Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sean Young | 1060 | 37.60% | 22 | 33.85% |
David Härdeman | 475 | 16.85% | 9 | 13.85% |
James Hogan | 327 | 11.60% | 2 | 3.08% |
Antti Seppälä | 296 | 10.50% | 1 | 1.54% |
Maxim Levitsky | 291 | 10.32% | 6 | 9.23% |
Mauro Carvalho Chehab | 156 | 5.53% | 11 | 16.92% |
Heiner Kallweit | 155 | 5.50% | 6 | 9.23% |
Kees Cook | 23 | 0.82% | 1 | 1.54% |
Jasmin J | 16 | 0.57% | 1 | 1.54% |
Srinivas Kandagatla | 6 | 0.21% | 1 | 1.54% |
Dan Carpenter | 4 | 0.14% | 1 | 1.54% |
Paul Gortmaker | 3 | 0.11% | 1 | 1.54% |
Stephen Rothwell | 3 | 0.11% | 1 | 1.54% |
Randy Dunlap | 3 | 0.11% | 1 | 1.54% |
Jarod Wilson | 1 | 0.04% | 1 | 1.54% |
Total | 2819 | 65 |
// SPDX-License-Identifier: GPL-2.0 // rc-ir-raw.c - handle IR pulse/space events // // Copyright (C) 2010 by Mauro Carvalho Chehab #include <linux/export.h> #include <linux/kthread.h> #include <linux/mutex.h> #include <linux/kmod.h> #include <linux/sched.h> #include "rc-core-priv.h" /* Used to keep track of IR raw clients, protected by ir_raw_handler_lock */ static LIST_HEAD(ir_raw_client_list); /* Used to handle IR raw handler extensions */ DEFINE_MUTEX(ir_raw_handler_lock); static LIST_HEAD(ir_raw_handler_list); static atomic64_t available_protocols = ATOMIC64_INIT(0); static int ir_raw_event_thread(void *data) { struct ir_raw_event ev; struct ir_raw_handler *handler; struct ir_raw_event_ctrl *raw = data; struct rc_dev *dev = raw->dev; while (1) { mutex_lock(&ir_raw_handler_lock); while (kfifo_out(&raw->kfifo, &ev, 1)) { if (is_timing_event(ev)) { if (ev.duration == 0) dev_warn_once(&dev->dev, "nonsensical timing event of duration 0"); if (is_timing_event(raw->prev_ev) && !is_transition(&ev, &raw->prev_ev)) dev_warn_once(&dev->dev, "two consecutive events of type %s", TO_STR(ev.pulse)); if (raw->prev_ev.reset && ev.pulse == 0) dev_warn_once(&dev->dev, "timing event after reset should be pulse"); } list_for_each_entry(handler, &ir_raw_handler_list, list) if (dev->enabled_protocols & handler->protocols || !handler->protocols) handler->decode(dev, ev); ir_lirc_raw_event(dev, ev); raw->prev_ev = ev; } mutex_unlock(&ir_raw_handler_lock); set_current_state(TASK_INTERRUPTIBLE); if (kthread_should_stop()) { __set_current_state(TASK_RUNNING); break; } else if (!kfifo_is_empty(&raw->kfifo)) set_current_state(TASK_RUNNING); schedule(); } return 0; } /** * ir_raw_event_store() - pass a pulse/space duration to the raw ir decoders * @dev: the struct rc_dev device descriptor * @ev: the struct ir_raw_event descriptor of the pulse/space * * This routine (which may be called from an interrupt context) stores a * pulse/space duration for the raw ir decoding state machines. Pulses are * signalled as positive values and spaces as negative values. A zero value * will reset the decoding state machines. */ int ir_raw_event_store(struct rc_dev *dev, struct ir_raw_event *ev) { if (!dev->raw) return -EINVAL; dev_dbg(&dev->dev, "sample: (%05dus %s)\n", TO_US(ev->duration), TO_STR(ev->pulse)); if (!kfifo_put(&dev->raw->kfifo, *ev)) { dev_err(&dev->dev, "IR event FIFO is full!\n"); return -ENOSPC; } return 0; } EXPORT_SYMBOL_GPL(ir_raw_event_store); /** * ir_raw_event_store_edge() - notify raw ir decoders of the start of a pulse/space * @dev: the struct rc_dev device descriptor * @pulse: true for pulse, false for space * * This routine (which may be called from an interrupt context) is used to * store the beginning of an ir pulse or space (or the start/end of ir * reception) for the raw ir decoding state machines. This is used by * hardware which does not provide durations directly but only interrupts * (or similar events) on state change. */ int ir_raw_event_store_edge(struct rc_dev *dev, bool pulse) { ktime_t now; struct ir_raw_event ev = {}; if (!dev->raw) return -EINVAL; now = ktime_get(); ev.duration = ktime_to_ns(ktime_sub(now, dev->raw->last_event)); ev.pulse = !pulse; return ir_raw_event_store_with_timeout(dev, &ev); } EXPORT_SYMBOL_GPL(ir_raw_event_store_edge); /* * ir_raw_event_store_with_timeout() - pass a pulse/space duration to the raw * ir decoders, schedule decoding and * timeout * @dev: the struct rc_dev device descriptor * @ev: the struct ir_raw_event descriptor of the pulse/space * * This routine (which may be called from an interrupt context) stores a * pulse/space duration for the raw ir decoding state machines, schedules * decoding and generates a timeout. */ int ir_raw_event_store_with_timeout(struct rc_dev *dev, struct ir_raw_event *ev) { ktime_t now; int rc = 0; if (!dev->raw) return -EINVAL; now = ktime_get(); spin_lock(&dev->raw->edge_spinlock); rc = ir_raw_event_store(dev, ev); dev->raw->last_event = now; /* timer could be set to timeout (125ms by default) */ if (!timer_pending(&dev->raw->edge_handle) || time_after(dev->raw->edge_handle.expires, jiffies + msecs_to_jiffies(15))) { mod_timer(&dev->raw->edge_handle, jiffies + msecs_to_jiffies(15)); } spin_unlock(&dev->raw->edge_spinlock); return rc; } EXPORT_SYMBOL_GPL(ir_raw_event_store_with_timeout); /** * ir_raw_event_store_with_filter() - pass next pulse/space to decoders with some processing * @dev: the struct rc_dev device descriptor * @ev: the event that has occurred * * This routine (which may be called from an interrupt context) works * in similar manner to ir_raw_event_store_edge. * This routine is intended for devices with limited internal buffer * It automerges samples of same type, and handles timeouts. Returns non-zero * if the event was added, and zero if the event was ignored due to idle * processing. */ int ir_raw_event_store_with_filter(struct rc_dev *dev, struct ir_raw_event *ev) { if (!dev->raw) return -EINVAL; /* Ignore spaces in idle mode */ if (dev->idle && !ev->pulse) return 0; else if (dev->idle) ir_raw_event_set_idle(dev, false); if (!dev->raw->this_ev.duration) dev->raw->this_ev = *ev; else if (ev->pulse == dev->raw->this_ev.pulse) dev->raw->this_ev.duration += ev->duration; else { ir_raw_event_store(dev, &dev->raw->this_ev); dev->raw->this_ev = *ev; } /* Enter idle mode if necessary */ if (!ev->pulse && dev->timeout && dev->raw->this_ev.duration >= dev->timeout) ir_raw_event_set_idle(dev, true); return 1; } EXPORT_SYMBOL_GPL(ir_raw_event_store_with_filter); /** * ir_raw_event_set_idle() - provide hint to rc-core when the device is idle or not * @dev: the struct rc_dev device descriptor * @idle: whether the device is idle or not */ void ir_raw_event_set_idle(struct rc_dev *dev, bool idle) { if (!dev->raw) return; dev_dbg(&dev->dev, "%s idle mode\n", idle ? "enter" : "leave"); if (idle) { dev->raw->this_ev.timeout = true; ir_raw_event_store(dev, &dev->raw->this_ev); dev->raw->this_ev = (struct ir_raw_event) {}; } if (dev->s_idle) dev->s_idle(dev, idle); dev->idle = idle; } EXPORT_SYMBOL_GPL(ir_raw_event_set_idle); /** * ir_raw_event_handle() - schedules the decoding of stored ir data * @dev: the struct rc_dev device descriptor * * This routine will tell rc-core to start decoding stored ir data. */ void ir_raw_event_handle(struct rc_dev *dev) { if (!dev->raw || !dev->raw->thread) return; wake_up_process(dev->raw->thread); } EXPORT_SYMBOL_GPL(ir_raw_event_handle); /* used internally by the sysfs interface */ u64 ir_raw_get_allowed_protocols(void) { return atomic64_read(&available_protocols); } static int change_protocol(struct rc_dev *dev, u64 *rc_proto) { struct ir_raw_handler *handler; u32 timeout = 0; mutex_lock(&ir_raw_handler_lock); list_for_each_entry(handler, &ir_raw_handler_list, list) { if (!