Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Pawel Osciak | 1652 | 31.76% | 2 | 3.92% |
Ezequiel García | 1032 | 19.84% | 8 | 15.69% |
Hans Verkuil | 793 | 15.24% | 11 | 21.57% |
Sylwester Nawrocki | 505 | 9.71% | 1 | 1.96% |
Marek Szyprowski | 352 | 6.77% | 1 | 1.96% |
Shaik Ameer Basha | 185 | 3.56% | 2 | 3.92% |
Stanimir Varbanov | 184 | 3.54% | 1 | 1.96% |
John Sheu | 156 | 3.00% | 3 | 5.88% |
Philipp Zabel | 123 | 2.36% | 6 | 11.76% |
Sakari Ailus | 56 | 1.08% | 1 | 1.96% |
Tomasz Stanislawski | 49 | 0.94% | 1 | 1.96% |
Andrzej Pietrasiewicz | 29 | 0.56% | 1 | 1.96% |
Zahari Doychev | 27 | 0.52% | 1 | 1.96% |
Linus Torvalds | 11 | 0.21% | 1 | 1.96% |
Nicolas Thery | 10 | 0.19% | 1 | 1.96% |
Seung-Woo Kim | 10 | 0.19% | 1 | 1.96% |
Junghak Sung | 7 | 0.13% | 2 | 3.92% |
Sascha Hauer | 6 | 0.12% | 1 | 1.96% |
Michael Olbrich | 5 | 0.10% | 1 | 1.96% |
Al Viro | 5 | 0.10% | 2 | 3.92% |
Guennadi Liakhovetski | 2 | 0.04% | 1 | 1.96% |
Thomas Gleixner | 2 | 0.04% | 1 | 1.96% |
Mauro Carvalho Chehab | 1 | 0.02% | 1 | 1.96% |
Total | 5202 | 51 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Memory-to-memory device framework for Video for Linux 2 and videobuf. * * Helper functions for devices that use videobuf buffers for both their * source and destination. * * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd. * Pawel Osciak, <pawel@osciak.com> * Marek Szyprowski, <m.szyprowski@samsung.com> */ #include <linux/module.h> #include <linux/sched.h> #include <linux/slab.h> #include <media/media-device.h> #include <media/videobuf2-v4l2.h> #include <media/v4l2-mem2mem.h> #include <media/v4l2-dev.h> #include <media/v4l2-device.h> #include <media/v4l2-fh.h> #include <media/v4l2-event.h> MODULE_DESCRIPTION("Mem to mem device framework for videobuf"); MODULE_AUTHOR("Pawel Osciak, <pawel@osciak.com>"); MODULE_LICENSE("GPL"); static bool debug; module_param(debug, bool, 0644); #define dprintk(fmt, arg...) \ do { \ if (debug) \ printk(KERN_DEBUG "%s: " fmt, __func__, ## arg);\ } while (0) /* Instance is already queued on the job_queue */ #define TRANS_QUEUED (1 << 0) /* Instance is currently running in hardware */ #define TRANS_RUNNING (1 << 1) /* Instance is currently aborting */ #define TRANS_ABORT (1 << 2) /* Offset base for buffers on the destination queue - used to distinguish * between source and destination buffers when mmapping - they receive the same * offsets but for different queues */ #define DST_QUEUE_OFF_BASE (1 << 30) enum v4l2_m2m_entity_type { MEM2MEM_ENT_TYPE_SOURCE, MEM2MEM_ENT_TYPE_SINK, MEM2MEM_ENT_TYPE_PROC }; static const char * const m2m_entity_name[] = { "source", "sink", "proc" }; /** * struct v4l2_m2m_dev - per-device context * @source: &struct media_entity pointer with the source entity * Used only when the M2M device is registered via * v4l2_m2m_unregister_media_controller(). * @source_pad: &struct media_pad with the source pad. * Used only when the M2M device is registered via * v4l2_m2m_unregister_media_controller(). * @sink: &struct media_entity pointer with the sink entity * Used only when the M2M device is registered via * v4l2_m2m_unregister_media_controller(). * @sink_pad: &struct media_pad with the sink pad. * Used only when the M2M device is registered via * v4l2_m2m_unregister_media_controller(). * @proc: &struct media_entity pointer with the M2M device itself. * @proc_pads: &struct media_pad with the @proc pads. * Used only when the M2M device is registered via * v4l2_m2m_unregister_media_controller(). * @intf_devnode: &struct media_intf devnode pointer with the interface * with controls the M2M device. * @curr_ctx: currently running instance * @job_queue: instances queued to run * @job_spinlock: protects job_queue * @job_work: worker to run queued jobs. * @m2m_ops: driver callbacks */ struct v4l2_m2m_dev { struct v4l2_m2m_ctx *curr_ctx; #ifdef CONFIG_MEDIA_CONTROLLER struct media_entity *source; struct media_pad source_pad; struct media_entity sink; struct media_pad sink_pad; struct media_entity proc; struct media_pad proc_pads[2]; struct media_intf_devnode *intf_devnode; #endif struct