Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Brownell | 1441 | 53.17% | 1 | 2.38% |
Ilkka Koskinen | 470 | 17.34% | 2 | 4.76% |
Felipe Balbi | 458 | 16.90% | 6 | 14.29% |
Benoît Cousson | 135 | 4.98% | 3 | 7.14% |
Neil Brown | 66 | 2.44% | 5 | 11.90% |
Mark Brown | 27 | 1.00% | 1 | 2.38% |
Lee Jones | 22 | 0.81% | 2 | 4.76% |
Russell King | 19 | 0.70% | 1 | 2.38% |
Thomas Gleixner | 13 | 0.48% | 5 | 11.90% |
Balaji T K | 9 | 0.33% | 2 | 4.76% |
Uwe Kleine-König | 9 | 0.33% | 1 | 2.38% |
Javier Martinez Canillas | 6 | 0.22% | 1 | 2.38% |
Grazvydas Ignotas | 5 | 0.18% | 1 | 2.38% |
Kevin Hilman | 5 | 0.18% | 1 | 2.38% |
Felipe Contreras | 5 | 0.18% | 1 | 2.38% |
Rob Herring | 4 | 0.15% | 1 | 2.38% |
Manjunath Kondaiah G | 3 | 0.11% | 1 | 2.38% |
Tejun Heo | 3 | 0.11% | 1 | 2.38% |
Samuel Ortiz | 3 | 0.11% | 1 | 2.38% |
Fabio Estevam | 2 | 0.07% | 1 | 2.38% |
Arnd Bergmann | 2 | 0.07% | 1 | 2.38% |
Kalle Jokiniemi | 1 | 0.04% | 1 | 2.38% |
Wolfram Sang | 1 | 0.04% | 1 | 2.38% |
Peter Ujfalusi | 1 | 0.04% | 1 | 2.38% |
Total | 2710 | 42 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * twl4030-irq.c - TWL4030/TPS659x0 irq support * * Copyright (C) 2005-2006 Texas Instruments, Inc. * * Modifications to defer interrupt handling to a kernel thread: * Copyright (C) 2006 MontaVista Software, Inc. * * Based on tlv320aic23.c: * Copyright (c) by Kai Svahn <kai.svahn@nokia.com> * * Code cleanup and modifications to IRQ handler. * by syed khasim <x0khasim@ti.com> */ #include <linux/export.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/slab.h> #include <linux/of.h> #include <linux/irqdomain.h> #include <linux/mfd/twl.h> #include "twl-core.h" /* * TWL4030 IRQ handling has two stages in hardware, and thus in software. * The Primary Interrupt Handler (PIH) stage exposes status bits saying * which Secondary Interrupt Handler (SIH) stage is raising an interrupt. * SIH modules are more traditional IRQ components, which support per-IRQ * enable/disable and trigger controls; they do most of the work. * * These chips are designed to support IRQ handling from two different * I2C masters. Each has a dedicated IRQ line, and dedicated IRQ status * and mask registers in the PIH and SIH modules. * * We set up IRQs starting at a platform-specified base, always starting * with PIH and the SIH for PWR_INT and then usually adding GPIO: * base + 0 .. base + 7 PIH * base + 8 .. base + 15 SIH for PWR_INT * base + 16 .. base + 33 SIH for GPIO */ #define TWL4030_CORE_NR_IRQS 8 #define TWL4030_PWR_NR_IRQS 8 /* PIH register offsets */ #define REG_PIH_ISR_P1 0x01 #define REG_PIH_ISR_P2 0x02 #define REG_PIH_SIR 0x03 /* for testing */ /* Linux could (eventually) use either IRQ line */ static int irq_line; struct sih { char name[8]; u8 module; /* module id */ u8 control_offset; /* for SIH_CTRL */ bool set_cor; u8 bits; /* valid in isr/imr */ u8 bytes_ixr; /* bytelen of ISR/IMR/SIR */ u8 edr_offset; u8 bytes_edr; /* bytelen of EDR */ u8 irq_lines; /* number of supported irq lines */ /* SIR ignored -- set interrupt, for testing only */ struct sih_irq_data { u8 isr_offset; u8 imr_offset; } mask[2]; /* + 2 bytes padding */ }; static const struct sih *sih_modules; static int nr_sih_modules; #define SIH_INITIALIZER(modname, nbits) \ .module = TWL4030_MODULE_ ## modname, \ .control_offset = TWL4030_ ## modname ## _SIH_CTRL, \ .bits = nbits, \ .bytes_ixr = DIV_ROUND_UP(nbits, 8), \ .edr_offset = TWL4030_ ## modname ## _EDR, \ .bytes_edr = DIV_ROUND_UP((2*(nbits)), 8), \ .irq_lines = 2, \ .mask = { { \ .isr_offset = TWL4030_ ## modname ## _ISR1, \ .imr_offset = TWL4030_ ## modname ## _IMR1, \ }, \ { \ .isr_offset = TWL4030_ ## modname ## _ISR2, \ .imr_offset = TWL4030_ ## modname ## _IMR2, \ }, }, /* register naming policies are inconsistent ... */ #define TWL4030_INT_PWR_EDR TWL4030_INT_PWR_EDR1 #define TWL4030_MODULE_KEYPAD_KEYP TWL4030_MODULE_KEYPAD #define TWL4030_MODULE_INT_PWR TWL4030_MODULE_INT /* * Order in this table matches order in PIH_ISR. That is, * BIT(n) in PIH_ISR is sih_modules[n]. */ /* sih_modules_twl4030 is used both in twl4030 and twl5030 */ static const struct sih sih_modules_twl4030[6] = { [0] = { .name = "gpio", .module = TWL4030_MODULE_GPIO, .control_offset = REG_GPIO_SIH_CTRL, .set_cor = true, .bits = TWL4030_GPIO_MAX, .bytes_ixr = 3, /* Note: *all* of these IRQs default to no-trigger */ .edr_offset = REG_GPIO_EDR1, .bytes_edr = 5, .irq_lines = 2, .mask = { { .isr_offset = REG_GPIO_ISR1A, .imr_offset = REG_GPIO_IMR1A, }, { .isr_offset = REG_GPIO_ISR1B, .imr_offset = REG_GPIO_IMR1B, }, }, }, [1] = { .name = "keypad", .set_cor = true, SIH_INITIALIZER(KEYPAD_KEYP, 4) }, [2] = { .name = "bci", .module = TWL4030_MODULE_INTERRUPTS, .control_offset = TWL4030_INTERRUPTS_BCISIHCTRL, .set_cor = true, .bits = 12, .bytes_ixr = 2, .edr_offset = TWL4030_INTERRUPTS_BCIEDR1, /* Note: most of these IRQs default to no-trigger */ .bytes_edr = 3, .irq_lines = 2, .mask = { { .isr_offset = TWL4030_INTERRUPTS_BCIISR1A, .imr_offset = TWL4030_INTERRUPTS_BCIIMR1A, }, { .isr_offset = TWL4030_INTERRUPTS_BCIISR1B, .imr_offset = TWL4030_INTERRUPTS_BCIIMR1B, }, }, }, [3] = { .name = "madc", SIH_INITIALIZER(MADC, 4) }, [4] = { /* USB doesn't use the same SIH organization */ .name = "usb", }, [5] = { .name = "power", .set_cor = true, SIH_INITIALIZER(INT_PWR, 8) }, /* there are no SIH modules #6 or #7 ... */ }; static const struct sih sih_modules_twl5031[8] = { [0] = { .name = "gpio", .module = TWL4030_MODULE_GPIO, .control_offset = REG_GPIO_SIH_CTRL, .set_cor = true, .bits = TWL4030_GPIO_MAX, .bytes_ixr = 3, /* Note: *all* of these IRQs default to no-trigger */ .edr_offset = REG_GPIO_EDR1, .bytes_edr = 5, .irq_lines = 2, .mask = { { .isr_offset = REG_GPIO_ISR1A, .imr_offset = REG_GPIO_IMR1A, }, { .isr_offset = REG_GPIO_ISR1B, .imr_offset = REG_GPIO_IMR1B, }, }, }, [1] = { .name = "keypad", .set_cor = true, SIH_INITIALIZER(KEYPAD_KEYP, 4) }, [2] = { .name = "bci", .module = TWL5031_MODULE_INTERRUPTS, .control_offset = TWL5031_INTERRUPTS_BCISIHCTRL, .bits = 7, .bytes_ixr = 1, .edr_offset = TWL5031_INTERRUPTS_BCIEDR1, /* Note: most of these IRQs default to no-trigger */ .bytes_edr = 2, .irq_lines = 2, .mask = { { .isr_offset = TWL5031_INTERRUPTS_BCIISR1, .imr_offset = TWL5031_INTERRUPTS_BCIIMR1, }, { .isr_offset = TWL5031_INTERRUPTS_BCIISR2, .imr_offset = TWL5031_INTERRUPTS_BCIIMR2, }, }, }, [3] = { .name = "madc", SIH_INITIALIZER(MADC, 4) }, [4] = { /* USB doesn't use the same SIH organization */ .name = "usb", }, [5] = { .name = "power", .set_cor = true, SIH_INITIALIZER(INT_PWR, 