Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Walleij | 1453 | 82.89% | 10 | 58.82% |
Linus Torvalds | 234 | 13.35% | 1 | 5.88% |
Russell King | 39 | 2.22% | 1 | 5.88% |
David Woodhouse | 20 | 1.14% | 1 | 5.88% |
Thomas Gleixner | 2 | 0.11% | 1 | 5.88% |
Dmitry Eremin-Solenikov | 2 | 0.11% | 1 | 5.88% |
Brian Norris | 2 | 0.11% | 1 | 5.88% |
Burman Yan | 1 | 0.06% | 1 | 5.88% |
Total | 1753 | 17 |
// SPDX-License-Identifier: GPL-2.0-or-later /*====================================================================== drivers/mtd/afs.c: ARM Flash Layout/Partitioning Copyright © 2000 ARM Limited Copyright (C) 2019 Linus Walleij This is access code for flashes using ARM's flash partitioning standards. ======================================================================*/ #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/init.h> #include <linux/mtd/mtd.h> #include <linux/mtd/map.h> #include <linux/mtd/partitions.h> #define AFSV1_FOOTER_MAGIC 0xA0FFFF9F #define AFSV2_FOOTER_MAGIC1 0x464C5348 /* "FLSH" */ #define AFSV2_FOOTER_MAGIC2 0x464F4F54 /* "FOOT" */ struct footer_v1 { u32 image_info_base; /* Address of first word of ImageFooter */ u32 image_start; /* Start of area reserved by this footer */ u32 signature; /* 'Magic' number proves it's a footer */ u32 type; /* Area type: ARM Image, SIB, customer */ u32 checksum; /* Just this structure */ }; struct image_info_v1 { u32 bootFlags; /* Boot flags, compression etc. */ u32 imageNumber; /* Unique number, selects for boot etc. */ u32 loadAddress; /* Address program should be loaded to */ u32 length; /* Actual size of image */ u32 address; /* Image is executed from here */ char name[16]; /* Null terminated */ u32 headerBase; /* Flash Address of any stripped header */ u32 header_length; /* Length of header in memory */ u32 headerType; /* AIF, RLF, s-record etc. */ u32 checksum; /* Image checksum (inc. this struct) */ }; static u32 word_sum(void *words, int num) { u32 *p = words; u32 sum = 0; while (num--) sum += *p++; return sum; } static u32 word_sum_v2(u32 *p, u32 num) { u32 sum = 0; int i; for (i = 0; i < num; i++) { u32 val; val = p[i]; if (val > ~sum) sum++; sum += val; } return ~sum; } static bool afs_is_v1(struct mtd_info *mtd, u_int off) { /* The magic is 12 bytes from the end of the erase block */ u_int ptr = off + mtd->erasesize - 12; u32 magic; size_t sz; int ret; ret = mtd_read(mtd, ptr, 4, &sz, (u_char *)&magic); if (ret < 0) { printk(KERN_ERR "AFS: mtd read failed at 0x%x: %d\n", ptr, ret); return false; } if (ret >= 0 && sz != 4) return false; return (magic == AFSV1_FOOTER_MAGIC); } static bool afs_is_v2(struct mtd_info *mtd, u_int off) { /* The magic is the 8 last bytes of the erase block */ u_int ptr = off + mtd->erasesize - 8; u32 foot[2]; size_t sz; int ret; ret = mtd_read(mtd, ptr, 8, &sz, (u_char *)foot); if (ret < 0) { printk(KERN_ERR "AFS: mtd read failed at 0x%x: %d\n", ptr, ret); return false; } if (ret >= 0 && sz != 8) return false; return (foot[0] == AFSV2_FOOTER_MAGIC1 && foot[1] == AFSV2_FOOTER_MAGIC2); } static int afs_parse_v1_partition(struct mtd_info *mtd, u_int off, struct mtd_partition *part) { struct footer_v1 fs; struct image_info_v1 iis; u_int mask; /* * Static checks cannot see that we bail out if we have an error * reading the footer. */ u_int uninitialized_var(iis_ptr); u_int uninitialized_var(img_ptr); u_int ptr; size_t sz; int ret; int i; /* * This is the address mask; we use this to mask off out of * range address bits. */ mask = mtd->size - 1; ptr = off + mtd->erasesize - sizeof(fs); ret = mtd_read(mtd, ptr, sizeof(fs), &sz, (u_char *)&fs); if (ret >= 0 && sz != sizeof(fs)) ret = -EINVAL; if (ret < 0) { printk(KERN_ERR "AFS: mtd read failed at 0x%x: %d\n", ptr, ret); return ret; } /* * Check the checksum. */ if (word_sum(&fs, sizeof(fs) / sizeof(u32)) != 0xffffffff) return -EINVAL; /* * Hide the SIB (System Information Block) */ if (fs.type == 2) return 0; iis_ptr = fs.image_info_base & mask; img_ptr = fs.image_start & mask; /* * Check the image info base. This can not * be located after the footer structure. */ if (iis_ptr >= ptr) return 0; /* * Check the start of this image. The image * data can not be located after this block. */ if (img_ptr > off) return 0; /* Read the image info block */ memset(&iis, 0, sizeof(iis)); ret = mtd_read(mtd, iis_ptr, sizeof(iis), &sz, (u_char *)&iis); if (ret < 0) { printk(KERN_ERR "AFS: mtd read failed at 0x%x: %d\n", iis_ptr, ret); return -EINVAL; } if (sz != sizeof(iis)) return -EINVAL; /* * Validate