Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Erik Andrén | 1985 | 83.19% | 6 | 35.29% |
James Blanford | 168 | 7.04% | 2 | 11.76% |
Hans Verkuil | 155 | 6.50% | 1 | 5.88% |
Joe Perches | 31 | 1.30% | 2 | 11.76% |
Theodore Kilgore | 26 | 1.09% | 1 | 5.88% |
Hans de Goede | 17 | 0.71% | 2 | 11.76% |
Thomas Gleixner | 2 | 0.08% | 1 | 5.88% |
Lucas De Marchi | 1 | 0.04% | 1 | 5.88% |
Jean-François Moine | 1 | 0.04% | 1 | 5.88% |
Total | 2386 | 17 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2001 Jean-Fredric Clere, Nikolas Zimmermann, Georg Acher * Mark Cave-Ayland, Carlo E Prelz, Dick Streefland * Copyright (c) 2002, 2003 Tuukka Toivonen * Copyright (c) 2008 Erik Andrén * Copyright (c) 2008 Chia-I Wu * * P/N 861037: Sensor HDCS1000 ASIC STV0600 * P/N 861050-0010: Sensor HDCS1000 ASIC STV0600 * P/N 861050-0020: Sensor Photobit PB100 ASIC STV0600-1 - QuickCam Express * P/N 861055: Sensor ST VV6410 ASIC STV0610 - LEGO cam * P/N 861075-0040: Sensor HDCS1000 ASIC * P/N 961179-0700: Sensor ST VV6410 ASIC STV0602 - Dexxa WebCam USB * P/N 861040-0000: Sensor ST VV6410 ASIC STV0610 - QuickCam Web */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include "stv06xx_hdcs.h" static struct v4l2_pix_format hdcs1x00_mode[] = { { HDCS_1X00_DEF_WIDTH, HDCS_1X00_DEF_HEIGHT, V4L2_PIX_FMT_SGRBG8, V4L2_FIELD_NONE, .sizeimage = HDCS_1X00_DEF_WIDTH * HDCS_1X00_DEF_HEIGHT, .bytesperline = HDCS_1X00_DEF_WIDTH, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 1 } }; static struct v4l2_pix_format hdcs1020_mode[] = { { HDCS_1020_DEF_WIDTH, HDCS_1020_DEF_HEIGHT, V4L2_PIX_FMT_SGRBG8, V4L2_FIELD_NONE, .sizeimage = HDCS_1020_DEF_WIDTH * HDCS_1020_DEF_HEIGHT, .bytesperline = HDCS_1020_DEF_WIDTH, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 1 } }; enum hdcs_power_state { HDCS_STATE_SLEEP, HDCS_STATE_IDLE, HDCS_STATE_RUN }; /* no lock? */ struct hdcs { enum hdcs_power_state state; int w, h; /* visible area of the sensor array */ struct { int left, top; int width, height; int border; } array; struct { /* Column timing overhead */ u8 cto; /* Column processing overhead */ u8 cpo; /* Row sample period constant */ u16 rs; /* Exposure reset duration */ u16 er; } exp; int psmp; }; static int hdcs_reg_write_seq(struct sd *sd, u8 reg, u8 *vals, u8 len) { u8 regs[I2C_MAX_BYTES * 2]; int i; if (unlikely((len <= 0) || (len >= I2C_MAX_BYTES) || (reg + len > 0xff))) return -EINVAL; for (i = 0; i < len; i++) { regs[2 * i] = reg; regs[2 * i + 1] = vals[i]; /* All addresses are shifted left one bit * as bit 0 toggles r/w */ reg += 2; } return stv06xx_write_sensor_bytes(sd, regs, len); } static int hdcs_set_state(struct sd *sd, enum hdcs_power_state state) { struct hdcs *hdcs = sd->sensor_priv; u8 val; int ret; if (hdcs->state == state) return 0; /* we need to go idle before running or sleeping */ if (hdcs->state != HDCS_STATE_IDLE) { ret = stv06xx_write_sensor(sd, HDCS_REG_CONTROL(sd), 0); if (ret) return ret; } hdcs->state = HDCS_STATE_IDLE; if (state == HDCS_STATE_IDLE) return 0; switch (state) { case HDCS_STATE_SLEEP: val = HDCS_SLEEP_MODE; break; case HDCS_STATE_RUN: val = HDCS_RUN_ENABLE; break; default: return -EINVAL; } ret = stv06xx_write_sensor(sd, HDCS_REG_CONTROL(sd), val); /* Update the state if the write succeeded */ if (!ret) hdcs->state = state; return ret; } static int hdcs_reset(struct sd *sd) { struct hdcs *hdcs = sd->sensor_priv; int err; err = stv06xx_write_sensor(sd, HDCS_REG_CONTROL(sd), 1); if (err < 0) return err; err = stv06xx_write_sensor(sd, HDCS_REG_CONTROL(sd), 0); if (err < 0) hdcs->state = HDCS_STATE_IDLE; return err; } static int hdcs_set_exposure(struct gspca_dev *gspca_dev, __s32 val) { struct sd *sd = (struct sd *) gspca_dev; struct hdcs *hdcs = sd->sensor_priv; int rowexp, srowexp; int max_srowexp; /* Column time period */ int ct; /* Column processing period */ int cp; /* Row processing period */ int rp; /* Minimum number of column timing periods within the column processing period */ int mnct; int cycles, err; u8 exp[14]; cycles = val * HDCS_CLK_FREQ_MHZ * 257; ct = hdcs->exp.cto + hdcs->psmp + (HDCS_ADC_START_SIG_DUR + 2); cp = hdcs->exp.cto + (hdcs->w * ct / 2); /* the cycles one row takes */ rp = hdcs->exp.rs + cp; rowexp = cycles / rp; /* the remaining cycles */ cycles -= rowexp * rp; /* calculate sub-row exposure */ if (IS_1020(sd)) { /* see HDCS-1020 datasheet 3.5.6.4, p. 63 */ srowexp = hdcs->w - (cycles + hdcs->exp.er + 13) / ct; mnct = (hdcs->exp.er + 12 + ct - 1) / ct; max_srowexp = hdcs->w - mnct; } else { /* see HDCS-1000 datasheet 3.4.5.5, p. 61 */ srowexp = cp - hdcs->exp.er - 6 - cycles; mnct = (hdcs->exp.er + 5 + ct - 1) / ct; max_srowexp = cp - mnct * ct - 1; } if (srowexp < 0) srowexp = 0; else if (srowexp > max_srowexp) srowexp = max_srowexp; if (IS_1020(sd)) { exp[0] = HDCS20_CONTROL; exp[1] = 0x00; /* Stop streaming */ exp[2] = HDCS_ROWEXPL; exp[3] = rowexp & 0xff; exp[4] = HDCS_ROWEXPH; exp[5] = rowexp >> 8; exp[6] = HDCS20_SROWEXP; exp[7] = (srowexp >> 2) & 0xff; exp[8] = HDCS20_ERROR; exp[9] = 0x10; /* Clear exposure error flag*/ exp[10] = HDCS20_CONTROL; exp[11] = 0x04; /* Restart streaming */ err = stv06xx_write_sensor_bytes(sd, exp, 6); } else { exp[0] = HDCS00_CONTROL; exp[1] = 0x00; /* Stop streaming */ exp[2] = HDCS_ROWEXPL; exp[3] = rowexp & 0xff; exp[4] = HDCS_ROWEXPH; exp[5] = rowexp >> 8; exp[6] = HDCS00_SROWEXPL; exp[7] = srowexp & 0xff; exp[8] = HDCS00_SROWEXPH; exp[9] = srowexp >> 8; exp[10] = HDCS_STATUS; exp[11] = 0x10; /* Clear exposure error flag*/ exp[12] = HDCS00_CONTROL; exp[13] = 0x04; /* Restart streaming */ err = stv06xx_write_sensor_bytes(sd, exp, 7); if (err < 0) return err; } gspca_dbg(gspca_dev, D_CONF, "Writing exposure %d, rowexp %d, srowexp %d\n", val, rowexp, srowexp); return err; } static int hdcs_set_gains(struct sd *sd, u8 g) { int err; u8 gains[4]; /* the voltage gain Av = (1 + 19 * val / 127) * (1 + bit7) */ if (g > 127) g = 0x80 | (g / 