(dev->enabled_protocols & handler->protocols) && (*rc_proto & handler->protocols) && handler->raw_register) handler->raw_register(dev); if ((dev->enabled_protocols & handler->protocols) && !(*rc_proto & handler->protocols) && handler->raw_unregister) handler->raw_unregister(dev); } mutex_unlock(&ir_raw_handler_lock); if (!dev->max_timeout) return 0; mutex_lock(&ir_raw_handler_lock); list_for_each_entry(handler, &ir_raw_handler_list, list) { if (handler->protocols & *rc_proto) { if (timeout < handler->min_timeout) timeout = handler->min_timeout; } } mutex_unlock(&ir_raw_handler_lock); if (timeout == 0) timeout = IR_DEFAULT_TIMEOUT; else timeout += MS_TO_NS(10); if (timeout < dev->min_timeout) timeout = dev->min_timeout; else if (timeout > dev->max_timeout) timeout = dev->max_timeout; if (dev->s_timeout) dev->s_timeout(dev, timeout); else dev->timeout = timeout; return 0; } static void ir_raw_disable_protocols(struct rc_dev *dev, u64 protocols) { mutex_lock(&dev->lock); dev->enabled_protocols &= ~protocols; mutex_unlock(&dev->lock); } /** * ir_raw_gen_manchester() - Encode data with Manchester (bi-phase) modulation. * @ev: Pointer to pointer to next free event. *@ev is incremented for * each raw event filled. * @max: Maximum number of raw events to fill. * @timings: Manchester modulation timings. * @n: Number of bits of data. * @data: Data bits to encode. * * Encodes the @n least significant bits of @data using Manchester (bi-phase) * modulation with the timing characteristics described by @timings, writing up * to @max raw IR events using the *@ev pointer. * * Returns: 0 on success. * -ENOBUFS if there isn't enough space in the array to fit the * full encoded data. In this case all @max events will have been * written. */ int ir_raw_gen_manchester(struct ir_raw_event **ev, unsigned int max, const struct ir_raw_timings_manchester *timings, unsigned int n, u64 data) { bool need_pulse; u64 i; int ret = -ENOBUFS; i = BIT_ULL(n - 1); if (timings->leader_pulse) { if (!max--) return ret; init_ir_raw_event_duration((*ev), 1, timings->leader_pulse); if (timings->leader_space) { if (!max--) return ret; init_ir_raw_event_duration(++(*ev), 0, timings->leader_space); } } else { /* continue existing signal */ --(*ev); } /* from here on *ev will point to the last event rather than the next */ while (n && i > 0) { need_pulse = !(data & i); if (timings->invert) need_pulse = !need_pulse; if (need_pulse == !!(*ev)->pulse) { (*ev)->duration += timings->clock; } else { if (!max--) goto nobufs; init_ir_raw_event_duration(++(*ev), need_pulse, timings->clock); } if (!max--) goto nobufs; init_ir_raw_event_duration(++(*ev), !need_pulse, timings->clock); i >>= 1; } if (timings->trailer_space) { if (!(*ev)->pulse) (*ev)->duration += timings->trailer_space; else if (!max--) goto nobufs; else init_ir_raw_event_duration(++(*ev), 0, timings->trailer_space); } ret = 0; nobufs: /* point to the next event rather than last event before returning */ ++(*ev); return ret; } EXPORT_SYMBOL(ir_raw_gen_manchester); /** * ir_raw_gen_pd() - Encode data to raw events with pulse-distance modulation. * @ev: Pointer to pointer to next free event. *@ev is incremented for * each raw event filled. * @max: Maximum number of raw events to fill. * @timings: Pulse distance modulation timings. * @n: Number of bits of data. * @data: Data bits to encode. * * Encodes the @n least significant bits of @data using pulse-distance * modulation with the timing characteristics described by @timings, writing up * to @max raw IR events using the *@ev pointer. * * Returns: 0 on success. * -ENOBUFS if there isn't enough space in the array to fit the * full encoded data. In this case all @max events will have been * written. */ int ir_raw_gen_pd(struct ir_raw_event **ev, unsigned int max, const struct ir_raw_timings_pd *timings, unsigned int n, u64 data) { int i; int ret; unsigned int