8) }, [6] = { /* * ECI/DBI doesn't use the same SIH organization. * For example, it supports only one interrupt output line. * That is, the interrupts are seen on both INT1 and INT2 lines. */ .name = "eci_dbi", .module = TWL5031_MODULE_ACCESSORY, .bits = 9, .bytes_ixr = 2, .irq_lines = 1, .mask = { { .isr_offset = TWL5031_ACIIDR_LSB, .imr_offset = TWL5031_ACIIMR_LSB, }, }, }, [7] = { /* Audio accessory */ .name = "audio", .module = TWL5031_MODULE_ACCESSORY, .control_offset = TWL5031_ACCSIHCTRL, .bits = 2, .bytes_ixr = 1, .edr_offset = TWL5031_ACCEDR1, /* Note: most of these IRQs default to no-trigger */ .bytes_edr = 1, .irq_lines = 2, .mask = { { .isr_offset = TWL5031_ACCISR1, .imr_offset = TWL5031_ACCIMR1, }, { .isr_offset = TWL5031_ACCISR2, .imr_offset = TWL5031_ACCIMR2, }, }, }, }; #undef TWL4030_MODULE_KEYPAD_KEYP #undef TWL4030_MODULE_INT_PWR #undef TWL4030_INT_PWR_EDR /*----------------------------------------------------------------------*/ static unsigned twl4030_irq_base; /* * handle_twl4030_pih() is the desc->handle method for the twl4030 interrupt. * This is a chained interrupt, so there is no desc->action method for it. * Now we need to query the interrupt controller in the twl4030 to determine * which module is generating the interrupt request. However, we can't do i2c * transactions in interrupt context, so we must defer that work to a kernel * thread. All we do here is acknowledge and mask the interrupt and wakeup * the kernel thread. */ static irqreturn_t handle_twl4030_pih(int irq, void *devid) { irqreturn_t ret; u8 pih_isr; ret = twl_i2c_read_u8(TWL_MODULE_PIH, &pih_isr, REG_PIH_ISR_P1); if (ret) { pr_warn("twl4030: I2C error %d reading PIH ISR\n", ret); return IRQ_NONE; } while (pih_isr) { unsigned long pending = __ffs(pih_isr); unsigned int irq; pih_isr &= ~BIT(pending); irq = pending + twl4030_irq_base; handle_nested_irq(irq); } return IRQ_HANDLED; } /*----------------------------------------------------------------------*/ /* * twl4030_init_sih_modules() ... start from a known state where no * IRQs will be coming in, and where we can quickly enable them then * handle them as they arrive. Mask all IRQs: maybe init SIH_CTRL. * * NOTE: we don't touch EDR registers here; they stay with hardware * defaults or whatever the last value was. Note that when both EDR * bits for an IRQ are clear, that's as if its IMR bit is set... */ static int twl4030_init_sih_modules(unsigned line) { const struct sih *sih; u8 buf[4]; int i; int status; /* line 0 == int1_n signal; line 1 == int2_n signal */ if (line > 1) return -EINVAL; irq_line = line; /* disable all interrupts on our line */ memset(buf, 0xff, sizeof(buf)); sih = sih_modules; for (i = 0; i < nr_sih_modules; i++, sih++) { /* skip USB -- it's funky */ if (!sih->bytes_ixr) continue; /* Not all the SIH modules support multiple interrupt lines */ if (sih->irq_lines <= line) continue; status = twl_i2c_write(sih->module, buf, sih->mask[line].imr_offset, sih->bytes_ixr); if (status < 0) pr_err("twl4030: err %d initializing %s %s\n", status, sih->name, "IMR"); /* * Maybe disable "exclusive" mode; buffer second pending irq; * set Clear-On-Read (COR) bit. * * NOTE that sometimes COR polarity is documented as being * inverted: for MADC, COR=1 means "clear on write". * And for PWR_INT it's