Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Yangbo Lu | 3059 | 60.59% | 24 | 33.33% |
yinbo.zhu | 787 | 15.59% | 8 | 11.11% |
Dong Aisheng | 147 | 2.91% | 2 | 2.78% |
Haijun Zhang | 147 | 2.91% | 2 | 2.78% |
Albert Herranz | 137 | 2.71% | 1 | 1.39% |
Oded Gabbay | 133 | 2.63% | 2 | 2.78% |
Russell King | 92 | 1.82% | 4 | 5.56% |
Shawn Guo | 90 | 1.78% | 2 | 2.78% |
Jerry Huang | 81 | 1.60% | 4 | 5.56% |
Xu lei | 51 | 1.01% | 1 | 1.39% |
Roy Zang | 51 | 1.01% | 1 | 1.39% |
Adrian Hunter | 51 | 1.01% | 2 | 2.78% |
Tudor Laurentiu | 45 | 0.89% | 1 | 1.39% |
Alessio Igor Bogani | 43 | 0.85% | 1 | 1.39% |
Michael Walle | 38 | 0.75% | 1 | 1.39% |
Ulf Hansson | 32 | 0.63% | 3 | 4.17% |
JiSheng Zhang | 24 | 0.48% | 1 | 1.39% |
Joakim Tjernlund | 15 | 0.30% | 1 | 1.39% |
Wolfram Sang | 6 | 0.12% | 1 | 1.39% |
Manuel Lauss | 5 | 0.10% | 1 | 1.39% |
Lucas Stach | 4 | 0.08% | 1 | 1.39% |
Paul Gortmaker | 3 | 0.06% | 1 | 1.39% |
Thomas Gleixner | 2 | 0.04% | 1 | 1.39% |
Julia Lawall | 1 | 0.02% | 1 | 1.39% |
Colin Ian King | 1 | 0.02% | 1 | 1.39% |
Axel Lin | 1 | 0.02% | 1 | 1.39% |
Kevin Hao | 1 | 0.02% | 1 | 1.39% |
Lars-Peter Clausen | 1 | 0.02% | 1 | 1.39% |
Christian Daudt | 1 | 0.02% | 1 | 1.39% |
Total | 5049 | 72 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Freescale eSDHC controller driver. * * Copyright (c) 2007, 2010, 2012 Freescale Semiconductor, Inc. * Copyright (c) 2009 MontaVista Software, Inc. * * Authors: Xiaobo Xie <X.Xie@freescale.com> * Anton Vorontsov <avorontsov@ru.mvista.com> */ #include <linux/err.h> #include <linux/io.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/delay.h> #include <linux/module.h> #include <linux/sys_soc.h> #include <linux/clk.h> #include <linux/ktime.h> #include <linux/dma-mapping.h> #include <linux/mmc/host.h> #include <linux/mmc/mmc.h> #include "sdhci-pltfm.h" #include "sdhci-esdhc.h" #define VENDOR_V_22 0x12 #define VENDOR_V_23 0x13 #define MMC_TIMING_NUM (MMC_TIMING_MMC_HS400 + 1) struct esdhc_clk_fixup { const unsigned int sd_dflt_max_clk; const unsigned int max_clk[MMC_TIMING_NUM]; }; static const struct esdhc_clk_fixup ls1021a_esdhc_clk = { .sd_dflt_max_clk = 25000000, .max_clk[MMC_TIMING_MMC_HS] = 46500000, .max_clk[MMC_TIMING_SD_HS] = 46500000, }; static const struct esdhc_clk_fixup ls1046a_esdhc_clk = { .sd_dflt_max_clk = 25000000, .max_clk[MMC_TIMING_UHS_SDR104] = 167000000, .max_clk[MMC_TIMING_MMC_HS200] = 167000000, }; static const struct esdhc_clk_fixup ls1012a_esdhc_clk = { .sd_dflt_max_clk = 25000000, .max_clk[MMC_TIMING_UHS_SDR104] = 125000000, .max_clk[MMC_TIMING_MMC_HS200] = 125000000, }; static const struct esdhc_clk_fixup p1010_esdhc_clk = { .sd_dflt_max_clk = 20000000, .max_clk[MMC_TIMING_LEGACY] = 20000000, .max_clk[MMC_TIMING_MMC_HS] = 42000000, .max_clk[MMC_TIMING_SD_HS] = 40000000, }; static const struct of_device_id sdhci_esdhc_of_match[] = { { .compatible = "fsl,ls1021a-esdhc", .data = &ls1021a_esdhc_clk}, { .compatible = "fsl,ls1046a-esdhc", .data = &ls1046a_esdhc_clk}, { .compatible = "fsl,ls1012a-esdhc", .data = &ls1012a_esdhc_clk}, { .compatible = "fsl,p1010-esdhc", .data = &p1010_esdhc_clk}, { .compatible = "fsl,mpc8379-esdhc" }, { .compatible = "fsl,mpc8536-esdhc" }, { .compatible = "fsl,esdhc" }, { } }; MODULE_DEVICE_TABLE(of, sdhci_esdhc_of_match); struct sdhci_esdhc { u8 vendor_ver; u8 spec_ver; bool quirk_incorrect_hostver; bool quirk_limited_clk_division; bool quirk_unreliable_pulse_detection; bool quirk_fixup_tuning; bool quirk_ignore_data_inhibit; unsigned int peripheral_clock; const struct esdhc_clk_fixup *clk_fixup; u32 div_ratio; }; /** * esdhc_read*_fixup - Fixup the value read from incompatible eSDHC register * to make it compatible with SD spec. * * @host: pointer to sdhci_host * @spec_reg: SD spec register address * @value: 32bit eSDHC register value on spec_reg address * * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC * registers are 32 bits. There are differences in register size, register * address, register function, bit position and function between eSDHC spec * and SD spec. * * Return a fixed up register value */ static u32 esdhc_readl_fixup(struct sdhci_host *host, int spec_reg, u32 value) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); u32 ret; /* * The bit of ADMA flag in eSDHC is not compatible with standard * SDHC register, so set fake flag SDHCI_CAN_DO_ADMA2 when ADMA is * supported by eSDHC. * And for many FSL eSDHC controller, the reset value of field * SDHCI_CAN_DO_ADMA1 is 1, but some of them can't support ADMA, * only these vendor version is greater than 2.2/0x12 support ADMA. */ if ((spec_reg == SDHCI_CAPABILITIES) && (value & SDHCI_CAN_DO_ADMA1)) { if (esdhc->vendor_ver > VENDOR_V_22) { ret = value | SDHCI_CAN_DO_ADMA2; return ret; } } /* * The DAT[3:0] line signal levels and the CMD line signal level are * not compatible with standard SDHC register. The line signal levels * DAT[7:0] are at bits 31:24 and the command line signal level is at * bit 23. All other bits are the same as in the standard SDHC * register. */ if (spec_reg == SDHCI_PRESENT_STATE) { ret = value & 0x000fffff; ret |= (value >> 4) & SDHCI_DATA_LVL_MASK; ret |= (value << 1) & SDHCI_CMD_LVL; return ret; } /* * DTS properties of mmc host are used to enable each speed mode * according to soc and board capability. So clean up * SDR50/SDR104/DDR50 support bits here. */ if (spec_reg == SDHCI_CAPABILITIES_1) { ret = value & ~(SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_SDR104 | SDHCI_SUPPORT_DDR50); return ret; } /* * Some controllers have unreliable Data Line Active * bit for commands with busy signal. This affects * Command Inhibit (data) bit. Just ignore it since * MMC core driver has already polled card status * with CMD13 after any command with busy siganl. */ if ((spec_reg == SDHCI_PRESENT_STATE) && (esdhc->quirk_ignore_data_inhibit == true)) { ret = value & ~SDHCI_DATA_INHIBIT; return ret; } ret = value; return ret; } static u16 esdhc_readw_fixup(struct sdhci_host *host, int spec_reg, u32 value) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); u16 ret; int shift = (spec_reg & 0x2) * 8; if (spec_reg == SDHCI_HOST_VERSION) ret = value & 0xffff; else ret = (value >> shift) & 0xffff; /* Workaround for T4240-R1.0-R2.0 eSDHC which has incorrect * vendor version and spec version information. */ if ((spec_reg == SDHCI_HOST_VERSION) && (esdhc->quirk_incorrect_hostver)) ret = (VENDOR_V_23 << SDHCI_VENDOR_VER_SHIFT) | SDHCI_SPEC_200; return ret; } static u8 esdhc_readb_fixup(struct sdhci_host *host, int spec_reg, u32 value) { u8 ret; u8 dma_bits; int shift = (spec_reg & 0x3) * 8; ret = (value >> shift) & 0xff; /* * "DMA select" locates at offset 0x28 in SD specification, but on * P5020 or P3041, it locates at 0x29. */ if (spec_reg == SDHCI_HOST_CONTROL) { /* DMA select is 22,23 bits in Protocol Control Register */ dma_bits = (value >> 5) & SDHCI_CTRL_DMA_MASK; /* fixup the result */ ret &= ~SDHCI_CTRL_DMA_MASK; ret |= dma_bits; } return ret; } /** * esdhc_write*_fixup - Fixup the SD spec register value so that it could be * written into eSDHC register. * * @host: pointer to sdhci_host * @spec_reg: SD spec register address * @value: 8/16/32bit SD spec register value that would be written * @old_value: 32bit eSDHC register value on spec_reg address * * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC * registers are 32 bits. There are differences in register size, register * address, register function, bit position and function between eSDHC spec * and SD spec. * * Return a fixed up register value */ static u32 esdhc_writel_fixup(struct sdhci_host *host, int spec_reg, u32 value, u32 old_value) { u32 ret; /* * Enabling IRQSTATEN[BGESEN] is just to set IRQSTAT[BGE] * when SYSCTL[RSTD] is set for some special operations. * No any impact