list_head job_queue; spinlock_t job_spinlock; struct work_struct job_work; const struct v4l2_m2m_ops *m2m_ops; }; static struct v4l2_m2m_queue_ctx *get_queue_ctx(struct v4l2_m2m_ctx *m2m_ctx, enum v4l2_buf_type type) { if (V4L2_TYPE_IS_OUTPUT(type)) return &m2m_ctx->out_q_ctx; else return &m2m_ctx->cap_q_ctx; } struct vb2_queue *v4l2_m2m_get_vq(struct v4l2_m2m_ctx *m2m_ctx, enum v4l2_buf_type type) { struct v4l2_m2m_queue_ctx *q_ctx; q_ctx = get_queue_ctx(m2m_ctx, type); if (!q_ctx) return NULL; return &q_ctx->q; } EXPORT_SYMBOL(v4l2_m2m_get_vq); struct vb2_v4l2_buffer *v4l2_m2m_next_buf(struct v4l2_m2m_queue_ctx *q_ctx) { struct v4l2_m2m_buffer *b; unsigned long flags; spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); if (list_empty(&q_ctx->rdy_queue)) { spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); return NULL; } b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list); spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); return &b->vb; } EXPORT_SYMBOL_GPL(v4l2_m2m_next_buf); struct vb2_v4l2_buffer *v4l2_m2m_last_buf(struct v4l2_m2m_queue_ctx *q_ctx) { struct v4l2_m2m_buffer *b; unsigned long flags; spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); if (list_empty(&q_ctx->rdy_queue)) { spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); return NULL; } b = list_last_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list); spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); return &b->vb; } EXPORT_SYMBOL_GPL(v4l2_m2m_last_buf); struct vb2_v4l2_buffer *v4l2_m2m_buf_remove(struct v4l2_m2m_queue_ctx *q_ctx) { struct v4l2_m2m_buffer *b; unsigned long flags; spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); if (list_empty(&q_ctx->rdy_queue)) { spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); return NULL; } b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list); list_del(&b->list); q_ctx->num_rdy--; spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); return &b->vb; } EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove); void v4l2_m2m_buf_remove_by_buf(struct v4l2_m2m_queue_ctx *q_ctx, struct vb2_v4l2_buffer *vbuf) { struct v4l2_m2m_buffer *b; unsigned long flags; spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); b = container_of(vbuf, struct v4l2_m2m_buffer, vb); list_del(&b->list); q_ctx->num_rdy--; spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); } EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_buf); struct vb2_v4l2_buffer * v4l2_m2m_buf_remove_by_idx(struct v4l2_m2m_queue_ctx *q_ctx, unsigned int idx) { struct v4l2_m2m_buffer *b, *tmp; struct vb2_v4l2_buffer *ret = NULL; unsigned long flags; spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); list_for_each_entry_safe(b, tmp, &q_ctx->rdy_queue, list) { if (b->vb.vb2_buf.index == idx) { list_del(&b->list); q_ctx->num_rdy--; ret = &b->vb; break; } } spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); return ret; } EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_idx); /* * Scheduling handlers */ void *v4l2_m2m_get_curr_priv(struct v4l2_m2m_dev *m2m_dev) { unsigned long flags; void *ret = NULL; spin_lock_irqsave(&m2m_dev->job_spinlock, flags); if (m2m_dev->curr_ctx) ret = m2m_dev->curr_ctx->priv; spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); return ret; } EXPORT_SYMBOL(v4l2_m2m_get_curr_priv); /** * v4l2_m2m_try_run() - select next job to perform and run it if possible * @m2m_dev: per-device context * * Get next transaction (if present) from the waiting jobs list and run it. * * Note that this function can run on a given v4l2_m2m_ctx context, * but call .device_run for another context. */ static void v4l2_m2m_try_run(struct v4l2_m2m_dev *m2m_dev) { unsigned long flags; spin_lock_irqsave(&m2m_dev->job_spinlock, flags); if (NULL != m2m_dev->curr_ctx) { spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); dprintk("Another instance is running, won't run now\n"); return; } if (list_empty(&m2m_dev->job_queue)) { spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); dprintk("No job pending\n"); return; } m2m_dev->curr_ctx = list_first_entry(&m2m_dev->job_queue, struct