not documented... */ if (sih->set_cor) { status = twl_i2c_write_u8(sih->module, TWL4030_SIH_CTRL_COR_MASK, sih->control_offset); if (status < 0) pr_err("twl4030: err %d initializing %s %s\n", status, sih->name, "SIH_CTRL"); } } sih = sih_modules; for (i = 0; i < nr_sih_modules; i++, sih++) { u8 rxbuf[4]; int j; /* skip USB */ if (!sih->bytes_ixr) continue; /* Not all the SIH modules support multiple interrupt lines */ if (sih->irq_lines <= line) continue; /* * Clear pending interrupt status. Either the read was * enough, or we need to write those bits. Repeat, in * case an IRQ is pending (PENDDIS=0) ... that's not * uncommon with PWR_INT.PWRON. */ for (j = 0; j < 2; j++) { status = twl_i2c_read(sih->module, rxbuf, sih->mask[line].isr_offset, sih->bytes_ixr); if (status < 0) pr_warn("twl4030: err %d initializing %s %s\n", status, sih->name, "ISR"); if (!sih->set_cor) { status = twl_i2c_write(sih->module, buf, sih->mask[line].isr_offset, sih->bytes_ixr); if (status < 0) pr_warn("twl4030: write failed: %d\n", status); } /* * else COR=1 means read sufficed. * (for most SIH modules...) */ } } return 0; } static inline void activate_irq(int irq) { irq_clear_status_flags(irq, IRQ_NOREQUEST | IRQ_NOPROBE); } /*----------------------------------------------------------------------*/ struct sih_agent { int irq_base; const struct sih *sih; u32 imr; bool imr_change_pending; u32 edge_change; struct mutex irq_lock; char *irq_name; }; /*----------------------------------------------------------------------*/ /* * All irq_chip methods get issued from code holding irq_desc[irq].lock, * which can't perform the underlying I2C operations (because they sleep). * So we must hand them off to a thread (workqueue) and cope with asynch * completion, potentially including some re-ordering, of these requests. */ static void twl4030_sih_mask(struct irq_data *data) { struct sih_agent *agent = irq_data_get_irq_chip_data(data); agent->imr |= BIT(data->irq - agent->irq_base); agent->imr_change_pending = true; } static void twl4030_sih_unmask(struct irq_data *data) { struct sih_agent *agent = irq_data_get_irq_chip_data(data); agent->imr &= ~BIT(data->irq - agent->irq_base); agent->imr_change_pending = true; } static int twl4030_sih_set_type(struct irq_data *data, unsigned trigger) { struct sih_agent *agent = irq_data_get_irq_chip_data(data); if (trigger & ~(IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_EDGE_RISING)) return -EINVAL; if (irqd_get_trigger_type(data) != trigger) agent->edge_change |= BIT(data->irq - agent->irq_base); return 0; } static void twl4030_sih_bus_lock(struct irq_data *data) { struct sih_agent *agent = irq_data_get_irq_chip_data(data); mutex_lock(&agent->irq_lock); } static void twl4030_sih_bus_sync_unlock(struct irq_data *data) { struct sih_agent *agent = irq_data_get_irq_chip_data(data); const struct sih *sih = agent->sih; int status; if (agent->imr_change_pending) { union { u32 word; u8 bytes[4]; } imr; /* byte[0] gets overwritten as we write ... */ imr.word = cpu_to_le32(agent->imr); agent->imr_change_pending = false; /* write the whole mask ... simpler than subsetting it */ status = twl_i2c_write(sih->module, imr.bytes, sih->mask[irq_line].imr_offset, sih->bytes_ixr); if (status) pr_err("twl4030: %s, %s --> %d\n", __func__, "write", status); } if (agent->edge_change) { u32 edge_change; u8 bytes[6]; edge_change = agent->edge_change; agent->edge_change = 0; /* * Read, reserving first byte for write scratch. Yes, this * could be cached for some speedup ... but be careful about * any processor on the other IRQ line, EDR registers are * shared. */ status = twl_i2c_read(sih->module, bytes, sih->edr_offset, sih->bytes_edr); if (status) { pr_err("twl4030: %s, %s --> %d\n", __func__, "read", status); return; } /* Modify only the bits we know must change */ while (edge_change) { int i = fls(edge_change) - 1; int byte = i >> 2; int off = (i & 0x3) * 2; unsigned int type; bytes[byte] &= ~(0x03 << off); type = irq_get_trigger_type(i + agent->irq_base); if (type & IRQ_TYPE_EDGE_RISING) bytes[byte] |= BIT(off + 1); if (type & IRQ_TYPE_EDGE_FALLING) bytes[byte] |= BIT(off + 0); edge_change &= ~BIT(i); } /* Write */ status = twl_i2c_write(sih->module, bytes, sih->edr_offset, sih->bytes_edr); if (status) pr_err("twl4030: %s, %s --> %d\n", __func__, "write", status); } mutex_unlock(&agent->irq_lock); } static struct irq_chip twl4030_sih_irq_chip = { .name = "twl4030", .irq_mask = twl4030_sih_mask, .irq_unmask = twl4030_sih_unmask, .irq_set_type = twl4030_sih_set_type, .irq_bus_lock = twl4030_sih_bus_lock, .irq_bus_sync_unlock = twl4030_sih_bus_sync_unlock, .flags = IRQCHIP_SKIP_SET_WAKE, }; /*----------------------------------------------------------------------*/ static inline int sih_read_isr(const struct sih *sih) { int status; union { u8 bytes[4]; u32 word; } isr; /* FIXME need retry-on-error ... */ isr.word = 0; status = twl_i2c_read(sih->module, isr.bytes, sih->mask[irq_line].isr_offset, sih->bytes_ixr); return (status < 0) ? status : le32_to_cpu(isr.word); } /* * Generic handler for SIH interrupts ... we "know" this is called * in task context, with IRQs enabled. */ static irqreturn_t handle_twl4030_sih(int irq, void *data) { struct sih_agent *agent = irq_get_handler_data(irq); const struct sih *sih = agent->sih; int isr; /* reading ISR acks the IRQs, using clear-on-read mode */ isr = sih_read_isr(sih); if (isr < 0) { pr_err("twl4030: %s SIH, read ISR error %d\n", sih->name, isr); /* REVISIT: recover; eventually mask it all, etc */ return IRQ_HANDLED; } while (isr) { irq = fls(isr); irq--; isr &= ~BIT(irq); if (irq < sih->bits) handle_nested_irq(agent->irq_base + irq); else pr_err("twl4030: %s SIH, invalid ISR bit %d\n", sih->name, irq); } return IRQ_HANDLED; } /* returns the first IRQ used by this SIH bank, or negative errno */ int twl4030_sih_setup(struct device *dev, int module, int irq_base) { int sih_mod; const struct sih *sih = NULL; struct sih_agent *agent; int i, irq; int status = -EINVAL; /* only support modules with standard clear-on-read for now */ for (sih_mod = 0, sih = sih_modules; sih_mod < nr_sih_modules; sih_mod++, sih++) { if (sih->module == module && sih->set_cor) { status = 0; break; } } if (status < 0) { dev_err(dev, "module to setup SIH for not found\n"); return status; } agent = kzalloc(sizeof(*agent), GFP_KERNEL); if (!agent) return -ENOMEM; agent->irq_base = irq_base; agent->sih = sih; agent->imr = ~0; mutex_init(&agent->irq_lock); for (i = 0; i < sih->bits; i++) { irq = irq_base + i; irq_set_chip_data(irq, agent); irq_set_chip_and_handler(irq, &twl4030_sih_irq_chip, handle_edge_irq); irq_set_nested_thread(irq, 1); activate_irq(irq); } /* replace generic PIH handler (handle_simple_irq) */ irq = sih_mod + twl4030_irq_base; irq_set_handler_data(irq, agent); agent->irq_name = kasprintf(GFP_KERNEL, "twl4030_%s", sih->name); status = request_threaded_irq(irq, NULL, handle_twl4030_sih, IRQF_EARLY_RESUME | IRQF_ONESHOT, agent->irq_name ?: sih->name, NULL); dev_info(dev, "%s (irq %d) chaining IRQs %d..