on other operation. */ if (spec_reg == SDHCI_INT_ENABLE) ret = value | SDHCI_INT_BLK_GAP; else ret = value; return ret; } static u32 esdhc_writew_fixup(struct sdhci_host *host, int spec_reg, u16 value, u32 old_value) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); int shift = (spec_reg & 0x2) * 8; u32 ret; switch (spec_reg) { case SDHCI_TRANSFER_MODE: /* * Postpone this write, we must do it together with a * command write that is down below. Return old value. */ pltfm_host->xfer_mode_shadow = value; return old_value; case SDHCI_COMMAND: ret = (value << 16) | pltfm_host->xfer_mode_shadow; return ret; } ret = old_value & (~(0xffff << shift)); ret |= (value << shift); if (spec_reg == SDHCI_BLOCK_SIZE) { /* * Two last DMA bits are reserved, and first one is used for * non-standard blksz of 4096 bytes that we don't support * yet. So clear the DMA boundary bits. */ ret &= (~SDHCI_MAKE_BLKSZ(0x7, 0)); } return ret; } static u32 esdhc_writeb_fixup(struct sdhci_host *host, int spec_reg, u8 value, u32 old_value) { u32 ret; u32 dma_bits; u8 tmp; int shift = (spec_reg & 0x3) * 8; /* * eSDHC doesn't have a standard power control register, so we do * nothing here to avoid incorrect operation. */ if (spec_reg == SDHCI_POWER_CONTROL) return old_value; /* * "DMA select" location is offset 0x28 in SD specification, but on * P5020 or P3041, it's located at 0x29. */ if (spec_reg == SDHCI_HOST_CONTROL) { /* * If host control register is not standard, exit * this function */ if (host->quirks2 & SDHCI_QUIRK2_BROKEN_HOST_CONTROL) return old_value; /* DMA select is 22,23 bits in Protocol Control Register */ dma_bits = (value & SDHCI_CTRL_DMA_MASK) << 5; ret = (old_value & (~(SDHCI_CTRL_DMA_MASK << 5))) | dma_bits; tmp = (value & (~SDHCI_CTRL_DMA_MASK)) | (old_value & SDHCI_CTRL_DMA_MASK); ret = (ret & (~0xff)) | tmp; /* Prevent SDHCI core from writing reserved bits (e.g. HISPD) */ ret &= ~ESDHC_HOST_CONTROL_RES; return ret; } ret = (old_value & (~(0xff << shift))) | (value << shift); return ret; } static u32 esdhc_be_readl(struct sdhci_host *host, int reg) { u32 ret; u32 value; if (reg == SDHCI_CAPABILITIES_1) value = ioread32be(host->ioaddr + ESDHC_CAPABILITIES_1); else value = ioread32be(host->ioaddr + reg); ret = esdhc_readl_fixup(host, reg, value); return ret; } static u32 esdhc_le_readl(struct sdhci_host *host, int reg) { u32 ret; u32 value; if (reg == SDHCI_CAPABILITIES_1) value = ioread32(host->ioaddr + ESDHC_CAPABILITIES_1); else value = ioread32(host->ioaddr + reg); ret = esdhc_readl_fixup(host, reg, value); return ret; } static u16 esdhc_be_readw(struct sdhci_host *host, int reg) { u16 ret; u32 value; int base = reg & ~0x3; value = ioread32be(host->ioaddr + base); ret = esdhc_readw_fixup(host, reg, value); return ret; } static u16 esdhc_le_readw(struct sdhci_host *host, int reg) { u16 ret; u32 value; int base = reg & ~0x3; value = ioread32(host->ioaddr + base); ret = esdhc_readw_fixup(host, reg, value); return ret; } static u8 esdhc_be_readb(struct sdhci_host *host, int reg) { u8 ret; u32 value; int base = reg & ~0x3; value = ioread32be(host->ioaddr + base); ret = esdhc_readb_fixup(host, reg, value); return ret; } static u8 esdhc_le_readb(struct sdhci_host *host, int reg) { u8 ret; u32 value; int base = reg & ~0x3; value = ioread32(host->ioaddr + base); ret = esdhc_readb_fixup(host, reg, value); return ret; } static void esdhc_be_writel(struct sdhci_host *host, u32 val, int reg) { u32 value; value = esdhc_writel_fixup(host, reg, val, 0); iowrite32be(value, host->ioaddr + reg); } static void esdhc_le_writel(struct sdhci_host *host, u32 val, int reg) { u32 value; value = esdhc_writel_fixup(host, reg, val, 0); iowrite32(value, host->ioaddr + reg); } static void esdhc_be_writew(struct sdhci_host *host, u16 val, int reg) { int base = reg & ~0x3; u32 value; u32 ret; value = ioread32be(host->ioaddr + base); ret = esdhc_writew_fixup(host, reg, val, value); if (reg != SDHCI_TRANSFER_MODE) iowrite32be(ret, host->ioaddr + base); } static void esdhc_le_writew(struct sdhci_host *host, u16 val, int reg) { int base = reg & ~0x3; u32 value; u32 ret; value = ioread32(host->ioaddr + base); ret = esdhc_writew_fixup(host, reg, val, value); if (reg != SDHCI_TRANSFER_MODE) iowrite32(ret, host->ioaddr + base); } static void esdhc_be_writeb(struct sdhci_host *host, u8 val, int reg) { int base = reg & ~0x3; u32 value; u32 ret; value = ioread32be(host->ioaddr + base); ret = esdhc_writeb_fixup(host, reg, val, value); iowrite32be(ret, host->ioaddr + base); } static void esdhc_le_writeb(struct sdhci_host *host, u8 val, int reg) { int base = reg & ~0x3; u32 value; u32 ret; value = ioread32(host->ioaddr + base); ret = esdhc_writeb_fixup(host, reg, val, value); iowrite32(ret, host->ioaddr + base); } /* * For Abort or Suspend after Stop at Block Gap, ignore the ADMA * error(IRQSTAT[ADMAE]) if both Transfer Complete(IRQSTAT[TC]) * and Block Gap Event(IRQSTAT[BGE]) are also set. * For Continue, apply soft reset for data(SYSCTL[RSTD]); * and re-issue the entire read transaction from beginning. */ static void esdhc_of_adma_workaround(struct sdhci_host *host, u32 intmask) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); bool applicable; dma_addr_t dmastart; dma_addr_t dmanow; applicable = (intmask & SDHCI_INT_DATA_END) && (intmask & SDHCI_INT_BLK_GAP) && (esdhc->vendor_ver == VENDOR_V_23); if (!applicable) return; host->data->error = 0; dmastart = sg_dma_address(host->data->sg); dmanow = dmastart + host->data->bytes_xfered; /* * Force update to the next DMA block boundary. */ dmanow = (dmanow & ~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) + SDHCI_DEFAULT_BOUNDARY_SIZE; host->data->bytes_xfered = dmanow - dmastart; sdhci_writel(host, dmanow, SDHCI_DMA_ADDRESS); } static int esdhc_of_enable_dma(struct sdhci_host *host) { u32 value; struct device *dev = mmc_dev(host->mmc); if (of_device_is_compatible(dev->of_node, "fsl,ls1043a-esdhc") || of_device_is_compatible(dev->of_node, "fsl,ls1046a-esdhc")) dma_set_mask_and_coherent(dev, DMA_BIT_MASK(40)); value = sdhci_readl(host, ESDHC_DMA_SYSCTL); value |= ESDHC_DMA_SNOOP; sdhci_writel(host, value, ESDHC_DMA_SYSCTL); return 0; } static unsigned int esdhc_of_get_max_clock(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); if (esdhc->peripheral_clock) return esdhc->peripheral_clock; else return pltfm_host->clock; } static unsigned int esdhc_of_get_min_clock(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); unsigned int clock; if (esdhc->peripheral_clock) clock = esdhc->peripheral_clock; else clock = pltfm_host->clock; return clock / 256 / 16; } static void esdhc_clock_enable(struct sdhci_host *host, bool enable) { u32 val; ktime_t timeout; val = sdhci_readl(host, ESDHC_SYSTEM_CONTROL); if (enable) val |= ESDHC_CLOCK_SDCLKEN; else val &= ~ESDHC_CLOCK_SDCLKEN; sdhci_writel(host, val, ESDHC_SYSTEM_CONTROL); /* Wait max 20 ms */ timeout = ktime_add_ms(ktime_get(), 20); val = ESDHC_CLOCK_STABLE; while (1) { bool timedout = ktime_after(ktime_get(), timeout); if (sdhci_readl(host, ESDHC_PRSSTAT) & val) break; if (timedout) { pr_err("%s: Internal clock never stabilised.\n", mmc_hostname(host->mmc)); break; } udelay(10); } } static void esdhc_of_set_clock(struct sdhci_host *host, unsigned int clock) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); int pre_div = 1; int div = 1; int division; ktime_t timeout; long fixup = 0; u32 temp; host->mmc->actual_clock = 0; if (clock == 0) { esdhc_clock_enable(host, false); return; } /* Workaround to start pre_div at 2 for VNN < VENDOR_V_23 */ if (esdhc->vendor_ver < VENDOR_V_23) pre_div = 2; if (host->mmc->card && mmc_card_sd(host->mmc->card) && esdhc->clk_fixup && host->mmc->ios.timing == MMC_TIMING_LEGACY) fixup = esdhc->clk_fixup->sd_dflt_max_clk; else if (esdhc->clk_fixup) fixup = esdhc->clk_fixup->max_clk[host->mmc->ios.timing]; if (fixup && clock > fixup) clock = fixup; temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL); temp &= ~(ESDHC_CLOCK_SDCLKEN | ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN | ESDHC_CLOCK_PEREN | ESDHC_CLOCK_MASK); sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL); while (host->max_clk / pre_div / 16 > clock && pre_div < 256) pre_div *= 2; while (host->max_clk / pre_div / div > clock && div < 16) div++; if (esdhc->quirk_limited_clk_division && clock == MMC_HS200_MAX_DTR && (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 || host->flags & SDHCI_HS400_TUNING)) { division = pre_div * div; if (division <= 4) { pre_div = 4; div = 1; } else if (division <= 8) { pre_div = 4; div = 2; } else if (division <= 12) { pre_div = 4; div = 3; } else { pr_warn("%s: using unsupported clock division.\n", mmc_hostname(host->mmc)); } } dev_dbg(mmc_dev(host->mmc), "desired SD clock: %d, actual: %d\n", clock, host->max_clk / pre_div / div); host->mmc->actual_clock = host->max_clk / pre_div / div; esdhc->div_ratio = pre_div * div; pre_div >>= 1; div--; temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL); temp |= (ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN | ESDHC_CLOCK_PEREN | (div << ESDHC_DIVIDER_SHIFT) | (pre_div << ESDHC_PREDIV_SHIFT)); sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL); if (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 && clock == MMC_HS200_MAX_DTR) { temp = sdhci_readl(host, ESDHC_TBCTL); sdhci_writel(host, temp | ESDHC_HS400_MODE, ESDHC_TBCTL); temp = sdhci_readl(host, ESDHC_SDCLKCTL); sdhci_writel(host, temp | ESDHC_CMD_CLK_CTL, ESDHC_SDCLKCTL); esdhc_clock_enable(host, true); temp = sdhci_readl(host, ESDHC_DLLCFG0); temp |= ESDHC_DLL_ENABLE; if (host->mmc->actual_clock == MMC_HS200_MAX_DTR) temp |= ESDHC_DLL_FREQ_SEL; sdhci_writel(host, temp, ESDHC_DLLCFG0); temp = sdhci_readl(host, ESDHC_TBCTL); sdhci_writel(host, temp | ESDHC_HS400_WNDW_ADJUST, ESDHC_TBCTL); esdhc_clock_enable(host, false); temp = sdhci_readl(host, ESDHC_DMA_SYSCTL); temp |= ESDHC_FLUSH_ASYNC_FIFO; sdhci_writel(host, temp, ESDHC_DMA_SYSCTL); } /* Wait max 20 ms */ timeout = ktime_add_ms(ktime_get(), 20); while (1) { bool timedout = ktime_after(ktime_get(), timeout); if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE) break; if (timedout) { pr_err("%s: Internal clock never stabilised.\n", mmc_hostname(host->mmc)); return; } udelay(10); } temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL); temp |= ESDHC_CLOCK_SDCLKEN; sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL); } static void esdhc_pltfm_set_bus_width(struct sdhci_host *host, int width) { u32 ctrl; ctrl = sdhci_readl(host, ESDHC_PROCTL); ctrl &= (~ESDHC_CTRL_BUSWIDTH_MASK); switch (width) { case MMC_BUS_WIDTH_8: ctrl |= ESDHC_CTRL_8BITBUS; break; case MMC_BUS_WIDTH_4: ctrl |= ESDHC_CTRL_4BITBUS; break; default: break; } sdhci_writel(host, ctrl, ESDHC_PROCTL); } static void esdhc_reset(struct sdhci_host *host, u8 mask) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); u32 val; sdhci_reset(host, mask); sdhci_writel(host, host->ier, SDHCI_INT_ENABLE); sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE); if (of_find_compatible_node(NULL, NULL, "fsl,p2020-esdhc")) mdelay(5); if (mask & SDHCI_RESET_ALL) { val = sdhci_readl(host, ESDHC_TBCTL); val &= ~ESDHC_TB_EN; sdhci_writel(host, val, ESDHC_TBCTL); if (esdhc->quirk_unreliable_pulse_detection) { val = sdhci_readl(host, ESDHC_DLLCFG1); val &= ~ESDHC_DLL_PD_PULSE_STRETCH_SEL; sdhci_writel(host, val, ESDHC_DLLCFG1); } } } /* The SCFG, Supplemental Configuration Unit, provides SoC specific * configuration and status registers for the device. There is a * SDHC IO VSEL control register on SCFG for some platforms. It's * used to support SDHC IO voltage switching. */ static const struct of_device_id scfg_device_ids[] = { { .compatible = "fsl,t1040-scfg", }, { .compatible = "fsl,ls1012a-scfg", }, { .compatible = "fsl,ls1046a-scfg", }, {} }; /* SDHC IO VSEL control register definition */ #define SCFG_SDHCIOVSELCR 0x408 #define SDHCIOVSELCR_TGLEN 0x80000000 #define SDHCIOVSELCR_VSELVAL 0x60000000 #define SDHCIOVSELCR_SDHC_VS 0x00000001 static int esdhc_signal_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios) { struct sdhci_host *host = mmc_priv(mmc); struct device_node *scfg_node; void __iomem *scfg_base = NULL; u32 sdhciovselcr; u32 val; /* * Signal Voltage Switching is only applicable for Host Controllers * v3.00 and above. */ if (host->version < SDHCI_SPEC_300) return 0; val = sdhci_readl(host, ESDHC_PROCTL); switch (ios->signal_voltage) { case MMC_SIGNAL_VOLTAGE_330: val &= ~ESDHC_VOLT_SEL; sdhci_writel(host, val, ESDHC_PROCTL); return 0; case MMC_SIGNAL_VOLTAGE_180: scfg_node = of_find_matching_node(NULL, scfg_device_ids); if (scfg_node) scfg_base = of_iomap(scfg_node, 0); if (scfg_base) { sdhciovselcr = SDHCIOVSELCR_TGLEN | SDHCIOVSELCR_VSELVAL; iowrite32be(sdhciovselcr, scfg_base + SCFG_SDHCIOVSELCR); val |= ESDHC_VOLT_SEL; sdhci_writel(host, val, ESDHC_PROCTL); mdelay(5); sdhciovselcr = SDHCIOVSELCR_TGLEN | SDHCIOVSELCR_SDHC_VS; iowrite32be(sdhciovselcr, scfg_base + SCFG_SDHCIOVSELCR); iounmap(scfg_base); } else { val |= ESDHC_VOLT_SEL; sdhci_writel(host, val, ESDHC_PROCTL); } return 0; default: return 0; } } static struct soc_device_attribute soc_fixup_tuning[] = { { .family = "QorIQ T1040", .revision = "1.0", }, { .family = "QorIQ T2080", .revision = "1.0", }, { .family = "QorIQ T1023", .revision = "1.0", }, { .family = "QorIQ LS1021A", .revision = "1.0", }, { .family = "QorIQ LS1080A", .revision = "1.0", }, { .family = "QorIQ LS2080A", .revision = "1.0", }, { .family = "QorIQ LS1012A", .revision = "1.0", }, { .family = "QorIQ LS1043A", .revision = "1.*", }, { .family = "QorIQ LS1046A", .revision = "1.0", }, { }, }; static void esdhc_tuning_block_enable(struct sdhci_host *host, bool enable) { u32 val; esdhc_clock_enable(host, false); val = sdhci_readl(host, ESDHC_DMA_SYSCTL); val |= ESDHC_FLUSH_ASYNC_FIFO; sdhci_writel(host, val, ESDHC_DMA_SYSCTL); val = sdhci_readl(host, ESDHC_TBCTL); if (enable) val |= ESDHC_TB_EN; else val &= ~ESDHC_TB_EN; sdhci_writel(host, val, ESDHC_TBCTL); esdhc_clock_enable(host, true); } static int esdhc_execute_tuning(struct mmc_host *mmc, u32 opcode) { struct sdhci_host *host = mmc_priv(mmc); struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); bool hs400_tuning; unsigned int clk; u32 val; int ret; /* For tuning mode, the sd clock divisor value * must be larger than 3 according to reference manual. */ clk = esdhc->peripheral_clock / 3; if (host->clock > clk) esdhc_of_set_clock(host, clk); if (esdhc->quirk_limited_clk_division && host->flags & SDHCI_HS400_TUNING) esdhc_of_set_clock(host, host->clock); esdhc_tuning_block_enable(host, true); hs400_tuning = host->flags & SDHCI_HS400_TUNING; ret = sdhci_execute_tuning(mmc, opcode); if (hs400_tuning) { val = sdhci_readl(host, ESDHC_SDTIMNGCTL); val |= ESDHC_FLW_CTL_BG; sdhci_writel(host, val, ESDHC_SDTIMNGCTL); } if (host->tuning_err == -EAGAIN && esdhc->quirk_fixup_tuning) { /* program TBPTR[TB_WNDW_END_PTR] = 3*DIV_RATIO and * program TBPTR[TB_WNDW_START_PTR] = 5*DIV_RATIO */ val = sdhci_readl(host, ESDHC_TBPTR); val = (val & ~((0x7f << 8) | 0x7f)) | (3 * esdhc->div_ratio) | ((5 * esdhc->div_ratio) << 8); sdhci_writel(host, val, ESDHC_TBPTR); /* program the software tuning mode by setting * TBCTL[TB_MODE]=2'h3 */ val = sdhci_readl(host, ESDHC_TBCTL); val |= 0x3; sdhci_writel(host, val, ESDHC_TBCTL); sdhci_execute_tuning(mmc, opcode); } return ret; } static void esdhc_set_uhs_signaling(struct sdhci_host *host, unsigned int timing) { if (timing == MMC_TIMING_MMC_HS400) esdhc_tuning_block_enable(host, true); else sdhci_set_uhs_signaling(host, timing); } static