v4l2_m2m_ctx, queue); m2m_dev->curr_ctx->job_flags |= TRANS_RUNNING; spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); dprintk("Running job on m2m_ctx: %p\n", m2m_dev->curr_ctx); m2m_dev->m2m_ops->device_run(m2m_dev->curr_ctx->priv); } /* * __v4l2_m2m_try_queue() - queue a job * @m2m_dev: m2m device * @m2m_ctx: m2m context * * Check if this context is ready to queue a job. * * This function can run in interrupt context. */ static void __v4l2_m2m_try_queue(struct v4l2_m2m_dev *m2m_dev, struct v4l2_m2m_ctx *m2m_ctx) { unsigned long flags_job, flags_out, flags_cap; dprintk("Trying to schedule a job for m2m_ctx: %p\n", m2m_ctx); if (!m2m_ctx->out_q_ctx.q.streaming || !m2m_ctx->cap_q_ctx.q.streaming) { dprintk("Streaming needs to be on for both queues\n"); return; } spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job); /* If the context is aborted then don't schedule it */ if (m2m_ctx->job_flags & TRANS_ABORT) { dprintk("Aborted context\n"); goto job_unlock; } if (m2m_ctx->job_flags & TRANS_QUEUED) { dprintk("On job queue already\n"); goto job_unlock; } spin_lock_irqsave(&m2m_ctx->out_q_ctx.rdy_spinlock, flags_out); if (list_empty(&m2m_ctx->out_q_ctx.rdy_queue) && !m2m_ctx->out_q_ctx.buffered) { dprintk("No input buffers available\n"); goto out_unlock; } spin_lock_irqsave(&m2m_ctx->cap_q_ctx.rdy_spinlock, flags_cap); if (list_empty(&m2m_ctx->cap_q_ctx.rdy_queue) && !m2m_ctx->cap_q_ctx.buffered) { dprintk("No output buffers available\n"); goto cap_unlock; } spin_unlock_irqrestore(&m2m_ctx->cap_q_ctx.rdy_spinlock, flags_cap); spin_unlock_irqrestore(&m2m_ctx->out_q_ctx.rdy_spinlock, flags_out); if (m2m_dev->m2m_ops->job_ready && (!m2m_dev->m2m_ops->job_ready(m2m_ctx->priv))) { dprintk("Driver not ready\n"); goto job_unlock; } list_add_tail(&m2m_ctx->queue, &m2m_dev->job_queue); m2m_ctx->job_flags |= TRANS_QUEUED; spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job); return; cap_unlock: spin_unlock_irqrestore(&m2m_ctx->cap_q_ctx.rdy_spinlock, flags_cap); out_unlock: spin_unlock_irqrestore(&m2m_ctx->out_q_ctx.rdy_spinlock, flags_out); job_unlock: spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job); } /** * v4l2_m2m_try_schedule() - schedule and possibly run a job for any context * @m2m_ctx: m2m context * * Check if this context is ready to queue a job. If suitable, * run the next queued job on the mem2mem device. * * This function shouldn't run in interrupt context. * * Note that v4l2_m2m_try_schedule() can schedule one job for this context, * and then run another job for another context. */ void v4l2_m2m_try_schedule(struct v4l2_m2m_ctx *m2m_ctx) { struct v4l2_m2m_dev *m2m_dev = m2m_ctx->m2m_dev; __v4l2_m2m_try_queue(m2m_dev, m2m_ctx); v4l2_m2m_try_run(m2m_dev); } EXPORT_SYMBOL_GPL(v4l2_m2m_try_schedule); /** * v4l2_m2m_device_run_work() - run pending jobs for the context * @work: Work structure used for scheduling the execution of this function. */ static void v4l2_m2m_device_run_work(struct work_struct *work) { struct v4l2_m2m_dev *m2m_dev = container_of(work, struct v4l2_m2m_dev, job_work); v4l2_m2m_try_run(m2m_dev); } /** * v4l2_m2m_cancel_job() - cancel pending jobs for the context * @m2m_ctx: m2m context with jobs to be canceled * * In case of streamoff or release called on any context, * 1] If the context is currently running, then abort job will be called * 2] If the context is queued, then the context will be removed from * the job_queue */ static void v4l2_m2m_cancel_job(struct v4l2_m2m_ctx *m2m_ctx) { struct v4l2_m2m_dev *m2m_dev; unsigned long flags; m2m_dev = m2m_ctx->m2m_dev; spin_lock_irqsave(&m2m_dev->job_spinlock, flags); m2m_ctx->job_flags |= TRANS_ABORT; if (m2m_ctx->job_flags & TRANS_RUNNING) { spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); if (m2m_dev->m2m_ops->job_abort) m2m_dev->m2m_ops->job_abort(m2m_ctx->priv); dprintk("m2m_ctx %p running, will wait to complete\n", m2m_ctx); wait_event(m2m_ctx->finished, !