2); gains[0] = g; gains[1] = g; gains[2] = g; gains[3] = g; err = hdcs_reg_write_seq(sd, HDCS_ERECPGA, gains, 4); return err; } static int hdcs_set_gain(struct gspca_dev *gspca_dev, __s32 val) { gspca_dbg(gspca_dev, D_CONF, "Writing gain %d\n", val); return hdcs_set_gains((struct sd *) gspca_dev, val & 0xff); } static int hdcs_set_size(struct sd *sd, unsigned int width, unsigned int height) { struct hdcs *hdcs = sd->sensor_priv; u8 win[4]; unsigned int x, y; int err; /* must be multiple of 4 */ width = (width + 3) & ~0x3; height = (height + 3) & ~0x3; if (width > hdcs->array.width) width = hdcs->array.width; if (IS_1020(sd)) { /* the borders are also invalid */ if (height + 2 * hdcs->array.border + HDCS_1020_BOTTOM_Y_SKIP > hdcs->array.height) height = hdcs->array.height - 2 * hdcs->array.border - HDCS_1020_BOTTOM_Y_SKIP; y = (hdcs->array.height - HDCS_1020_BOTTOM_Y_SKIP - height) / 2 + hdcs->array.top; } else { if (height > hdcs->array.height) height = hdcs->array.height; y = hdcs->array.top + (hdcs->array.height - height) / 2; } x = hdcs->array.left + (hdcs->array.width - width) / 2; win[0] = y / 4; win[1] = x / 4; win[2] = (y + height) / 4 - 1; win[3] = (x + width) / 4 - 1; err = hdcs_reg_write_seq(sd, HDCS_FWROW, win, 4); if (err < 0) return err; /* Update the current width and height */ hdcs->w = width; hdcs->h = height; return err; } static int hdcs_s_ctrl(struct v4l2_ctrl *ctrl) { struct gspca_dev *gspca_dev = container_of(ctrl->handler, struct gspca_dev, ctrl_handler); int err = -EINVAL; switch (ctrl->id) { case V4L2_CID_GAIN: err = hdcs_set_gain(gspca_dev, ctrl->val); break; case V4L2_CID_EXPOSURE: err = hdcs_set_exposure(gspca_dev, ctrl->val); break; } return err; } static const struct v4l2_ctrl_ops hdcs_ctrl_ops = { .s_ctrl = hdcs_s_ctrl, }; static int hdcs_init_controls(struct sd *sd) { struct v4l2_ctrl_handler *hdl = &sd->gspca_dev.ctrl_handler; v4l2_ctrl_handler_init(hdl, 2); v4l2_ctrl_new_std(hdl, &hdcs_ctrl_ops, V4L2_CID_EXPOSURE, 0, 0xff, 1, HDCS_DEFAULT_EXPOSURE); v4l2_ctrl_new_std(hdl, &hdcs_ctrl_ops, V4L2_CID_GAIN, 0, 0xff, 1, HDCS_DEFAULT_GAIN); return hdl->error; } static int hdcs_probe_1x00(struct sd *sd) { struct hdcs *hdcs; u16 sensor; int ret; ret = stv06xx_read_sensor(sd, HDCS_IDENT, &sensor); if (ret < 0 || sensor != 0x08) return -ENODEV; pr_info("HDCS-1000/1100 sensor detected\n"); sd->gspca_dev.cam.cam_mode = hdcs1x00_mode; sd->gspca_dev.cam.nmodes = ARRAY_SIZE(hdcs1x00_mode); hdcs = kmalloc(sizeof(struct hdcs), GFP_KERNEL); if (!hdcs) return -ENOMEM; hdcs->array.left = 8; hdcs->array.top = 8; hdcs->array.width = HDCS_1X00_DEF_WIDTH; hdcs->array.height = HDCS_1X00_DEF_HEIGHT; hdcs->array.border = 4; hdcs->exp.cto = 4; hdcs->exp.cpo = 2; hdcs->exp.rs = 186; hdcs->exp.er = 100; /* * Frame rate on HDCS-1000 with STV600 depends on PSMP: * 4 = doesn't work at all * 5 = 7.8 fps, * 6 = 6.9 fps, * 8 = 6.3 fps, * 10 = 5.5 fps, * 15 = 4.4 fps, * 31 = 2.8 fps * * Frame rate on HDCS-1000 with STV602 depends on PSMP: * 15 = doesn't work at all * 18 = doesn't work at all * 19 = 7.3 fps * 20 = 7.4 fps * 21 = 7.4 fps * 22 = 7.4 fps * 24 = 6.3 fps * 30 = 5.4 fps */ hdcs->psmp = (sd->bridge == BRIDGE_STV602) ? 