->lock = &fdp1->dev_mutex;
	vfd->v4l2_dev = &fdp1->v4l2_dev;
	video_set_drvdata(vfd, fdp1);
	strscpy(vfd->name, fdp1_videodev.name, sizeof(vfd->name));

	ret = video_register_device(vfd, VFL_TYPE_GRABBER, 0);
	if (ret) {
		v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n");
		goto release_m2m;
	}

	v4l2_info(&fdp1->v4l2_dev, "Device registered as /dev/video%d\n",
		  vfd->num);

	/* Power up the cells to read HW */
	pm_runtime_enable(&pdev->dev);
	pm_runtime_get_sync(fdp1->dev);

	hw_version = fdp1_read(fdp1, FD1_IP_INTDATA);
	switch (hw_version) {
	case FD1_IP_H3_ES1:
		dprintk(fdp1, "FDP1 Version R-Car H3 ES1\n");
		break;
	case FD1_IP_M3W:
		dprintk(fdp1, "FDP1 Version R-Car M3-W\n");
		break;
	case FD1_IP_H3:
		dprintk(fdp1, "FDP1 Version R-Car H3\n");
		break;
	case FD1_IP_M3N:
		dprintk(fdp1, "FDP1 Version R-Car M3N\n");
		break;
	case FD1_IP_E3:
		dprintk(fdp1, "FDP1 Version R-Car E3\n");
		break;
	default:
		dev_err(fdp1->dev, "FDP1 Unidentifiable (0x%08x)\n",
			hw_version);
	}

	/* Allow the hw to sleep until an open call puts it to use */
	pm_runtime_put(fdp1->dev);

	return 0;

release_m2m:
	v4l2_m2m_release(fdp1->m2m_dev);

unreg_dev:
	v4l2_device_unregister(&fdp1->v4l2_dev);

	return ret;
}

static int fdp1_remove(struct platform_device *pdev)
{
	struct fdp1_dev *fdp1 = platform_get_drvdata(pdev);

	v4l2_m2m_release(fdp1->m2m_dev);
	video_unregister_device(&fdp1->vfd);
	v4l2_device_unregister(&fdp1->v4l2_dev);
	pm_runtime_disable(&pdev->dev);

	return 0;
}

static int __maybe_unused fdp1_pm_runtime_suspend(struct device *dev)
{
	struct fdp1_dev *fdp1 = dev_get_drvdata(dev);

	rcar_fcp_disable(fdp1->fcp);

	return 0;
}

static int __maybe_unused fdp1_pm_runtime_resume(struct device *dev)
{
	struct fdp1_dev *fdp1 = dev_get_drvdata(dev);

	/* Program in the static LUTs */
	fdp1_set_lut(fdp1);

	return rcar_fcp_enable(fdp1->fcp);
}

static const struct dev_pm_ops fdp1_pm_ops = {
	SET_RUNTIME_PM_OPS(fdp1_pm_runtime_suspend,
			   fdp1_pm_runtime_resume,
			   NULL)
};

static const struct of_device_id fdp1_dt_ids[] = {
	{ .compatible = "renesas,fdp1" },
	{ },
};
MODULE_DEVICE_TABLE(of, fdp1_dt_ids);

static struct platform_driver fdp1_pdrv = {
	.probe		= fdp1_probe,
	.remove		= fdp1_remove,
	.driver		= {
		.name	= DRIVER_NAME,
		.of_match_table = fdp1_dt_ids,
		.pm	= &fdp1_pm_ops,
	},
};

module_platform_driver(fdp1_pdrv);

MODULE_DESCRIPTION("Renesas R-Car Fine Display Processor Driver");
MODULE_AUTHOR("Kieran Bingham <kieran@bingham.xyz>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" DRIVER_NAME);