(m2m_ctx->job_flags & TRANS_RUNNING)); } else if (m2m_ctx->job_flags & TRANS_QUEUED) { list_del(&m2m_ctx->queue); m2m_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING); spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); dprintk("m2m_ctx: %p had been on queue and was removed\n", m2m_ctx); } else { /* Do nothing, was not on queue/running */ spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); } } void v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev, struct v4l2_m2m_ctx *m2m_ctx) { unsigned long flags; spin_lock_irqsave(&m2m_dev->job_spinlock, flags); if (!m2m_dev->curr_ctx || m2m_dev->curr_ctx != m2m_ctx) { spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); dprintk("Called by an instance not currently running\n"); return; } list_del(&m2m_dev->curr_ctx->queue); m2m_dev->curr_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING); wake_up(&m2m_dev->curr_ctx->finished); m2m_dev->curr_ctx = NULL; spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); /* This instance might have more buffers ready, but since we do not * allow more than one job on the job_queue per instance, each has * to be scheduled separately after the previous one finishes. */ __v4l2_m2m_try_queue(m2m_dev, m2m_ctx); /* We might be running in atomic context, * but the job must be run in non-atomic context. */ schedule_work(&m2m_dev->job_work); } EXPORT_SYMBOL(v4l2_m2m_job_finish); int v4l2_m2m_reqbufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, struct v4l2_requestbuffers *reqbufs) { struct vb2_queue *vq; int ret; vq = v4l2_m2m_get_vq(m2m_ctx, reqbufs->type); ret = vb2_reqbufs(vq, reqbufs); /* If count == 0, then the owner has released all buffers and he is no longer owner of the queue. Otherwise we have an owner. */ if (ret == 0) vq->owner = reqbufs->count ? file->private_data : NULL; return ret; } EXPORT_SYMBOL_GPL(v4l2_m2m_reqbufs); int v4l2_m2m_querybuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, struct v4l2_buffer *buf) { struct vb2_queue *vq; int ret = 0; unsigned int i; vq = v4l2_m2m_get_vq(m2m_ctx, buf->type); ret = vb2_querybuf(vq, buf); /* Adjust MMAP memory offsets for the CAPTURE queue */ if (buf->memory == V4L2_MEMORY_MMAP && !V4L2_TYPE_IS_OUTPUT(vq->type)) { if (V4L2_TYPE_IS_MULTIPLANAR(vq->type)) { for (i = 0; i < buf->length; ++i) buf->m.planes[i].m.mem_offset += DST_QUEUE_OFF_BASE; } else { buf->m.offset += DST_QUEUE_OFF_BASE; } } return ret; } EXPORT_SYMBOL_GPL(v4l2_m2m_querybuf); int v4l2_m2m_qbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, struct v4l2_buffer *buf) { struct video_device *vdev = video_devdata(file); struct vb2_queue *vq; int ret; vq = v4l2_m2m_get_vq(m2m_ctx, buf->type); if (!V4L2_TYPE_IS_OUTPUT(vq->type) && (buf->flags & V4L2_BUF_FLAG_REQUEST_FD)) { dprintk("%s: requests cannot be used with capture buffers\n", __func__); return -EPERM; } ret = vb2_qbuf(vq, vdev->v4l2_dev->mdev, buf); if (!ret && !(buf->flags & V4L2_BUF_FLAG_IN_REQUEST)) v4l2_m2m_try_schedule(m2m_ctx); return ret; } EXPORT_SYMBOL_GPL(v4l2_m2m_qbuf); int v4l2_m2m_dqbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, struct v4l2_buffer *buf) { struct vb2_queue *vq; vq = v4l2_m2m_get_vq(m2m_ctx, buf->type); return vb2_dqbuf(vq, buf, file->f_flags & O_NONBLOCK); } EXPORT_SYMBOL_GPL(v4l2_m2m_dqbuf); int v4l2_m2m_prepare_buf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, struct v4l2_buffer *buf) { struct video_device *vdev = video_devdata(file); struct vb2_queue *vq; vq = v4l2_m2m_get_vq(m2m_ctx, buf->type); return vb2_prepare_buf(vq, vdev->v4l2_dev->mdev, buf); } EXPORT_SYMBOL_GPL(v4l2_m2m_prepare_buf); int v4l2_m2m_create_bufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, struct v4l2_create_buffers *create) { struct vb2_queue *vq; vq = v4l2_m2m_get_vq(m2m_ctx, create->format.type); return vb2_create_bufs(vq, create); } EXPORT_SYMBOL_GPL(v4l2_m2m_create_bufs); int v4l2_m2m_expbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, struct v4l2_exportbuffer *eb) { struct vb2_queue *vq; vq = v4l2_m2m_get_vq(m2m_ctx, eb->type); return vb2_expbuf(vq, eb); } EXPORT_SYMBOL_GPL(v4l2_m2m_expbuf); int v4l2_m2m_streamon(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, enum v4l2_buf_type type) { struct vb2_queue *vq; int ret; vq = v4l2_m2m_get_vq(m2m_ctx, type); ret = vb2_streamon(vq, type); if (!ret) v4l2_m2m_try_schedule(m2m_ctx); return ret; } EXPORT_SYMBOL_GPL(v4l2_m2m_streamon); int v4l2_m2m_streamoff(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, enum v4l2_buf_type type) { struct v4l2_m2m_dev *m2m_dev; struct v4l2_m2m_queue_ctx *q_ctx; unsigned long flags_job, flags; int ret; /* wait until the current context is dequeued from job_queue */ v4l2_m2m_cancel_job(m2m_ctx); q_ctx = get_queue_ctx(m2m_ctx, type); ret = vb2_streamoff(&q_ctx->q, type); if (ret) return ret; m2m_dev = m2m_ctx->m2m_dev; spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job); /* We should not be scheduled anymore, since we're dropping a queue. */ if (m2m_ctx->job_flags & TRANS_QUEUED) list_del(&m2m_ctx->queue); m2m_ctx->job_flags = 0; spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); /* Drop queue, since streamoff returns device to the same state as after * calling reqbufs. */ INIT_LIST_HEAD(&q_ctx->rdy_queue); q_ctx->num_rdy = 0; spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); if (m2m_dev->curr_ctx == m2m_ctx) { m2m_dev->curr_ctx = NULL; wake_up(&m2m_ctx->finished); } spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job); return 0; } EXPORT_SYMBOL_GPL(v4l2_m2m_streamoff); __poll_t v4l2_m2m_poll(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, struct poll_table_struct *wait) { struct video_device *vfd = video_devdata(file); __poll_t req_events = poll_requested_events(wait); struct vb2_queue *src_q, *dst_q; struct vb2_buffer *src_vb = NULL, *dst_vb = NULL; __poll_t rc = 0; unsigned long flags; src_q = v4l2_m2m_get_src_vq(m2m_ctx); dst_q = v4l2_m2m_get_dst_vq(m2m_ctx); poll_wait(file, &src_q->done_wq, wait); poll_wait(file, &dst_q->done_wq, wait); if (test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags)) { struct v4l2_fh *fh = file->private_data; poll_wait(file, &fh->wait, wait); if (v4l2_event_pending(fh)) rc = EPOLLPRI; if (!(req_events & (EPOLLOUT | EPOLLWRNORM | EPOLLIN | EPOLLRDNORM))) return rc; } /* * There has to be at least one buffer queued on each queued_list, which * means either in driver already or waiting for driver to claim it * and start processing. */ if ((!src_q->streaming || src_q->error || list_empty(&src_q->queued_list)) && (!dst_q->streaming || dst_q->error || list_empty(&dst_q->queued_list))) { rc |= EPOLLERR; goto end; } spin_lock_irqsave(&dst_q->done_lock, flags); if (list_empty(&dst_q->done_list)) { /* * If the last buffer was dequeued from the capture queue, * return immediately. DQBUF will return -EPIPE. */ if (dst_q->last_buffer_dequeued) { spin_unlock_irqrestore(&dst_q->done_lock, flags); return rc | EPOLLIN | EPOLLRDNORM; } } spin_unlock_irqrestore(&dst_q->done_lock, flags); spin_lock_irqsave(&src_q->done_lock, flags); if (!list_empty(&src_q->done_list)) src_vb = list_first_entry(&src_q->done_list, struct vb2_buffer, done_entry); if (src_vb && (src_vb->state == VB2_BUF_STATE_DONE || src_vb->state == VB2_BUF_STATE_ERROR)) rc |= EPOLLOUT | EPOLLWRNORM; spin_unlock_irqrestore(&src_q->done_lock, flags); spin_lock_irqsave(&dst_q->done_lock, flags); if (!list_empty(&dst_q->done_list)) dst_vb = list_first_entry(&dst_q->done_list, struct vb2_buffer, done_entry); if (dst_vb && (dst_vb->state == VB2_BUF_STATE_DONE || dst_vb->state == VB2_BUF_STATE_ERROR)) rc |= EPOLLIN | EPOLLRDNORM; spin_unlock_irqrestore(&dst_q->done_lock, flags); end: return rc; } EXPORT_SYMBOL_GPL(v4l2_m2m_poll); int v4l2_m2m_mmap(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, struct vm_area_struct *vma) { unsigned long offset = vma->vm_pgoff << PAGE_SHIFT; struct vb2_queue *vq; if (offset < DST_QUEUE_OFF_BASE) { vq = v4l2_m2m_get_src_vq(m2m_ctx); } else { vq = v4l2_m2m_get_dst_vq(m2m_ctx); vma->vm_pgoff -= (DST_QUEUE_OFF_BASE >> PAGE_SHIFT); } return vb2_mmap(vq, vma); } EXPORT_SYMBOL(v4l2_m2m_mmap); #if defined(CONFIG_MEDIA_CONTROLLER) void v4l2_m2m_unregister_media_controller(struct v4l2_m2m_dev *m2m_dev) { media_remove_intf_links(&m2m_dev->intf_devnode->intf); media_devnode_remove(m2m_dev->intf_devnode); media_entity_remove_links(m2m_dev->source); media_entity_remove_links(&m2m_dev->sink); media_entity_remove_links(&m2m_dev->proc); media_device_unregister_entity(m2m_dev->source); media_device_unregister_entity(&m2m_dev->sink); media_device_unregister_entity(&m2m_dev->proc); kfree(m2m_dev->source->name); kfree(m2m_dev->sink.name); kfree(m2m_dev->proc.name); } EXPORT_SYMBOL_GPL(v4l2_m2m_unregister_media_controller); static int v4l2_m2m_register_entity(struct media_device *mdev, struct v4l2_m2m_dev *m2m_dev, enum v4l2_m2m_entity_type type, struct video_device *vdev, int function) { struct media_entity *entity; struct media_pad *pads; char *name; unsigned int len; int num_pads; int ret; switch (type) { case MEM2MEM_ENT_TYPE_SOURCE: entity = m2m_dev->source; pads = &m2m_dev->source_pad; pads[0].flags = MEDIA_PAD_FL_SOURCE; num_pads = 1; break; case MEM2MEM_ENT_TYPE_SINK: entity = &m2m_dev->sink; pads = &m2m_dev->sink_pad; pads[0].flags = MEDIA_PAD_FL_SINK; num_pads = 1; break; case MEM2MEM_ENT_TYPE_PROC: entity = &m2m_dev->proc; pads = m2m_dev->proc_pads; pads[0].flags = MEDIA_PAD_FL_SINK; pads[1].flags = MEDIA_PAD_FL_SOURCE; num_pads = 2; break; default: return -EINVAL; } entity->obj_type = MEDIA_ENTITY_TYPE_BASE; if (type != MEM2MEM_ENT_TYPE_PROC) { entity->info.dev.major = VIDEO_MAJOR; entity->info.dev.minor = vdev->minor; } len = strlen(vdev->name) + 2 + strlen(m2m_entity_name[type]); name = kmalloc(len, GFP_KERNEL); if (!name) return -ENOMEM; snprintf(name, len, "%s-%s", vdev->name, m2m_entity_name[type]); entity->name = name; entity->function = function; ret = media_entity_pads_init(entity, num_pads, pads); if (ret) return ret; ret = media_device_register_entity(mdev, entity); if (ret) return ret; return 0; } int v4l2_m2m_register_media_controller(struct v4l2_m2m_dev *m2m_dev, struct video_device *vdev, int function) { struct media_device *mdev = vdev->v4l2_dev->mdev; struct media_link *link; int ret; if (!mdev) return 0; /* A memory-to-memory device consists in two * DMA engine and one video processing entities. * The DMA engine entities are linked to a V4L interface */ /* Create the three entities with their pads */ m2m_dev->source = &vdev->entity; ret = v4l2_m2m_register_entity(mdev, m2m_dev, MEM2MEM_ENT_TYPE_SOURCE, vdev, MEDIA_ENT_F_IO_V4L); if (ret) return ret; ret = v4l2_m2m_register_entity(mdev, m2m_dev, MEM2MEM_ENT_TYPE_PROC, vdev, function); if (ret) goto err_rel_entity0; ret = v4l2_m2m_register_entity(mdev, m2m_dev, MEM2MEM_ENT_TYPE_SINK, vdev, MEDIA_ENT_F_IO_V4L); if (ret) goto err_rel_entity1; /* Connect the three entities */ ret = media_create_pad_link(m2m_dev->source, 0, &m2m_dev->proc, 1, MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); if (ret) goto err_rel_entity2; ret = media_create_pad_link(&m2m_dev->proc, 0, &m2m_dev->sink, 0, MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); if (ret) goto err_rm_links0; /* Create video interface */ m2m_dev->intf_devnode = media_devnode_create(mdev, MEDIA_INTF_T_V4L_VIDEO, 0, VIDEO_MAJOR, vdev->minor); if (!m2m_dev->intf_devnode) { ret = -ENOMEM; goto err_rm_links1; } /* Connect the two DMA engines to the interface */ link = media_create_intf_link(m2m_dev->source, &m2m_dev->intf_devnode->intf, MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); if (!link) { ret = -ENOMEM; goto err_rm_devnode; } link = media_create_intf_link(&m2m_dev->sink, &m2m_dev->intf_devnode->intf, MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); if (!link) { ret = -ENOMEM; goto err_rm_intf_link; } return 0; err_rm_intf_link: media_remove_intf_links(&m2m_dev->intf_devnode->intf); err_rm_devnode: media_devnode_remove(m2m_dev->intf_devnode); err_rm_links1: media_entity_remove_links(&m2m_dev->sink); err_rm_links0: media_entity_remove_links(&m2m_dev->proc); media_entity_remove_links(m2m_dev->source); err_rel_entity2: media_device_unregister_entity(&m2m_dev->proc); kfree(m2m_dev->proc.name); err_rel_entity1: media_device_unregister_entity(&m2m_dev->sink); kfree(m2m_dev->sink.name); err_rel_entity0: media_device_unregister_entity(m2m_dev->source); kfree(m2m_dev->source->name); return ret; return 