%d\n", sih->name, irq, irq_base, irq_base + i - 1); return status < 0 ? status : irq_base; } /* FIXME need a call to reverse twl4030_sih_setup() ... */ /*----------------------------------------------------------------------*/ /* FIXME pass in which interrupt line we'll use ... */ #define twl_irq_line 0 int twl4030_init_irq(struct device *dev, int irq_num) { static struct irq_chip twl4030_irq_chip; int status, i; int irq_base, irq_end, nr_irqs; struct device_node *node = dev->of_node; /* * TWL core and pwr interrupts must be contiguous because * the hwirqs numbers are defined contiguously from 1 to 15. * Create only one domain for both. */ nr_irqs = TWL4030_PWR_NR_IRQS + TWL4030_CORE_NR_IRQS; irq_base = irq_alloc_descs(-1, 0, nr_irqs, 0); if (irq_base < 0) { dev_err(dev, "Fail to allocate IRQ descs\n"); return irq_base; } irq_domain_add_legacy(node, nr_irqs, irq_base, 0, &irq_domain_simple_ops, NULL); irq_end = irq_base + TWL4030_CORE_NR_IRQS; /* * Mask and clear all TWL4030 interrupts since initially we do * not have any TWL4030 module interrupt handlers present */ status = twl4030_init_sih_modules(twl_irq_line); if (status < 0) return status; twl4030_irq_base = irq_base; /* * Install an irq handler for each of the SIH modules; * clone dummy irq_chip since PIH can't *do* anything */ twl4030_irq_chip = dummy_irq_chip; twl4030_irq_chip.name = "twl4030"; twl4030_sih_irq_chip.irq_ack = dummy_irq_chip.irq_ack; for (i = irq_base; i < irq_end; i++) { irq_set_chip_and_handler(i, &twl4030_irq_chip, handle_simple_irq); irq_set_nested_thread(i, 1); activate_irq(i); } dev_info(dev, "%s (irq %d) chaining IRQs %d..%d\n", "PIH", irq_num, irq_base, irq_end); /* ... and the PWR_INT module ... */ status = twl4030_sih_setup(dev, TWL4030_MODULE_INT, irq_end); if (status < 0) { dev_err(dev, "sih_setup PWR INT --> %d\n", status); goto fail; } /* install an irq handler to demultiplex the TWL4030 interrupt */ status = request_threaded_irq(irq_num, NULL, handle_twl4030_pih, IRQF_ONESHOT, "TWL4030-PIH", NULL); if (status < 0) { dev_err(dev, "could not claim irq%d: %d\n", irq_num, status); goto fail_rqirq; } enable_irq_wake(irq_num); return irq_base; fail_rqirq: /* clean up twl4030_sih_setup */ fail: for (i = irq_base; i < irq_end; i++) { irq_set_nested_thread(i, 0); irq_set_chip_and_handler(i, NULL, NULL); } return status; } int twl4030_exit_irq(void) { /* FIXME undo twl_init_irq() */ if (twl4030_irq_base) { pr_err("twl4030: can't yet clean up IRQs?\n"); return -ENOSYS; } return 0; } int twl4030_init_chip_irq(const char *chip) { if (!strcmp(chip, "twl5031")) { sih_modules = sih_modules_twl5031; nr_sih_modules = ARRAY_SIZE(sih_modules_twl5031); } else { sih_modules = sih_modules_twl4030; nr_sih_modules = ARRAY_SIZE(sih_modules_twl4030); } return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1