20 : 5; sd->sensor_priv = hdcs; return 0; } static int hdcs_probe_1020(struct sd *sd) { struct hdcs *hdcs; u16 sensor; int ret; ret = stv06xx_read_sensor(sd, HDCS_IDENT, &sensor); if (ret < 0 || sensor != 0x10) return -ENODEV; pr_info("HDCS-1020 sensor detected\n"); sd->gspca_dev.cam.cam_mode = hdcs1020_mode; sd->gspca_dev.cam.nmodes = ARRAY_SIZE(hdcs1020_mode); hdcs = kmalloc(sizeof(struct hdcs), GFP_KERNEL); if (!hdcs) return -ENOMEM; /* * From Andrey's test image: looks like HDCS-1020 upper-left * visible pixel is at 24,8 (y maybe even smaller?) and lower-right * visible pixel at 375,299 (x maybe even larger?) */ hdcs->array.left = 24; hdcs->array.top = 4; hdcs->array.width = HDCS_1020_DEF_WIDTH; hdcs->array.height = 304; hdcs->array.border = 4; hdcs->psmp = 6; hdcs->exp.cto = 3; hdcs->exp.cpo = 3; hdcs->exp.rs = 155; hdcs->exp.er = 96; sd->sensor_priv = hdcs; return 0; } static int hdcs_start(struct sd *sd) { struct gspca_dev *gspca_dev = (struct gspca_dev *)sd; gspca_dbg(gspca_dev, D_STREAM, "Starting stream\n"); return hdcs_set_state(sd, HDCS_STATE_RUN); } static int hdcs_stop(struct sd *sd) { struct gspca_dev *gspca_dev = (struct gspca_dev *)sd; gspca_dbg(gspca_dev, D_STREAM, "Halting stream\n"); return hdcs_set_state(sd, HDCS_STATE_SLEEP); } static int hdcs_init(struct sd *sd) { struct hdcs *hdcs = sd->sensor_priv; int i, err = 0; /* Set the STV0602AA in STV0600 emulation mode */ if (sd->bridge == BRIDGE_STV602) stv06xx_write_bridge(sd, STV_STV0600_EMULATION, 1); /* Execute the bridge init */ for (i = 0; i < ARRAY_SIZE(stv_bridge_init) && !err; i++) { err = stv06xx_write_bridge(sd, stv_bridge_init[i][0], stv_bridge_init[i][1]); } if (err < 0) return err; /* sensor soft reset */ hdcs_reset(sd); /* Execute the sensor init */ for (i = 0; i < ARRAY_SIZE(stv_sensor_init) && !err; i++) { err = stv06xx_write_sensor(sd, stv_sensor_init[i][0], stv_sensor_init[i][1]); } if (err < 0) return err; /* Enable continuous frame capture, bit 2: stop when frame complete */ err = stv06xx_write_sensor(sd, HDCS_REG_CONFIG(sd), BIT(3)); if (err < 0) return err; /* Set PGA sample duration (was 0x7E for the STV602, but caused slow framerate with HDCS-1020) */ if (IS_1020(sd)) err = stv06xx_write_sensor(sd, HDCS_TCTRL, (HDCS_ADC_START_SIG_DUR << 6) | hdcs->psmp); else err = stv06xx_write_sensor(sd, HDCS_TCTRL, (HDCS_ADC_START_SIG_DUR << 5) | hdcs->psmp); if (err < 0) return err; return hdcs_set_size(sd, hdcs->array.width, hdcs->array.height); } static int hdcs_dump(struct sd *sd) { u16 reg, val; pr_info("Dumping sensor registers:\n"); for (reg = HDCS_IDENT; reg <= HDCS_ROWEXPH; reg++) { stv06xx_read_sensor(sd, reg, &val); pr_info("reg 0x%02x = 0x%02x\n", reg, val); } return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1