0; } EXPORT_SYMBOL_GPL(v4l2_m2m_register_media_controller); #endif struct v4l2_m2m_dev *v4l2_m2m_init(const struct v4l2_m2m_ops *m2m_ops) { struct v4l2_m2m_dev *m2m_dev; if (!m2m_ops || WARN_ON(!m2m_ops->device_run)) return ERR_PTR(-EINVAL); m2m_dev = kzalloc(sizeof *m2m_dev, GFP_KERNEL); if (!m2m_dev) return ERR_PTR(-ENOMEM); m2m_dev->curr_ctx = NULL; m2m_dev->m2m_ops = m2m_ops; INIT_LIST_HEAD(&m2m_dev->job_queue); spin_lock_init(&m2m_dev->job_spinlock); INIT_WORK(&m2m_dev->job_work, v4l2_m2m_device_run_work); return m2m_dev; } EXPORT_SYMBOL_GPL(v4l2_m2m_init); void v4l2_m2m_release(struct v4l2_m2m_dev *m2m_dev) { kfree(m2m_dev); } EXPORT_SYMBOL_GPL(v4l2_m2m_release); struct v4l2_m2m_ctx *v4l2_m2m_ctx_init(struct v4l2_m2m_dev *m2m_dev, void *drv_priv, int (*queue_init)(void *priv, struct vb2_queue *src_vq, struct vb2_queue *dst_vq)) { struct v4l2_m2m_ctx *m2m_ctx; struct v4l2_m2m_queue_ctx *out_q_ctx, *cap_q_ctx; int ret; m2m_ctx = kzalloc(sizeof *m2m_ctx, GFP_KERNEL); if (!m2m_ctx) return ERR_PTR(-ENOMEM); m2m_ctx->priv = drv_priv; m2m_ctx->m2m_dev = m2m_dev; init_waitqueue_head(&m2m_ctx->finished); out_q_ctx = &m2m_ctx->out_q_ctx; cap_q_ctx = &m2m_ctx->cap_q_ctx; INIT_LIST_HEAD(&out_q_ctx->rdy_queue); INIT_LIST_HEAD(&cap_q_ctx->rdy_queue); spin_lock_init(&out_q_ctx->rdy_spinlock); spin_lock_init(&cap_q_ctx->rdy_spinlock); INIT_LIST_HEAD(&m2m_ctx->queue); ret = queue_init(drv_priv, &out_q_ctx->q, &cap_q_ctx->q); if (ret) goto err; /* * Both queues should use same the mutex to lock the m2m context. * This lock is used in some v4l2_m2m_* helpers. */ if (WARN_ON(out_q_ctx->q.lock != cap_q_ctx->q.lock)) { ret = -EINVAL; goto err; } m2m_ctx->q_lock = out_q_ctx->q.lock; return m2m_ctx; err: kfree(m2m_ctx); return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_init); void v4l2_m2m_ctx_release(struct v4l2_m2m_ctx *m2m_ctx) { /* wait until the current context is dequeued from job_queue */ v4l2_m2m_cancel_job(m2m_ctx); vb2_queue_release(&m2m_ctx->cap_q_ctx.q); vb2_queue_release(&m2m_ctx->out_q_ctx.q); kfree(m2m_ctx); } EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_release); void v4l2_m2m_buf_queue(struct v4l2_m2m_ctx *m2m_ctx, struct vb2_v4l2_buffer *vbuf) { struct v4l2_m2m_buffer *b = container_of(vbuf, struct v4l2_m2m_buffer, vb); struct v4l2_m2m_queue_ctx *q_ctx; unsigned long flags; q_ctx = get_queue_ctx(m2m_ctx, vbuf->vb2_buf.vb2_queue->type); if (!q_ctx) return; spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); list_add_tail(&b->list, &q_ctx->rdy_queue); q_ctx->num_rdy++; spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); } EXPORT_SYMBOL_GPL(v4l2_m2m_buf_queue); void v4l2_m2m_buf_copy_metadata(const struct vb2_v4l2_buffer *out_vb, struct vb2_v4l2_buffer *cap_vb, bool copy_frame_flags) { u32 mask = V4L2_BUF_FLAG_TIMECODE | V4L2_BUF_FLAG_TSTAMP_SRC_MASK; if (copy_frame_flags) mask |= V4L2_BUF_FLAG_KEYFRAME | V4L2_BUF_FLAG_PFRAME | V4L2_BUF_FLAG_BFRAME; cap_vb->vb2_buf.timestamp = out_vb->vb2_buf.timestamp; if (out_vb->flags & V4L2_BUF_FLAG_TIMECODE) cap_vb->timecode = out_vb->timecode; cap_vb->field = out_vb->field; cap_vb->flags &= ~mask; cap_vb->flags |= out_vb->flags & mask; cap_vb->vb2_buf.copied_timestamp = 1; } EXPORT_SYMBOL_GPL(v4l2_m2m_buf_copy_metadata); void v4l2_m2m_request_queue(struct media_request *req) { struct media_request_object *obj, *obj_safe; struct v4l2_m2m_ctx *m2m_ctx = NULL; /* * Queue all objects. Note that buffer objects are at the end of the * objects list, after all other object types. Once buffer objects * are queued, the driver might delete them immediately (if the driver * processes the buffer at once), so we have to use * list_for_each_entry_safe() to handle the case where the object we * queue is deleted. */ list_for_each_entry_safe(obj, obj_safe, &req->objects, list) { struct v4l2_m2m_ctx *m2m_ctx_obj; struct vb2_buffer *vb; if (!obj->ops->queue) continue; if (vb2_request_object_is_buffer(obj)) { /* Sanity checks */ vb = container_of(obj, struct vb2_buffer, req_obj); WARN_ON(!V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type)); m2m_ctx_obj = container_of(vb->vb2_queue, struct