u32 esdhc_irq(struct sdhci_host *host, u32 intmask) { u32 command; if (of_find_compatible_node(NULL, NULL, "fsl,p2020-esdhc")) { command = SDHCI_GET_CMD(sdhci_readw(host, SDHCI_COMMAND)); if (command == MMC_WRITE_MULTIPLE_BLOCK && sdhci_readw(host, SDHCI_BLOCK_COUNT) && intmask & SDHCI_INT_DATA_END) { intmask &= ~SDHCI_INT_DATA_END; sdhci_writel(host, SDHCI_INT_DATA_END, SDHCI_INT_STATUS); } } return intmask; } #ifdef CONFIG_PM_SLEEP static u32 esdhc_proctl; static int esdhc_of_suspend(struct device *dev) { struct sdhci_host *host = dev_get_drvdata(dev); esdhc_proctl = sdhci_readl(host, SDHCI_HOST_CONTROL); if (host->tuning_mode != SDHCI_TUNING_MODE_3) mmc_retune_needed(host->mmc); return sdhci_suspend_host(host); } static int esdhc_of_resume(struct device *dev) { struct sdhci_host *host = dev_get_drvdata(dev); int ret = sdhci_resume_host(host); if (ret == 0) { /* Isn't this already done by sdhci_resume_host() ? --rmk */ esdhc_of_enable_dma(host); sdhci_writel(host, esdhc_proctl, SDHCI_HOST_CONTROL); } return ret; } #endif static SIMPLE_DEV_PM_OPS(esdhc_of_dev_pm_ops, esdhc_of_suspend, esdhc_of_resume); static const struct sdhci_ops sdhci_esdhc_be_ops = { .read_l = esdhc_be_readl, .read_w = esdhc_be_readw, .read_b = esdhc_be_readb, .write_l = esdhc_be_writel, .write_w = esdhc_be_writew, .write_b = esdhc_be_writeb, .set_clock = esdhc_of_set_clock, .enable_dma = esdhc_of_enable_dma, .get_max_clock = esdhc_of_get_max_clock, .get_min_clock = esdhc_of_get_min_clock, .adma_workaround = esdhc_of_adma_workaround, .set_bus_width = esdhc_pltfm_set_bus_width, .reset = esdhc_reset, .set_uhs_signaling = esdhc_set_uhs_signaling, .irq = esdhc_irq, }; static const struct sdhci_ops sdhci_esdhc_le_ops = { .read_l = esdhc_le_readl, .read_w = esdhc_le_readw, .read_b = esdhc_le_readb, .write_l = esdhc_le_writel, .write_w = esdhc_le_writew, .write_b = esdhc_le_writeb, .set_clock = esdhc_of_set_clock, .enable_dma = esdhc_of_enable_dma, .get_max_clock = esdhc_of_get_max_clock, .get_min_clock = esdhc_of_get_min_clock, .adma_workaround = esdhc_of_adma_workaround, .set_bus_width = esdhc_pltfm_set_bus_width, .reset = esdhc_reset, .set_uhs_signaling = esdhc_set_uhs_signaling, .irq = esdhc_irq, }; static const struct sdhci_pltfm_data sdhci_esdhc_be_pdata = { .quirks = ESDHC_DEFAULT_QUIRKS | #ifdef CONFIG_PPC SDHCI_QUIRK_BROKEN_CARD_DETECTION | #endif SDHCI_QUIRK_NO_CARD_NO_RESET | SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC, .ops = &sdhci_esdhc_be_ops, }; static const struct sdhci_pltfm_data sdhci_esdhc_le_pdata = { .quirks = ESDHC_DEFAULT_QUIRKS | SDHCI_QUIRK_NO_CARD_NO_RESET | SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC, .ops = &sdhci_esdhc_le_ops, }; static struct soc_device_attribute soc_incorrect_hostver[] = { { .family = "QorIQ T4240", .revision = "1.0", }, { .family = "QorIQ T4240", .revision = "2.0", }, { }, }; static struct soc_device_attribute soc_fixup_sdhc_clkdivs[] = { { .family = "QorIQ LX2160A", .revision = "1.0", }, { .family = "QorIQ LX2160A", .revision = "2.0", }, { }, }; static struct soc_device_attribute soc_unreliable_pulse_detection[] = { { .family = "QorIQ LX2160A", .revision = "1.0", }, { }, }; static void esdhc_init(struct platform_device *pdev, struct sdhci_host *host) { const struct of_device_id *match; struct sdhci_pltfm_host *pltfm_host; struct sdhci_esdhc *esdhc; struct device_node *np; struct clk *clk; u32 val; u16 host_ver; pltfm_host = sdhci_priv(host); esdhc = sdhci_pltfm_priv(pltfm_host); host_ver = sdhci_readw(host, SDHCI_HOST_VERSION); esdhc->vendor_ver = (host_ver & SDHCI_VENDOR_VER_MASK) >> SDHCI_VENDOR_VER_SHIFT; esdhc->spec_ver = host_ver & SDHCI_SPEC_VER_MASK; if (soc_device_match(soc_incorrect_hostver)) esdhc->quirk_incorrect_hostver = true; else esdhc->quirk_incorrect_hostver = false; if (soc_device_match(soc_fixup_sdhc_clkdivs)) esdhc->quirk_limited_clk_division = true; else