space; if (timings->header_pulse) { ret = ir_raw_gen_pulse_space(ev, &max, timings->header_pulse, timings->header_space); if (ret) return ret; } if (timings->msb_first) { for (i = n - 1; i >= 0; --i) { space = timings->bit_space[(data >> i) & 1]; ret = ir_raw_gen_pulse_space(ev, &max, timings->bit_pulse, space); if (ret) return ret; } } else { for (i = 0; i < n; ++i, data >>= 1) { space = timings->bit_space[data & 1]; ret = ir_raw_gen_pulse_space(ev, &max, timings->bit_pulse, space); if (ret) return ret; } } ret = ir_raw_gen_pulse_space(ev, &max, timings->trailer_pulse, timings->trailer_space); return ret; } EXPORT_SYMBOL(ir_raw_gen_pd); /** * ir_raw_gen_pl() - Encode data to raw events with pulse-length modulation. * @ev: Pointer to pointer to next free event. *@ev is incremented for * each raw event filled. * @max: Maximum number of raw events to fill. * @timings: Pulse distance modulation timings. * @n: Number of bits of data. * @data: Data bits to encode. * * Encodes the @n least significant bits of @data using space-distance * modulation with the timing characteristics described by @timings, writing up * to @max raw IR events using the *@ev pointer. * * Returns: 0 on success. * -ENOBUFS if there isn't enough space in the array to fit the * full encoded data. In this case all @max events will have been * written. */ int ir_raw_gen_pl(struct ir_raw_event **ev, unsigned int max, const struct ir_raw_timings_pl *timings, unsigned int n, u64 data) { int i; int ret = -ENOBUFS; unsigned int pulse; if (!max--) return ret; init_ir_raw_event_duration((*ev)++, 1, timings->header_pulse); if (timings->msb_first) { for (i = n - 1; i >= 0; --i) { if (!max--) return ret; init_ir_raw_event_duration((*ev)++, 0, timings->bit_space); if (!max--) return ret; pulse = timings->bit_pulse[(data >> i) & 1]; init_ir_raw_event_duration((*ev)++, 1, pulse); } } else { for (i = 0; i < n; ++i, data >>= 1) { if (!max--) return ret; init_ir_raw_event_duration((*ev)++, 0, timings->bit_space); if (!max--) return ret; pulse = timings->bit_pulse[data & 1]; init_ir_raw_event_duration((*ev)++, 1, pulse); } } if (!max--) return ret; init_ir_raw_event_duration((*ev)++, 0, timings->trailer_space); return 0; } EXPORT_SYMBOL(ir_raw_gen_pl); /** * ir_raw_encode_scancode() - Encode a scancode as raw events * * @protocol: protocol * @scancode: scancode filter describing a single scancode * @events: array of raw events to write into * @max: max number of raw events * * Attempts to encode the scancode as raw events. * * Returns: The number of events written. * -ENOBUFS if there isn't enough space in the array to fit the * encoding. In this case all @max events will have been written. * -EINVAL if the scancode is ambiguous or invalid, or if no * compatible encoder was found. */ int ir_raw_encode_scancode(enum rc_proto protocol, u32 scancode, struct ir_raw_event *events, unsigned int max) { struct ir_raw_handler *handler; int ret = -EINVAL; u64 mask = 1ULL << protocol; ir_raw_load_modules(&mask); mutex_lock(&ir_raw_handler_lock); list_for_each_entry(handler, &ir_raw_handler_list, list) { if (handler->protocols & mask && handler->encode) { ret = handler->encode(protocol, scancode, events, max); if (ret >= 0 || ret == -ENOBUFS) break; } } mutex_unlock(&ir_raw_handler_lock); return ret; } EXPORT_SYMBOL(ir_raw_encode_scancode); /** * ir_raw_edge_handle() - Handle ir_raw_event_store_edge() processing * * @t: timer_list * * This callback is armed by ir_raw_event_store_edge(). It does two things: * first of all, rather than calling ir_raw_event_handle() for each * edge and waking up the rc thread, 15 ms after the first edge * ir_raw_event_handle() is called. Secondly, generate a timeout event * no more IR is received after the rc_dev timeout. */ static void ir_raw_edge_handle(struct