v4l2_m2m_ctx, out_q_ctx.q); WARN_ON(m2m_ctx && m2m_ctx_obj != m2m_ctx); m2m_ctx = m2m_ctx_obj; } /* * The buffer we queue here can in theory be immediately * unbound, hence the use of list_for_each_entry_safe() * above and why we call the queue op last. */ obj->ops->queue(obj); } WARN_ON(!m2m_ctx); if (m2m_ctx) v4l2_m2m_try_schedule(m2m_ctx); } EXPORT_SYMBOL_GPL(v4l2_m2m_request_queue); /* Videobuf2 ioctl helpers */ int v4l2_m2m_ioctl_reqbufs(struct file *file, void *priv, struct v4l2_requestbuffers *rb) { struct v4l2_fh *fh = file->private_data; return v4l2_m2m_reqbufs(file, fh->m2m_ctx, rb); } EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_reqbufs); int v4l2_m2m_ioctl_create_bufs(struct file *file, void *priv, struct v4l2_create_buffers *create) { struct v4l2_fh *fh = file->private_data; return v4l2_m2m_create_bufs(file, fh->m2m_ctx, create); } EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_create_bufs); int v4l2_m2m_ioctl_querybuf(struct file *file, void *priv, struct v4l2_buffer *buf) { struct v4l2_fh *fh = file->private_data; return v4l2_m2m_querybuf(file, fh->m2m_ctx, buf); } EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_querybuf); int v4l2_m2m_ioctl_qbuf(struct file *file, void *priv, struct v4l2_buffer *buf) { struct v4l2_fh *fh = file->private_data; return v4l2_m2m_qbuf(file, fh->m2m_ctx, buf); } EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_qbuf); int v4l2_m2m_ioctl_dqbuf(struct file *file, void *priv, struct v4l2_buffer *buf) { struct v4l2_fh *fh = file->private_data; return v4l2_m2m_dqbuf(file, fh->m2m_ctx, buf); } EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_dqbuf); int v4l2_m2m_ioctl_prepare_buf(struct file *file, void *priv, struct v4l2_buffer *buf) { struct v4l2_fh *fh = file->private_data; return v4l2_m2m_prepare_buf(file, fh->m2m_ctx, buf); } EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_prepare_buf); int v4l2_m2m_ioctl_expbuf(struct file *file, void *priv, struct v4l2_exportbuffer *eb) { struct v4l2_fh *fh = file->private_data; return v4l2_m2m_expbuf(file, fh->m2m_ctx, eb); } EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_expbuf); int v4l2_m2m_ioctl_streamon(struct file *file, void *priv, enum v4l2_buf_type type) { struct v4l2_fh *fh = file->private_data; return v4l2_m2m_streamon(file, fh->m2m_ctx, type); } EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamon); int v4l2_m2m_ioctl_streamoff(struct file *file, void *priv, enum v4l2_buf_type type) { struct v4l2_fh *fh = file->private_data; return v4l2_m2m_streamoff(file, fh->m2m_ctx, type); } EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamoff); int v4l2_m2m_ioctl_try_encoder_cmd(struct file *file, void *fh, struct v4l2_encoder_cmd *ec) { if (ec->cmd != V4L2_ENC_CMD_STOP && ec->cmd != V4L2_ENC_CMD_START) return -EINVAL; ec->flags = 0; return 0; } EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_try_encoder_cmd); int v4l2_m2m_ioctl_try_decoder_cmd(struct file *file, void *fh, struct v4l2_decoder_cmd *dc) { if (dc->cmd != V4L2_DEC_CMD_STOP && dc->cmd != V4L2_DEC_CMD_START) return -EINVAL; dc->flags = 0; if (dc->cmd == V4L2_DEC_CMD_STOP) { dc->stop.pts = 0; } else if (dc->cmd == V4L2_DEC_CMD_START) { dc->start.speed = 0; dc->start.format = V4L2_DEC_START_FMT_NONE; } return 0; } EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_try_decoder_cmd); /* * v4l2_file_operations helpers. It is assumed here same lock is used * for the output and the capture buffer queue. */ int v4l2_m2m_fop_mmap(struct file *file, struct vm_area_struct *vma) { struct v4l2_fh *fh = file->private_data; return v4l2_m2m_mmap(file, fh->m2m_ctx, vma); } EXPORT_SYMBOL_GPL(v4l2_m2m_fop_mmap); __poll_t v4l2_m2m_fop_poll(struct file *file, poll_table *wait) { struct v4l2_fh *fh = file->private_data; struct v4l2_m2m_ctx *m2m_ctx = fh->m2m_ctx; __poll_t ret; if (m2m_ctx->q_lock) mutex_lock(m2m_ctx->q_lock); ret = v4l2_m2m_poll(file, m2m_ctx, wait); if (m2m_ctx->q_lock) mutex_unlock(m2m_ctx->q_lock); return ret; } EXPORT_SYMBOL_GPL(v4l2_m2m_fop_poll);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1