esdhc->quirk_limited_clk_division = false; if (soc_device_match(soc_unreliable_pulse_detection)) esdhc->quirk_unreliable_pulse_detection = true; else esdhc->quirk_unreliable_pulse_detection = false; match = of_match_node(sdhci_esdhc_of_match, pdev->dev.of_node); if (match) esdhc->clk_fixup = match->data; np = pdev->dev.of_node; clk = of_clk_get(np, 0); if (!IS_ERR(clk)) { /* * esdhc->peripheral_clock would be assigned with a value * which is eSDHC base clock when use periperal clock. * For some platforms, the clock value got by common clk * API is peripheral clock while the eSDHC base clock is * 1/2 peripheral clock. */ if (of_device_is_compatible(np, "fsl,ls1046a-esdhc") || of_device_is_compatible(np, "fsl,ls1028a-esdhc")) esdhc->peripheral_clock = clk_get_rate(clk) / 2; else esdhc->peripheral_clock = clk_get_rate(clk); clk_put(clk); } if (esdhc->peripheral_clock) { esdhc_clock_enable(host, false); val = sdhci_readl(host, ESDHC_DMA_SYSCTL); val |= ESDHC_PERIPHERAL_CLK_SEL; sdhci_writel(host, val, ESDHC_DMA_SYSCTL); esdhc_clock_enable(host, true); } } static int esdhc_hs400_prepare_ddr(struct mmc_host *mmc) { esdhc_tuning_block_enable(mmc_priv(mmc), false); return 0; } static int sdhci_esdhc_probe(struct platform_device *pdev) { struct sdhci_host *host; struct device_node *np; struct sdhci_pltfm_host *pltfm_host; struct sdhci_esdhc *esdhc; int ret; np = pdev->dev.of_node; if (of_property_read_bool(np, "little-endian")) host = sdhci_pltfm_init(pdev, &sdhci_esdhc_le_pdata, sizeof(struct sdhci_esdhc)); else host = sdhci_pltfm_init(pdev, &sdhci_esdhc_be_pdata, sizeof(struct sdhci_esdhc)); if (IS_ERR(host)) return PTR_ERR(host); host->mmc_host_ops.start_signal_voltage_switch = esdhc_signal_voltage_switch; host->mmc_host_ops.execute_tuning = esdhc_execute_tuning; host->mmc_host_ops.hs400_prepare_ddr = esdhc_hs400_prepare_ddr; host->tuning_delay = 1; esdhc_init(pdev, host); sdhci_get_of_property(pdev); pltfm_host = sdhci_priv(host); esdhc = sdhci_pltfm_priv(pltfm_host); if (soc_device_match(soc_fixup_tuning)) esdhc->quirk_fixup_tuning = true; else esdhc->quirk_fixup_tuning = false; if (esdhc->vendor_ver == VENDOR_V_22) host->quirks2 |= SDHCI_QUIRK2_HOST_NO_CMD23; if (esdhc->vendor_ver > VENDOR_V_22) host->quirks &= ~SDHCI_QUIRK_NO_BUSY_IRQ; if (of_find_compatible_node(NULL, NULL, "fsl,p2020-esdhc")) { host->quirks2 |= SDHCI_QUIRK_RESET_AFTER_REQUEST; host->quirks2 |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL; } if (of_device_is_compatible(np, "fsl,p5040-esdhc") || of_device_is_compatible(np, "fsl,p5020-esdhc") || of_device_is_compatible(np, "fsl,p4080-esdhc") || of_device_is_compatible(np, "fsl,p1020-esdhc") || of_device_is_compatible(np, "fsl,t1040-esdhc")) host->quirks &= ~SDHCI_QUIRK_BROKEN_CARD_DETECTION; if (of_device_is_compatible(np, "fsl,ls1021a-esdhc")) host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL; esdhc->quirk_ignore_data_inhibit = false; if (of_device_is_compatible(np, "fsl,p2020-esdhc")) { /* * Freescale messed up with P2020 as it has a non-standard * host control register */ host->quirks2 |= SDHCI_QUIRK2_BROKEN_HOST_CONTROL; esdhc->quirk_ignore_data_inhibit = true; } /* call to generic mmc_of_parse to support additional capabilities */ ret = mmc_of_parse(host->mmc); if (ret) goto err; mmc_of_parse_voltage(np, &host->ocr_mask); ret = sdhci_add_host(host); if (ret) goto err; return 0; err: sdhci_pltfm_free(pdev); return ret; } static struct platform_driver sdhci_esdhc_driver = { .driver = { .name = "sdhci-esdhc", .of_match_table = sdhci_esdhc_of_match, .pm = &esdhc_of_dev_pm_ops, }, .probe = sdhci_esdhc_probe, .remove = sdhci_pltfm_unregister, }; module_platform_driver(sdhci_esdhc_driver); MODULE_DESCRIPTION("SDHCI OF driver for Freescale MPC eSDHC"); MODULE_AUTHOR("Xiaobo Xie <X.Xie@freescale.com>, " "Anton Vorontsov <avorontsov@ru.mvista.com>"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1