timer_list *t) { struct ir_raw_event_ctrl *raw = from_timer(raw, t, edge_handle); struct rc_dev *dev = raw->dev; unsigned long flags; ktime_t interval; spin_lock_irqsave(&dev->raw->edge_spinlock, flags); interval = ktime_sub(ktime_get(), dev->raw->last_event); if (ktime_to_ns(interval) >= dev->timeout) { struct ir_raw_event ev = { .timeout = true, .duration = ktime_to_ns(interval) }; ir_raw_event_store(dev, &ev); } else { mod_timer(&dev->raw->edge_handle, jiffies + nsecs_to_jiffies(dev->timeout - ktime_to_ns(interval))); } spin_unlock_irqrestore(&dev->raw->edge_spinlock, flags); ir_raw_event_handle(dev); } /** * ir_raw_encode_carrier() - Get carrier used for protocol * * @protocol: protocol * * Attempts to find the carrier for the specified protocol * * Returns: The carrier in Hz * -EINVAL if the protocol is invalid, or if no * compatible encoder was found. */ int ir_raw_encode_carrier(enum rc_proto protocol) { struct ir_raw_handler *handler; int ret = -EINVAL; u64 mask = BIT_ULL(protocol); mutex_lock(&ir_raw_handler_lock); list_for_each_entry(handler, &ir_raw_handler_list, list) { if (handler->protocols & mask && handler->encode) { ret = handler->carrier; break; } } mutex_unlock(&ir_raw_handler_lock); return ret; } EXPORT_SYMBOL(ir_raw_encode_carrier); /* * Used to (un)register raw event clients */ int ir_raw_event_prepare(struct rc_dev *dev) { if (!dev) return -EINVAL; dev->raw = kzalloc(sizeof(*dev->raw), GFP_KERNEL); if (!dev->raw) return -ENOMEM; dev->raw->dev = dev; dev->change_protocol = change_protocol; dev->idle = true; spin_lock_init(&dev->raw->edge_spinlock); timer_setup(&dev->raw->edge_handle, ir_raw_edge_handle, 0); INIT_KFIFO(dev->raw->kfifo); return 0; } int ir_raw_event_register(struct rc_dev *dev) { struct task_struct *thread; thread = kthread_run(ir_raw_event_thread, dev->raw, "rc%u", dev->minor); if (IS_ERR(thread)) return PTR_ERR(thread); dev->raw->thread = thread; mutex_lock(&ir_raw_handler_lock); list_add_tail(&dev->raw->list, &ir_raw_client_list); mutex_unlock(&ir_raw_handler_lock); return 0; } void ir_raw_event_free(struct rc_dev *dev) { if (!dev) return; kfree(dev->raw); dev->raw = NULL; } void ir_raw_event_unregister(struct rc_dev *dev) { struct ir_raw_handler *handler; if (!dev || !dev->raw) return; kthread_stop(dev->raw->thread); del_timer_sync(&dev->raw->edge_handle); mutex_lock(&ir_raw_handler_lock); list_del(&dev->raw->list); list_for_each_entry(handler, &ir_raw_handler_list, list) if (handler->raw_unregister && (handler->protocols & dev->enabled_protocols)) handler->raw_unregister(dev); lirc_bpf_free(dev); ir_raw_event_free(dev); /* * A user can be calling bpf(BPF_PROG_{QUERY|ATTACH|DETACH}), so * ensure that the raw member is null on unlock; this is how * "device gone" is checked. */ mutex_unlock(&ir_raw_handler_lock); } /* * Extension interface - used to register the IR decoders */ int ir_raw_handler_register(struct ir_raw_handler *ir_raw_handler) { mutex_lock(&ir_raw_handler_lock); list_add_tail(&ir_raw_handler->list, &ir_raw_handler_list); atomic64_or(ir_raw_handler->protocols, &available_protocols); mutex_unlock(&ir_raw_handler_lock); return 0; } EXPORT_SYMBOL(ir_raw_handler_register); void ir_raw_handler_unregister(struct ir_raw_handler *ir_raw_handler) { struct ir_raw_event_ctrl *raw; u64 protocols = ir_raw_handler->protocols; mutex_lock(&ir_raw_handler_lock); list_del(&ir_raw_handler->list); list_for_each_entry(raw, &ir_raw_client_list, list) { if (ir_raw_handler->raw_unregister && (raw->dev->enabled_protocols & protocols)) ir_raw_handler->raw_unregister(raw->dev); ir_raw_disable_protocols(raw->dev, protocols); } atomic64_andnot(protocols, &available_protocols); mutex_unlock(&ir_raw_handler_lock); } EXPORT_SYMBOL(ir_raw_handler_unregister);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1