the name - it must be NUL terminated. */ for (i = 0; i < sizeof(iis.name); i++) if (iis.name[i] == '\0') break; if (i > sizeof(iis.name)) return -EINVAL; part->name = kstrdup(iis.name, GFP_KERNEL); if (!part->name) return -ENOMEM; part->size = (iis.length + mtd->erasesize - 1) & ~(mtd->erasesize - 1); part->offset = img_ptr; part->mask_flags = 0; printk(" mtd: at 0x%08x, %5lluKiB, %8u, %s\n", img_ptr, part->size / 1024, iis.imageNumber, part->name); return 0; } static int afs_parse_v2_partition(struct mtd_info *mtd, u_int off, struct mtd_partition *part) { u_int ptr; u32 footer[12]; u32 imginfo[36]; char *name; u32 version; u32 entrypoint; u32 attributes; u32 region_count; u32 block_start; u32 block_end; u32 crc; size_t sz; int ret; int i; int pad = 0; pr_debug("Parsing v2 partition @%08x-%08x\n", off, off + mtd->erasesize); /* First read the footer */ ptr = off + mtd->erasesize - sizeof(footer); ret = mtd_read(mtd, ptr, sizeof(footer), &sz, (u_char *)footer); if ((ret < 0) || (ret >= 0 && sz != sizeof(footer))) { pr_err("AFS: mtd read failed at 0x%x: %d\n", ptr, ret); return -EIO; } name = (char *) &footer[0]; version = footer[9]; ptr = off + mtd->erasesize - sizeof(footer) - footer[8]; pr_debug("found image \"%s\", version %08x, info @%08x\n", name, version, ptr); /* Then read the image information */ ret = mtd_read(mtd, ptr, sizeof(imginfo), &sz, (u_char *)imginfo); if ((ret < 0) || (ret >= 0 && sz != sizeof(imginfo))) { pr_err("AFS: mtd read failed at 0x%x: %d\n", ptr, ret); return -EIO; } /* 32bit platforms have 4 bytes padding */ crc = word_sum_v2(&imginfo[1], 34); if (!crc) { pr_debug("Padding 1 word (4 bytes)\n"); pad = 1; } else { /* 64bit platforms have 8 bytes padding */ crc = word_sum_v2(&imginfo[2], 34); if (!crc) { pr_debug("Padding 2 words (8 bytes)\n"); pad = 2; } } if (crc) { pr_err("AFS: bad checksum on v2 image info: %08x\n", crc); return -EINVAL; } entrypoint = imginfo[pad]; attributes = imginfo[pad+1]; region_count = imginfo[pad+2]; block_start = imginfo[20]; block_end = imginfo[21]; pr_debug("image entry=%08x, attr=%08x, regions=%08x, " "bs=%08x, be=%08x\n", entrypoint, attributes, region_count, block_start, block_end); for (i = 0; i < region_count; i++) { u32 region_load_addr = imginfo[pad + 3 + i*4]; u32 region_size = imginfo[pad + 4 + i*4]; u32 region_offset = imginfo[pad + 5 + i*4]; u32 region_start; u32 region_end; pr_debug(" region %d: address: %08x, size: %08x, " "offset: %08x\n", i, region_load_addr, region_size, region_offset); region_start = off + region_offset; region_end = region_start + region_size; /* Align partition to end of erase block */ region_end += (mtd->erasesize - 1); region_end &= ~(mtd->erasesize -1); pr_debug(" partition start = %08x, partition end = %08x\n", region_start, region_end); /* Create one partition per region */ part->name = kstrdup(name, GFP_KERNEL); if (!part->name) return -ENOMEM; part->offset = region_start; part->size = region_end - region_start; part->mask_flags = 0; } return 0; } static int parse_afs_partitions(struct mtd_info *mtd, const struct mtd_partition **pparts, struct mtd_part_parser_data *data) { struct mtd_partition *parts; u_int off, sz; int ret = 0; int i; /* Count the partitions by looping over all erase blocks */ for (i = off = sz = 0; off < mtd->size; off += mtd->erasesize) { if (afs_is_v1(mtd, off)) { sz += sizeof(struct mtd_partition); i += 1; } if (afs_is_v2(mtd, off)) { sz += sizeof(struct mtd_partition); i += 1; } } if (!i) return 0; parts = kzalloc(sz, GFP_KERNEL); if (!parts) return -ENOMEM; /* * Identify the partitions */ for (i = off = 0; off < mtd->size; off += mtd->erasesize) { if (afs_is_v1(mtd, off)) { ret = afs_parse_v1_partition(mtd, off, &parts[i]); if (ret) goto out_free_parts; i++; } if (afs_is_v2(mtd, off)) { ret = afs_parse_v2_partition(mtd, off, &parts[i]); if (ret) goto out_free_parts; i++; } } *pparts = parts; return i; out_free_parts: while (i >= 0) { kfree(parts[i].name); i--; } kfree(parts); *pparts = NULL; return ret; } static const struct of_device_id mtd_parser_afs_of_match_table[] = { { .compatible = "arm,arm-firmware-suite" }, {}, }; MODULE_DEVICE_TABLE(of, mtd_parser_afs_of_match_table); static struct mtd_part_parser afs_parser = { .parse_fn = parse_afs_partitions, .name = "afs", .of_match_table = mtd_parser_afs_of_match_table, }; module_mtd_part_parser(afs_parser); MODULE_AUTHOR("ARM Ltd"); MODULE_DESCRIPTION("ARM Firmware Suite partition parser"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1